
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS107, Lecture 8
C Strings, Valgrind and Pointers

Reading: K&R (5.2-5.5) or Essential C section 6

2

CS107 Topic 2
How can a computer represent and manipulate more complex data like text?

Why is answering this question important?
• Shows us how strings are represented in C and other languages (previously)
• Helps us better understand buffer overflows, a common bug (previously)
• Introduces us to pointers, because strings can be pointers (this time)

assign2: implement 2 functions a 1 program using those functions to find the location
of different built-in commands in the filesystem. You’ll write functions to extract a list
of possible locations and tokenize that list of locations.

3

Learning Goals
• Learn more about the risks of buffer overflows and how to mitigate them
• Understand how strings are represented as pointers and how that helps us

better understand their behavior
• Learn about pointers and how they help us access data without making copies
• Become familiar with using memory diagrams to understand code behavior

4

Lecture Plan
• Buffer Overflows, Security and Valgrind
• Debugging and Testing
• Review: Pointers

cp -r /afs/ir/class/cs107/lecture-code/lect8 .

5

Lecture Plan
• Buffer Overflows, Security and Valgrind
• Debugging and Testing
• Review: Pointers

cp -r /afs/ir/class/cs107/lecture-code/lect8 .

6

Buffer Overflow Impacts
Buffer overflows are not merely functionality bugs; they can cause a range of
unintended behavior:
• Let the user access memory they shouldn’t be able to access
• Let the user modify memory they shouldn’t be able to access

• Change a value that is used later in the program
• User changes the program to execute their own custom instructions instead
• And more…

It’s our job as programmers to find and fix buffer overflows and other bugs not
just for the functional correctness of our programs, but to protect people who
use and interact with our code.

7

Association for Computing Machinery
(ACM) Code of Ethics

https://www.acm.org/code-of-ethics

8

ACM Code of Ethics on Security
2.9 Design and implement systems that are robustly and usably secure.
Breaches of computer security cause harm. Robust security should be a primary consideration
when designing and implementing systems. Computing professionals should perform due
diligence to ensure the system functions as intended, and take appropriate action to secure
resources against accidental and intentional misuse, modification, and denial of service. As
threats can arise and change after a system is deployed, computing professionals should integrate
mitigation techniques and policies, such as monitoring, patching, and vulnerability reporting.
Computing professionals should also take steps to ensure parties affected by data breaches are
notified in a timely and clear manner, providing appropriate guidance and remediation.
To ensure the system achieves its intended purpose, security features should be designed to be as
intuitive and easy to use as possible. Computing professionals should discourage security
precautions that are too confusing, are situationally inappropriate, or otherwise inhibit legitimate
use.
In cases where misuse or harm are predictable or unavoidable, the best option may be to not
implement the system.

https://www.acm.org/code-of-ethics

9

How can we fix buffer overflows?
There’s no single solution to fix all buffer overflows; instead, it’s a combination
of techniques to avoid them as much as possible:
• Constant vigilance while programming (checking arrays and where they are

modified)
• Carefully reading documentation
• Thorough testing to uncover issues before release
• Thorough documentation to document assumptions in your code
• (Where possible) use of tools that reduce the possibility for buffer overflows

10

How can we fix buffer overflows?
There’s no single solution to fix all buffer overflows; instead, it’s a combination
of techniques to avoid them as much as possible:
• Constant vigilance while programming (checking arrays and where they are

modified)
• Carefully reading documentation
• Thorough testing to uncover issues before release
• Thorough documentation to document assumptions in your code
• (Where possible) use of tools that reduce the possibility for buffer overflows

11

How Can We Fix Overflows?
• Valgrind: Your Greatest Ally
• Write your own tests
• Consider writing tests before writing the main program

 ✨ cs107.stanford.edu/testing.html ✨

12

Buffer Overflows
• We must always ensure that memory operations we perform don’t improperly

read or write memory.
• E.g. don’t copy a string into a space that is too small!
• E.g. don’t ask for the string length of an uninitialized string!

• The Valgrind tool may be able to help track down memory-related issues.
• See cs107.stanford.edu/resources/valgrind
• We’ll talk about Valgrind more when we talk about dynamically-allocated memory.
• Valgrind can detect some, but not all, stack-memory-related issues

13

Demo: Memory Errors

memory_errors.c

14

Debugging Tools Summary

gdb myprogram
…
(gdb) run [args]

• Pause, step through, and print out
values during program execution

• Helpful to track down bugs like
crashes, infinite loops, functionality
discrepancies, etc.

valgrind myprogram [args]

• Observes program execution without
interrupting it, prints findings.

• Helpful (to a certain extent) to track
down memory-related issues like
buffer overflows, reading
uninitialized memory, etc.

GDB Valgrind

15

Lecture Plan
• Buffer Overflows, Security and Valgrind
• Debugging and Testing
• Review: Pointers

cp -r /afs/ir/class/cs107/lecture-code/lect8 .

16

Debugging
GDB and Valgrind will be essential tools throughout the quarter to find and
squash bugs.
• Emphasis on both tools and the debugging process:

http://cs107.stanford.edu/resources/debugging.html
• We’ll be relying on this checklist going forward for debugging – use the tips here as you

work and come ask questions!

• Debugging can certainly be frustrating sometimes! Checklist emphasizes a
methodical and systematic process that will save time in the long run.

• Debugging also where we learn a lot about how our code works

How do you find bugs? Testing!

http://cs107.stanford.edu/resources/debugging.html

17

Testing
Testing helps surface bugs and track progress in implementing a program.
Opaque-box testing: writing tests only considering the specification of what the
program should do, without considering the implementation details/actual code
Clear-box testing: writing tests relying on knowledge of the design internals and
code paths such as internal special cases, code structure, etc.
http://cs107.stanford.edu/testing.html
• Test case size: small tests help early on to catch bugs; large tests help later to

stress test the system.
Aim to write tests throughout the development of a program.

• Before writing the program: documents intended behavior, avoids code assumptions
• During writing the program: add additional test cases as needed

Goal: incremental development, testing at each step.

http://cs107.stanford.edu/testing.html

18

Lecture Plan
• Buffer Overflows, Security and Valgrind
• Debugging and Testing
• Review: Pointers

cp -r /afs/ir/class/cs107/lecture-code/lect8 .

19

Strings and Pointers
C strings can be represented as char[] or char *.
• When we create char[], we are creating space for characters
• When we create char *, we are creating space for an address of character(s)
• Strings are implicitly converted to char * when passed as parameters

• E.g. all string functions take char * parameters, but accept char[]

• A char * is technically a pointer to a single character. But we commonly use
char * as string by having the character it points to be followed by more
characters and ultimately a null terminator. But a char * could also just point to
a single character (not a string).

20

Pointers and Memory
A pointer is a variable that stores a memory address.
• Memory is a big array of bytes, and each byte has a

unique numeric index that is commonly written in
hexadecimal. A pointer stores one of these
“indexes”.

• Because there is no pass-by-reference in C like in
C++, pointers let us pass around the address of one
instance of memory, instead of making many copies.

• Pointers are also essential for allocating memory on
the heap, and to refer to memory generically, both
of which we will cover later.

Address Value

…

0x105 '\0'

0x104 'e'

0x103 'l'

0x102 'p'

0x101 'p'

0x100 'a'

…

21

Pass By Value
When you pass a value as a parameter, C
passes a copy of that value.

void myFunc(int val) {
 val = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(x);
 printf("%d", x); // 2!
 ...
}

STACK
Address Value

…

0x1f0 2
…

xmain()

22

Pass By Value
When you pass a value as a parameter, C
passes a copy of that value.

void myFunc(int val) {
 val = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(x);
 printf("%d", x); // 2!
 ...
}

STACK
Address Value

…

0x1f0 2
…

xmain()

23

Pass By Value
When you pass a value as a parameter, C
passes a copy of that value.

void myFunc(int val) {
 val = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(x);
 printf("%d", x); // 2!
 ...
}

STACK
Address Value

…

0x1f0 2
…

0x10 2
…

x

val

main()

myFunc()

24

Pass By Value
When you pass a value as a parameter, C
passes a copy of that value.

void myFunc(int val) {
 val = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(x);
 printf("%d", x); // 2!
 ...
}

STACK
Address Value

…

0x1f0 2
…

0x10 2
…

x

val

main()

myFunc()

25

Pass By Value
When you pass a value as a parameter, C
passes a copy of that value.

void myFunc(int val) {
 val = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(x);
 printf("%d", x); // 2!
 ...
}

STACK
Address Value

…

0x1f0 2
…

0x10 3
…

x

val

main()

myFunc()

26

Pass By Value
When you pass a value as a parameter, C
passes a copy of that value.

void myFunc(int val) {
 val = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(x);
 printf("%d", x); // 2!
 ...
}

STACK
Address Value

…

0x1f0 2
…

xmain()

27

Pointers
Pointers allow us to pass around the location of data so that the original data
can be modified in other functions.

Example: I want to write a function myFunc that can change the value of an
existing integer to be 3.

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(???);
 printf("%d", x); // want to print 3
 ...
}

28

Pointers
int x = 2;

// Make a pointer that stores the address of x.
// (& means "address of")
int *xPtr = &x;

// Dereference the pointer to go to that address.
// (* means "dereference")
printf("%d", *xPtr); // prints 2

If declaration: “pointer”
 ex: int * is "pointer to an int”
If operation: "dereference/the value at address”
 ex: *num is "the value at address num"

*

29

Pointers
A pointer lets us pass where a particular
instance of data is, so it can be modified.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

STACK
Address Value

…

0x1f0 2
…

xmain()

30

Pointers
A pointer lets us pass where a particular
instance of data is, so it can be modified.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

Address Value
…

0x1f0 2
…

xmain()

STACK

31

Pointers
A pointer lets us pass where a particular
instance of data is, so it can be modified.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

Address Value
…

0x1f0 2
…

0x10 0x1f0
…

x

intPtr

main()

myFunc()

STACK

32

Pointers
A pointer lets us pass where a particular
instance of data is, so it can be modified.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

Address Value
…

0x1f0 2
…

0x10 0x1f0
…

x

intPtr

main()

myFunc()

STACK

33

Pointers
A pointer lets us pass where a particular
instance of data is, so it can be modified.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

Address Value
…

0x1f0 3
…

0x10 0x1f0
…

x

intPtr

main()

myFunc()

STACK

34

Pointers
A pointer lets us pass where a particular
instance of data is, so it can be modified.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

Address Value
…

0x1f0 3
…

xmain()

STACK

35

C Parameters
• If you are performing an operation with some input and do not care about any

changes to the input, pass the data type itself.
• If you are modifying a specific instance of some value, pass the location of

what you would like to modify and dereference that location to access what’s
there.

Do I care about modifying this instance of my
data? If so, I need to pass where that instance
lives, as a parameter, so it can be modified.

36

Pointers Practice
void makeUpper(char *ptr) {
 __1__ = toupper(__2__);
}

int main(int argc, char *argv[]) {
 char ch = 'h';

 // want to modify ch to be capital
 makeUpper(__3__);
 printf("%c\n", ch); // should print 'H'
 return 0;
}

What should go in each of the
blanks so that this code correctly
modifies ch to be capitalized?

🤔Respond on PollEv: pollev.com/cs107
 or text CS107 to 22333 once to join.

37

38

Pointers Practice
void makeUpper(char *ptr) {
 *ptr = toupper(*ptr);
}

int main(int argc, char *argv[]) {
 char ch = 'h';

 // want to modify ch to be capital
 makeUpper(&ch);
 printf("%c\n", ch); // should print 'H'
 return 0;
}

What should go in each of the
blanks so that this code correctly
modifies ch to be capitalized?

39

Recap
• Buffer Overflows, Security and Valgrind
• Debugging and Testing
• Review: Pointers

cp -r /afs/ir/class/cs107/lecture-code/lect8 .

Lecture 8 takeaway: C
strings are pointers and
arrays. C strings are error-
prone, and issues like buffer
overflows can arise!
Valgrind is a tool that can
help detect memory errors.

