assign3: A Heap of Fun

assign3: A Heap of Fun

Debugging Guide

Course Site -> Handouts -> Debugging Guide

® |t's easy to make mistakes with pointers, arrays, and heap memory!

® Checklist/step-by-step guide for diagnosing your problem and collecting
more information

read line
char *read_line(FILE *xfile pointer)

lines.txt 1. read line(file)

2. read line(file)

L 11\ o|wlg | T hnge |2\

3. read line(file)

long_line?2
line3

: men F9ets
read line
char *fgets(char xbuf, size_t buflen, FILE xfile)

® Standard C tfunction for reading lines from a file but trickier to use

® Reads at most buflen - 1 characters from the next line in the file and copies
them into the bufter

® |[ncludes the newline character if it exists

® Always null-terminates the bufter
—“

read_line Buffers (8 bytes each)

fgets example

- S Je [V W]
lines.txt
e e fs - U e
long_line2\n
line3

nle 2 \wjNe] | |

A afesel |

read line

Implementation structure

The read_line function should be implemented with the following structure - make sure
to call assert after every heap allocation!:

1. Make a 32 byte heap-allocated string (our "buffer") on the heap

2. Read as much of the next line as you can into the buffer using fgets

3. If you haven't reached the end of the line, realloc the buffer to double its current
size, and go back to step 2. A line is considered to end after the first newline (\n)

#——“

character or once you've reached the end of the file, whichever comes first.
4. Return the line, but omitting the newline character if it ends with one (if the entire
line is just \n, then the returned string would be the empty string)

read line om

Implementation structure (f

1linel\n

long_line2\n
line3

read line

Implementation structure

linel\®
long_line2\n

mytail

Implementing the UNIX tail command

lines.txt
$./mytail -3 lines.txt $./mytail -5 lines.txt
lineé6 I line4 —
line7 lineb
line lineé6
line7

1ine8

“um \|(M$ “‘o pr'uﬁ'
mytail —

vold print last n(FILE *file pointer, 1int _ll)

® Useyourread_line() function!

m
® DON'T try to store all the lines! C\\“\\‘MM
e Build a circu N lines using a stack T ol
uild a circular queue of N lines using a stack arra
: gastackaray .\ o ¢

myunig

Implementing the UNIX uniq command

colors.txt $./myuniqg colors.txt
3 red

o

1 blue

e
2 green

Cssssss—

myunig
vold print _uniq_lines(FILE *xfile_ pointer)

® Useyourread_line() function

® Challenge: keeping track of unique lines and their frequencies

® Use a struct to bundle associated data together

® Make an array of structs to store multiple instances of those data bundles

t i i Serey GApucY Lecdurer ¢
M‘(L\C SA'\'\ o) CV\G (4 Nume;
\0/1 - 3 P ode,

5 3 5

General Tips

® Debugging guide (Course page -> Handouts -> Debugging guide)

® \Working with heap memory
® Remember to free whatever you've allocated once you're done with it
® Run with valgrind to catch memory leaks

® Use GDB to examine memory and make sure your buffers/arrays contain
what you expect

