CS 107
 Lecture 2: Integer Representations and Bits / Bytes

Wednesday, June 26, 2023
Computer Systems
Summer 2024
Stanford University
Computer Science Department
Reading:
Reader: Bits and Bytes
Textbook: Chapter 2.2

Some Binary Humor (It is Either Funny or Not)

If you get an 11/100 on a CS test, but you claim it should be counted as a 'C', they'll probably decide you deserve the upgrade. - https://xkcd.com/953/

Assignment 0: Unix!

Assignment page: https://web.stanford.edu/class/cs107/assign0/
Assignment already released, due Wednesday, 6/26
Free late days till Friday ©

Lab

Labs will begin Week 2. Please Submit Preferences by Friday!

Today's Topics

- Numerical Bases
- Binary, Bits, \& Bytes
- Octal \& Hexadecimal Bases
- ASCII \& Characters
- Integer Representations
- Unsigned Numbers
- Signed Numbers
- Two's Complement
- Two's Complement Overflow
- Signed vs Unsigned Number Casting in C
- Signed and Unsigned Comparisons
- DataSizes \& The sizeof Operator
- Min and Max Integer Values
- Truncating Integers
- More on Extending the Bit representation of Numbers
- Addressing and Byte Ordering
- Boolean Algebra

Combinations of bits can Encode Anything

We can encode anything
we want with bits. E.g., the ASCII character set.

Number Representations

- Unsigned Integers: positive and 0 integers. (e.g. 0, 1, 2, ... 99999...
- Signed Integers: negative, positive and 0 integers. (e.g. ...-2, -1, 0, 1,... 9999...)
- Floating Point Numbers: real numbers. (e,g. 0.1, -12.2, 1.5×1012)
\longrightarrow Look up IEEE floating point if you're interested! Or wait till week 7 © !

Data Sizes

On the myth computers (and	[signed] char	unsigned char	1	1
most 64-bit computers today),	short	unsigned short	2	2
the int representation is	int	unsigned	4	4
comprised of 32-bits, or four 8-	long	unsigned long	4	8
bit bytes. NOTE: C language does not mandate sizes. To the right is Figure 2.3 from your textbook:	int32_t	int64_t	uint32_t	4
char *		8	8	
	float		4	8
	double		4	4

Data Sizes

There are guarantees on the lower-bounds for type sizes, but you should expect that the myth machines will have the numbers in the 64-bit column.

C declaration		Bytes	
Signed	Unsigned	32 -bit	64 -bit
[signed] char	unsigned char	1	1
short	unsigned short	2	2
int	unsigned	4	4
long	unsigned long	4	8
int32_t	uint32_t	4	4
int64_t	uint64_t	8	8
char $*$		4	8
float		4	4
double		8	8

Data Sizes

You can be guaranteed the sizes	short	unsigned short	2	2
for int $32 _t(4$ bytes $)$ and	int	unsigned	4	4
int64_t (8 bytes)	long	unsigned long	4	8
	int32_t	uint32_t	4	4
	int64_t	uint64_t	8	8
	char *		4	8
	float		4	4
	double		8	8

Data Sizes

C allows a variety of ways to order keywords to define a type. The following all have the same meaning:
unsigned long
unsigned long
unsigned long int
unsigned long int
long unsigned
long unsigned
long unsigned int
long unsigned int

C declaration		Bytes	
Signed	Unsigned	32 -bit	64 -bit
[signed] char	unsigned char	1	1
short	unsigned short	2	2
int	unsigned	4	4
long	unsigned long	4	8
int32_t	uint32_t	4	4
int64_t	uint64_t	8	8
char*		4	8
float		4	4
double		8	8

Transitioning To Larger Datatypes

- Early 2000s: most computers were 32-bit. This means that pointers were 4 bytes (32 bits).
- 32-bit pointers store a memory address from 0 to 2^{32-1}, equaling 2^{32} bytes of addressable memory. This equals 4 Gigabytes, meaning that 32-bit computers could have at most 4GB of memory (RAM)!
- Because of this, computers transitioned to 64-bit. This means that datatypes were enlarged; pointers in programs were now 64 bits.
- 64 -bit pointers store a memory address from 0 to $2^{64}-1$, equaling 2^{64} bytes of addressable memory. This equals 16 Exabytes, meaning that 64-bit computers could have at most 1024*1024*1024*16 GB of memory (RAM)!

Addressing and Byte Ordering

On the myth machines, pointers are 64-bits long, meaning that a program can "address" up to 2^{64} bytes of memory, because each byte is individually addressable.

This is a lot of memory! It is 16 exabytes, or 1.84×10^{19} bytes. Older, 32-bit machines could only address 2^{32} bytes, or 4 Gigabytes.

64-bit machines can address 4 billion times more memory than 32-bit machines...
Machines will not need to address more than 2^{64} bytes of memory for a long, long time.

Overflow

- If you exceed the maximum value of your bit representation, you wrap around or overflow back to the smallest bit representation.
$0 b 1111+0 b 1=0 b 0000$
- If you go below the minimum value of your bit representation, you wrap around or overflow back to the largest bit representation.

0b0000 - 0b1 = 0b1111

Overflow in Unsigned Addition

When integer operations overflow in C, the runtime does not produce an error:

```
#include<stdio.h>
#include<stdlib.h>
#include<limits.h> // for UINT_MAX
int main() {
    unsigned int a = UINT_MAX;
    unsigned int b = 1;
    unsigned int c = a + b;
    printf("a = %u\n",a);
    printf("b = %u\n",b);
    printf("a + b = %u\n",c);
} return 0;
```

```
$ ./unsigned_overflow
a = 4294967295
b = 1
a + b = 0
```

Technically, unsigned integers in C don't overflow, they just wrap. You need to be aware of the size of your numbers. Here is one way to test if an addition will fail:

```
// for addition
#include <limits.h>
unsigned int a = <something>;
unsigned int x = <something>;
if (a > UINT_MAX - x) /* `a + x` would overflow */;
```


Unsigned Integers

For positive (unsigned) integers, there is a 1-to-1 relationship between the decimal representation of a number and its binary representation. If you have a 4-bit number, there are 16 possible combinations, and the unsigned numbers go from 0 to 15 :

0.00000	$=0$	$0 . b 0001=1$
0.60100	$=4$	$0 . b 0101=5$
$0 . b 1000$	$=8$	$0 . b 1001=9$
$0 . b 1100$	$=12$	$0 . b 1101=13$

```
0.b0010=2 0.b0011=3
0b0110=6 0.b0111 = 7
0b1010=10 0.b1011 = 11
0b1110=14
0.b1111 = 15
```

The range of an unsigned number is $0 \rightarrow 2^{w}-1$, where w is the number of bits in our integer. For example, a 32 -bit int can represent numbers from 0 to 2^{32} - 1 , or 0 to 4,294,967,295.

Unsigned Integers

Computers use a limited number of bits for numbers

```
\#include<stdio.h>
\#include<stdlib.h>
int main() \{
    int a = 200;
    int b = 300;
    int c = 400;
    int \(d=500 ;\)
    int answer \(=a \operatorname{b} * c k d ;\)
    printf("\%d\n", answer);
    return 0;
```

\$ gcc -g -OO mult-test.c -o mult-test
\$./mult-test
-884901888
\$

Computers use a limited number of bits for numbers

```
#include<stdio.h>
#include<stdlib.h>
int main() {
    int a = 200;
    int b = 300;
    int c = 400;
    int d = 500;
    int answer = a * b * c * d;
    printf("%d\n", answer);
    return 0;
```

Recall that in base 10, you can represent: 10 numbers with one digit (0-9), 100 numbers with two digits (00-99), 1000 numbers with three digits (000-999)
I.e., with n digits, you can represent up to $10 n$ numbers.

In base 2, you can represent:
2 numbers with one digit (0-1)
4 numbers with two digits ($00-11$)
8 numbers with three digits (000-111)
I.e., with n digits, you can represent up to 2^{n} numbers

The C int type is a "32-bit" number, meaning it uses 32 digits. That means we can represent up to 232 numbers.

Computers use a limited number of bits for numbers

```
#include<stdio.h>
#include<stdlib.h>
int main() {
    int a = 200;
    int b = 300;
    int c = 400;
    int d = 500;
    int answer = a * b * c * d;
    printf("%d\n",answer);
    return 0;
}
```

```
$ gcc -g -OO mult-test.c -o mult-
test
$ ./mult-test
-884901888
$
```


Computers use a limited number of bits for numbers

```
#include<stdio.h>
#include<stdlib.h>
int main() {
    int a = 200;
    int b = 300;
    int c = 400;
    int d = 500;
    int answer = a * b * c * d;
    printf("%d\n",answer);
    return 0;
```

```
$ gcc -g -OO mult-test.c -o mult-
```

\$ gcc -g -OO mult-test.c -o mult-
test
test
\$./mult-test
\$./mult-test
-884901888
-884901888
\$

```

The good news: all of the following produce the same (wrong) answer:
\((500 * 400) *(300 * 200)\)
\(((500 * 400) * 300) * 200\)
\(((200 * 500) * 300) * 400\)
\(400 *(200 *(300 * 500))\)

\section*{Let's look at a different program}
```

\#include<stdio.h>
\#include<stdlib.h>
int main() {
float a = 3.14;
float b = 1e20;
printf("(3.14 + 1e20) - 1e20 = %f\n", (a + b) - b);
printf("3.14 + (1e20 - 1e20) = %f\n", a + (b - b));
return 0;
\$ gcc -g -Og -std=gnu99 float-mult-
test.c -o float-mult-test
\$./float-mult-test.c
(3.14 + 1e20) - 1e20 = 0.000000
3.14 + (1e20 - 1e20) = 3.140000

```
\$

\section*{Information Storage}

\section*{Information Storage}

In C , everything can be thought of as a block of 8 bits

\section*{Information Storage}

In C , everything can be thought of as a block of 8 bits called a "byte"

\section*{Byte Range}

Because a byte is made up of 8 bits, we can represent the range of a byte as follows:

\section*{00000000 to 11111111}

This range is 0 to 255 in decimal.
But, neither binary nor decimal is particularly convenient to write out bytes (binary is too long, and decimal isn't numerically friendly for byte representation)

So, we use "hexadecimal," (base 16).

\section*{Hexadecimal}
- When working with bits, oftentimes we have large numbers with 32 or 64 bits.
- Instead, we'll represent bits in base-16 instead; this is called hexadecimal.


\section*{Hexadecimal}
- Hexadecimal is base-16, so we need digits for 1-15. How do we do this?
\[
\begin{array}{lllllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & a_{10} & \text { b } & \text { c1 } & \text { c } & \text { d } \\
13 & e & \text { e } & f & 15
\end{array}
\]

\section*{Hexadecimal}

Hexadecimal has 16 digits, so we augment our normal 0-9 digits with six more digits: \(A, B, C, D, E\), and \(F\).

Figure 2.2 in the textbook shows the hex digits and their binary and decimal values:
\begin{tabular}{lrrrrrrrr}
\hline Hex digit & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
Decimal value & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
Binary value & 0000 & 0001 & 0010 & 0011 & 0100 & 0101 & 0110 & 0111 \\
\hline & & & & & & & & \\
\hline Hex digit & 8 & 9 & A & B & C & D & E & F \\
Decimal value & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
Binary value & 1000 & 1001 & 1010 & 1011 & 1100 & 1101 & 1110 & 1111
\end{tabular}

\section*{Hexadecimal}
- When working with bits, oftentimes we have large numbers with 32 or 64 bits.
- Instead, we'll represent bits in base-16 instead; this is called hexadecimal.


Each is a base-16 digit!

\section*{Hexadecimal}
- We distinguish hexadecimal numbers by prefixing them with \(\mathbf{0 x}\), and binary numbers with 0b. These prefixes also work in C
- E.g. 0xf5 is 0b11110101
\[
0 \times \underset{\text { ¢ } 11110101}{5}
\]

\section*{Practice: Hexadecimal to Binary}

What is 0x173A in binary?
\begin{tabular}{lrrrr} 
Hexadecimal & 1 & 7 & 3 & A \\
Binary & 0001 & 0111 & 0011 & 1010 \\
\hline
\end{tabular}

\section*{Practice: Hexadecimal to Binary}

What is 0b1111001010 in hexadecimal? (Hint: start from the right)

\section*{Binary Hexadecimal \\ \(11 \quad 11001010\) \\ 3 \\ C \\ A}

\section*{Hexadecimal}

\section*{Convert: 0b1111001010110110110011 to hexadecimal.}
\begin{tabular}{lllllll}
\hline Binary & 11 & 1100 & 1010 & 1101 & 1011 & 0011 \\
Hexadecimal & 3 & C & A & D & B & 3 \\
\hline
\end{tabular}
(start from the right)

\section*{0.b1111001010110110110011 is hexadecimal 3CADB3}
\begin{tabular}{lrrrrrrrr}
\hline Hex digit & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
Decimal value & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
Binary value & 0000 & 0001 & 0010 & 0011 & 0100 & 0101 & 0110 & 0111 \\
\hline & & & & & & & & \\
\hline Hex digit & 8 & 9 & A & B & C & D & E & F \\
Decimal value & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
Binary value & 1000 & 1001 & 1010 & 1011 & 1100 & 1101 & 1110 & 1111
\end{tabular}

\section*{Hexadecimal}

\section*{Convert: 0b1111001010110110110011 to hexadecimal.}
\begin{tabular}{lllllll}
\hline Binary & 11 & 1100 & 1010 & 1101 & 1011 & 0011 \\
Hexadecimal & 3 & C & A & D & B & 3 \\
\hline
\end{tabular}
(start from the right)

0b1111001010110110110011 is hexadecimal 3CADB3
\begin{tabular}{lrrrrrrrr}
\hline Hex digit & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
Decimal value & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
Binary value & 0000 & 0001 & 0010 & 0011 & 0100 & 0101 & 0110 & 0111 \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrr}
\hline Hex digit & 8 & 9 & A & B & C & D & E & F \\
Decimal value & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
Binary value & 1000 & 1001 & 1010 & 1011 & 1100 & 1101 & 1110 & 1111
\end{tabular}

\section*{Hexadecimal}

\section*{Convert: 0b1111001010110110110011 to hexadecimal.}
\begin{tabular}{lllllll}
\hline Binary & 11 & 1100 & 1010 & 1101 & 1011 & 0011 \\
Hexadecimal & 3 & C & A & D & B & 3 \\
\hline
\end{tabular}
\(0 . b 1111001010110110110011\) is hexadecimal 3CADB3
\begin{tabular}{lrrrrrrrr}
\hline Hex digit & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
Decimal value & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
Binary value & 0000 & 0001 & 0010 & 0011 & 0100 & 0101 & 0110 & 0111 \\
\hline & & & & & & & & \\
\hline Hex digit & 8 & 9 & A & B & C & D & E & F \\
Decimal value & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
Binary value & 1000 & 1001 & 1010 & 1011 & 1100 & 1101 & 1110 & 1111
\end{tabular}

\section*{Hexadecimal}

\section*{Convert: 0b1111001010110110110011 to hexadecimal.}
\begin{tabular}{lllllll}
\hline Binary & 11 & 1100 & 1010 & 1101 & 1011 & 0011 \\
Hexadecimal & 3 & C & A & D & B & 3 \\
\hline
\end{tabular}

0b1111001010110110110011 is hexadecimal 3CADB3
\begin{tabular}{lrrrrrrrr}
\hline Hex digit & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
Decimal value & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
Binary value & 0000 & 0001 & 0010 & 0011 & 0100 & 0101 & 0110 & 0111 \\
\hline & & & & & & & & \\
\hline Hex digit & 8 & 9 & A & B & C & D & E & F \\
Decimal value & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
Binary value & 1000 & 1001 & 1010 & 1011 & 1100 & 1101 & 1110 & 1111
\end{tabular}

\section*{Hexadecimal}

\section*{Convert: 0b1111001010110110110011 to hexadecimal.}
\begin{tabular}{lllllll}
\hline Binary & 11 & 1100 & 1010 & 1101 & 1011 & 0011 \\
Hexadecimal & 3 & C & A & D & B & 3 \\
\hline
\end{tabular}
0.b1111001010110110110011 is hexadecimal 3CADB3
\begin{tabular}{lrrrrrrrr}
\hline Hex digit & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
Decimal value & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
Binary value & 0000 & 0001 & 0010 & 0011 & 0100 & 0101 & 0110 & 0111 \\
\hline & & & & & & & & \\
\hline Hex digit & 8 & 9 & A & B & C & D & E & F \\
Decimal value & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
Binary value & 1000 & 1001 & 1010 & 1011 & 1100 & 1101 & 1110 & 1111
\end{tabular}

\section*{Hexadecimal}

\section*{Convert: 0b1111001010110110110011 to hexadecimal.}
\begin{tabular}{lllllll}
\hline Binary & 11 & 1100 & 1010 & 1101 & 1011 & 0011 \\
Hexadecimal & 3 & C & A & D & B & 3 \\
\hline
\end{tabular}

0b1111001010110110110011 is hexadecimal 3CADB3
\begin{tabular}{lrrrrrrrr}
\hline Hex digit & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
Decimal value & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
Binary value & 0000 & 0001 & 0010 & 0011 & 0100 & 0101 & 0110 & 0111 \\
\hline & & & & & & & & \\
\hline Hex digit & 8 & 9 & A & B & C & D & E & F \\
Decimal value & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
Binary value & 1000 & 1001 & 1010 & 1011 & 1100 & 1101 & 1110 & 1111
\end{tabular}

\section*{Hexadecim}

\section*{Convert: 0b1111001010110110110011 to hexadecimal.}
\begin{tabular}{lllllll}
\hline Binary & 11 & 1100 & 1010 & 1101 & 1011 & 0011 \\
Hexadecimal & 3 & C & A & D & B & 3 \\
\hline
\end{tabular}
(start from the right)
\(0 . b 1111001010110110110011\) is hexadecimal 3CADB3
\begin{tabular}{lrrrrrrrr}
\hline Hex digit & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
Decimal value & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
Binary value & 0000 & 0001 & 0010 & 0011 & 0100 & 0101 & 0110 & 0111 \\
\hline & & & & & & & & \\
\hline Hex digit & 8 & 9 & A & B & C & D & E & F \\
Decimal value & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
Binary value & 1000 & 1001 & 1010 & 1011 & 1100 & 1101 & 1110 & 1111
\end{tabular}

\section*{Decimal to Hexadecimal}

To convert from decimal to hexadecimal, you need to repeatedly divide the number in question by 16, and the remainders make up the digits of the hex number:

314156 decimal:
```

314,156 / 16 = 19,634 with 12 remainder: C
19,634 / 16 = 1,227 with 2 remainder: 2
1,227 / 16 = 76 with 11 remainder: B
76 / 16 = 4 with 12 remainder: C
4 / 16 = 0 with 4 remainder: 4

```

Reading from bottom up: 0x4CB2C

\section*{Hexidecimal}

To convert from hexadecimal to decimal, multiply each of the hexadecimal digits by the appropriate power of 16:
\[
\begin{aligned}
& \text { Ox7AF: } \\
& 7 * 16^{\wedge} 2+10 * 16+15 \\
& =7 * 256+160+15 \\
& =1792+160+15=1967
\end{aligned}
\]

\section*{Hexadecimal: It's funky but concise}
- Let's take a byte (8 bits):

165
Base-10: Human-readable, but cannot easily interpret on/off bits

0b10100101
Base-2: Yes, computers use this, but not human-readable

\section*{0xa5}

Base-16: Easy to convert to Base-2, More "portable" as a human-readable format (fun fact: a half-byte is called a nibble or nybble)

\section*{Let the computer do it!}

Honestly, hex to decimal and vice versa are easy to let the computer handle. You can either use a search engine (Google does this automatically), or you can use a python one-liner:
```

\bullet 4.cgregg@myth10:~(ssh)
cgregg@myth10:~\$ python -c "print(hex(314156))"
0x4cb2c
cgregg@myth10:~\$ python -c "print(0x7af)"
1967
cgreggamyth10:~\$

```

\section*{Let the computer do it!}

You can also use Python to convert to and from binary:
```

cgregg@myth10:~\$ python -c "print(bin(0x173A4C))"
0b101110011101001001100
cgregg@myth10:~\$ python -c "print(hex(0b1111001010110110110011))"
0x3cadb3
cgregg@myth10:~\$

```
(but you should memorize this as it is easy and you will use it frequently)

\section*{Let the computer do it!}

You can also use Python to convert to and from binary:
```

cgregg@myth10:~\$ python -c "print(bin(0x173A4C))"
0b101110011101001001100
cgregg@myth10:~\$ python -c "print(hex(0b1111001010110110110011))"
0x3cadb3
cgregg@myth10:~\$ ■

```
(also might show up in an offline exam (;))

\section*{How to Represent A Signed Value}

A signed integer is a negative, 0 , or positive integer.

How can we represent both negative and positive numbers in binary?

\section*{Signed Integers}
- A signed integer is a negative integer, 0 , or a positive integer.
- Problem: How can we represent negative and positive numbers in binary?

\section*{Idea: let's reserve the most significant bit to store the sign.}

\section*{Sign Magnitude Representation}


\section*{Sign Magnitude Representation}


\section*{Sign Magnitude Representation}
\[
\begin{array}{ll}
1000=-0 & 0000=0 \\
1001=-1 & 0001=1 \\
1010=-2 & 0010=2 \\
1011=-3 & 0011=3 \\
1100=-4 & 0100=4 \\
1101=-5 & 0101=5 \\
1110=-6 & 0110=6 \\
1111=-7 & 0111=7
\end{array}
\]
- We've only represented 15 of our 16 available numbers!

\section*{Sign Magnitude Representation AKA Ones Complement}
- Pro: easy to represent, and easy to convert to/from decimal.
- Con: +-0 is not intuitive
- Con: we lose a bit that could be used to store more numbers
- Con: arithmetic is tricky: we need to find the sign, then maybe subtract (borrow and carry, etc.), then maybe change the sign. This complicates the hardware support for something as fundamental as addition.

\section*{Can we do better?}

\section*{Now Lets Try a Better Approach!}

\section*{A Better Idea}
- Ideally, binary addition would just work regardless of whether the number is positive or negative.

\section*{0101 +???? \\ 0000}

\section*{A Better Idea}
- Ideally, binary addition would just work regardless of whether the number is positive or negative.

\section*{0101 \(+1011\) 0000}

\section*{A Better Idea}
- Ideally, binary addition would just work regardless of whether the number is positive or negative.

\section*{0011 +???? \\ 0000}

\section*{A Better Idea}
- Ideally, binary addition would just work regardless of whether the number is positive or negative.

\section*{0011 +1101 0000}

\section*{A Better Idea}
- Ideally, binary addition would just work regardless of whether the number is positive or negative.

\section*{0000 +???? \\ 0000}

\section*{A Better Idea}
- Ideally, binary addition would just work regardless of whether the number is positive or negative.

\section*{0000 .0000 \\ 0000}

\section*{A Better Idea}
\begin{tabular}{|c|c|c|}
\hline Decimal & Positive & Negative \\
\hline 0 & 0000 & 0000 \\
\hline 1 & 0001 & 1111 \\
\hline 2 & 0010 & 1110 \\
\hline 3 & 0011 & 1101 \\
\hline 4 & 0100 & 1100 \\
\hline 5 & 0101 & 1011 \\
\hline 6 & 0110 & 1010 \\
\hline 7 & 0111 & 1001 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Decimal & Positive & Negative \\
\hline 8 & 1000 & 1000 \\
\hline 9 & 1001 (same as \(-7!\) ) & NA \\
\hline 10 & 1010 (same as \(-6!\) ) & NA \\
\hline 11 & 1011 (same as \(-5!\) ) & NA \\
\hline 12 & 1100 (same as \(-4!\) ) & NA \\
\hline 13 & 1101 (same as \(-3!\) ) & NA \\
\hline 14 & 1110 (same as \(-2!\) ) & NA \\
\hline 15 & 1111 (same as \(-1!)\) & NA \\
\hline
\end{tabular}

\section*{There Seems Like a Pattern Here...}

- The negative number is the positive number inverted, plus one!

\section*{There Seems Like a Pattern Here...}

A binary number plus its inverse is all 1s.


\section*{Another Trick}
- To find the negative equivalent of a number, work right-to-left and write down all digits through when you reach a 1 . Then, invert the rest of the digits.

> 100100 \(+? ? ? ? ? ?\) 0000000

\section*{Another Trick}
- To find the negative equivalent of a number, work right-to-left and write down all digits through when you reach a 1 . Then, invert the rest of the digits.

> 100100 \(+?+? ? 100\) +000000

\section*{Another Trick}
- To find the negative equivalent of a number, work right-to-left and write down all digits through when you reach a 1 . Then, invert the rest of the digits.
\[
\begin{array}{r}
100100 \\
+\quad+011100 \\
\hline 000000
\end{array}
\]

\section*{Two's Complement}


\section*{Two's Complement}
- In two's complement, we represent a positive number as itself, and its negative equivalent as the two's complement of itself.
- The two's complement of a number is the binary digits inverted, plus 1.
- This works to convert from positive to negative, and back from negative to positive!


\section*{Two's Complement}
- Con: more difficult to represent, and difficult to convert to/from decimal and between positive and negative.
- Pro: only 1 representation for 0 !
- Pro: all bits are used to represent as many numbers as possible
- Pro: the most significant bit still indicates the sign of a number.
- Pro: addition works for any combination of positive and negative!


\section*{Two's Complement}
- Adding two numbers is just...adding! There is no special case needed for negatives. E.g. what is \(2+-5\) ?
\[
\begin{array}{cc}
0010 \\
+1011 \\
\hline 101 \\
\hline 101 & -5 \\
-3
\end{array}
\]

\section*{Two's Complement}
- Subtracting two numbers is just performing the two's complement on one of them and then adding. E.g. \(4-5=-1\).
0100 \(\begin{array}{r}0100 \\ +1011 \\ \hline 1111\end{array}\)
\[
\begin{array}{r}
4 \\
-5 \\
-1
\end{array}
\]

\section*{How to Read Two's Complement \#s}
- Multiply the most significant bit by -1 and multiply all the other bits by 1 as normal


\section*{How to Read Two's Complement \#s}
- Multiply the most significant bit by -1 and multiply all the other bits by 1 as normal


\section*{Practice: Two's Complement}

What are the negative or positive equivalents of the numbers below?
a) -4 (1100)
b) 7 (0111)
c) 3 (0011)

Go to https://pollev.com/akeppler

\section*{Practice: Two's Complement}

What are the negative or positive equivalents of the numbers below?
a) -4 (1100) -> 4 (0100)
b) 7 (0111) -> (1001)
c) 3 (0011) -> (1101)


\section*{Some Extra Slides for Review}

\section*{Two's Complement}

In practice, a negative number in two's complement is obtained by inverting all


\section*{Two's Complement}

\section*{To convert a negative number to a positive number, perform the same steps!}


Example: The number -5 is represented in two's complements as: 1011

5 is represented by inverting the bits, and adding 1 :
10110100
\(\begin{array}{r}0100 \\ +\quad 1 \\ \hline 0101\end{array}\)

Shortcut: start from the right, and write down numbers until you get to a 1 :

1
Now invert all the rest of the digits:
0101

\section*{Two's Complement: Neat Properties}

There are a number of useful properties associated with two's complement
 numbers:
1. There is only one zero (yay!)
2. The highest order bit (left-most) is 1 for negative, 0 for positive (so it is easy to tell if a number is negative)
3. Adding two numbers is just...adding! Example:
\(2+-5=-3\)
00102
\(+1011-5\)
\(1101-3\) decimal (wow!)

\section*{Two's Complement: Neat Properties}

More useful properties:

4. Subtracting two numbers is simply performing the two's complement on one of them and then adding.
Example:
4-5 =-1
01004,01015
Find the two's complement of 5: 1011 add:
\begin{tabular}{c}
\(0100-4\) \\
\(+1011-5\) \\
\hline 1111 decimal
\end{tabular}

\section*{Two's Complement: Neat Properties}

More useful properties:

5. Multiplication of two's complement works just by multiplying (throw away overflow digits).

Example: -2 * \(-3=6\)
\(1110-2\)
\(\times 1101-3\)
1110
0000
1110
\(+1110\)
10110110 주중

\section*{Practice}

Convert the following 4-bit numbers from positive to negative, or from
 negative to positive using two's complement notation:
a. \(-4(1100)\)
b. \(7(0111)\)
c. \(3(0011)\)
d. \(-8(1000)\)

\section*{Practice}

Convert the following 4-bit numbers from positive to negative, or from
 negative to positive using two's complement notation:
a. \(-4(1100) 0100\)
b. \(7(0111) 1001\)
c. \(3(0011) 1101\)
d. -8 (1000) 1000 (?! If you look at the chart, +8 cannot be represented in two's complement with 4 bits!)

\section*{Practice}

Convert the following 8-bit numbers from positive to negative, or from
 negative to positive using two's complement notation:
a. \(-4(11111100) 00000100\)
b. \(27(00011011) 11100101\)
c. \(-127(10000001) 01111111\)
d. \(1(00000001)\)

11111111

\section*{History: Two's complement}
- The binary representation was first proposed by John von Neumann in First Draft of a Report on the EDVAC (1945)
- That same year, he also invented the merge sort algorithm
- Many early computers used sign-magnitude or one's complement
+7 0b0000 0111
-7 0b1111 1000
8-bit one's complement
- The System/360, developed by IBM in 1964, was widely popular (had 1024KB memory) and established two's complement as the dominant binary representation of integers


System/360 (1964)

\section*{Casting Between Signed and Unsigned}

Converting between two numbers in C can happen explicitly (using a parenthesized cast), or implicitly (without a cast):
explicit
1 int tx, ty;
2 unsigned ux, uy;
\(3 \ldots\)
4 tx \(=\) (int) ux;
5 uy \(=\) (unsigned) ty;
implicit

When casting: the underlying bits do not change, so there isn't any conversion going on, except that the variable is treated as the type that it is.
NOTE: Converting a signed number to unsigned preserves the bits not the number!

\section*{Casting Between Signed and Unsigned}

When casting: the underlying bits do not change, so there isn't any conversion going on, except that the variable is treated as the type that it is. You cannot convert a signed number to its unsigned counterpart using a cast!
```

// test_cast.c
\#include<stdio.h>
\#include<stdlib.h>
int main() {
int v = -12345;
unsigned int uv = (unsigned int) v;
printf("v = %d, uv = %u\n",v,uv);
return 0;

```
```

\$./test_cast
v = -12345, uv = 4294954951

```

Signed -> Unsigned -12345 goes to 4294954951

Not 12345

\section*{IMPORTANT NOTE}
- Because Types are just about how we read memory, it is important to note that casting does not impact the values or bits only the meaning that we expect them to have
- BEWARE: Expectations are like assumptions they can be violated or incorrect

\section*{Casting Between Signed and Unsigned}

\section*{printf has three 32-bit integer representations:}
\%d : signed 32-bit int
\%u : unsigned 32-bit int
\%x : hex 32-bit int

As long as the value is a 32-bit type, printf will treat it according to the formatter it is applying:
\begin{tabular}{ll}
1 & int \(x=-1 ;\) \\
2 & unsigned \(u=3000000000 ; ~ / / ~\) \\
3 & printf \((" x=\% u=\% d \backslash n ", x, x) ;\) \\
4 \\
5 & printf \((" u=\% u=\% d \backslash n ", u, u) ;\) \\
6 &
\end{tabular}
```

\$./test_printf
x = 4294967295 = -1
u = 3000000000=-1294967296

```

\section*{Signed vs Unsigned Number Wheels}


\section*{Comparison between signed and unsigned integers}

When a C expression has combinations of signed and unsigned variables, you need to be careful!

If an operation is performed that has both a signed and an unsigned value, \(\mathbf{C}\) implicitly casts the signed argument to unsigned and performs the operation assuming both numbers are non-negative. Let's take a look...
\begin{tabular}{|l|l|l|}
\hline Expression & Type & \\
\hline \(0==0 U\) & & Evaluation \\
\hline\(-1<0\) & & \\
\hline\(-1<0 \mathrm{U}\) & & \\
\hline \(2147483647>-2147483647-1\) & & \\
\hline \(2147483647 \mathrm{U}>-2147483647-1\) & & \\
\hline \(2147483647>\) (int)2147483648U & & \\
\hline\(-1>-2\) & & \\
\hline (unsigned) \(-1>-2\) & & \\
\hline
\end{tabular}


\section*{Comparison between signed and unsigned integers}

When a C expression has combinations of signed and unsigned variables, you need to be carefu!!

If an operation is performed that has both a signed and an unsigned value, \(\mathbf{C}\) implicitly casts the signed argument to unsigned and performs the operation assuming both numbers are non-negative. Let's take a look...
\begin{tabular}{|l|c|c|}
\hline Expression & Type & Evaluation \\
\hline \(0==0 U\) & Unsigned & 1 \\
\hline\(-1<0\) & Signed & 1 \\
\hline\(-1<0 \mathrm{U}\) & Unsigned & 0 \\
\hline \(2147483647>-2147483647-1\) & Signed & 1 \\
\hline \(2147483647 \mathrm{U}>-2147483647-1\) & Unsigned & 0 \\
\hline \(2147483647>\) (int) 2147483648 U & Signed & 1 \\
\hline\(-1>-2\) & Signed & 1 \\
\hline (unsigned) \(-1>-2\) & Unsigned & 1 \\
\hline
\end{tabular}


Note: \(\ln \mathrm{C}, 0\) is false and everything else is true. When C produces a boolean value, it allways chooses 1 to represent true.

\section*{Comparison between signed and unsigned integers}

Let's try some more...a bit more abstractly.
```

int s1, s2, s3, s4;

```
unsigned int u1, u2, u3, u4;

What is the value of this expression?
u1 > s3

Go to https://pollev.com/akeppler


\section*{Comparison between signed}

Let's try some more... a bit more abstractly.
```

int s1, s2, s3, s4;
unsigned int u1, u2, u3, u4;

```

Which many of the following statements are true? (assume that variables are set to values that place them in the spots shown)
```

u1 > s3 : true

```


\section*{Overflow}
- What is happening here? Assume 4-bit numbers.

\section*{\(0 b 1101\) + 0b0100}


\section*{Overflow}
- What is happening here? Assume 4-bit numbers.
\(0 b 1101\)
\(+0 b 0100\)

Signed
\(-3+4=1\)
No overflow

Unsigned
\(13+4=1\)
Overflow


\section*{Limits and Comparisons}
1. What is the...
\begin{tabular}{l|ll} 
& Largest unsigned? \(\quad\) Largest signed? \(\quad\) Smallest signed? \\
\hline char & & \\
int & &
\end{tabular}
2. Will the following char comparisons evaluate to true or false? i. \(-7<4\)
iii. (char) \(130>4\)
ii. -7 < \(4 U\)
iv. (char) -132 > 2

\section*{Limits and Comparisons}
1. What is the...
\begin{tabular}{c|ccc} 
& Largest unsigned? & Largest signed? & Smallest signed? \\
\hline char & \(2^{8}-1=255\) & \(2^{7}-1=127\) & \(-2^{7}=-128\) \\
int & \(2^{32}-1=\) & \(2^{31}-1=\) & \(-2^{31}=\) \\
& 4294967296 & 2147483647 & -2147483648
\end{tabular}

These are available as UCHAR_MAX, INT_MIN, INT_MAX, etc. in the <limits.h> header.

\section*{Limits and Comparisons}
2. Will the following char comparisons evaluate to true or false?
i. \(-7<4\) true
iii.
(char) \(130>4\)
false
ii. \(-7<4 U\)
false
iv. (char) -132 > 2
true

By default, numeric constants in C are signed ints, unless they are suffixed with u (unsigned) or L (long).

\section*{The sizeof Operator}

\section*{long sizeof(type);}
```

// Example
long int_size_bytes = sizeof(int); // 4
long short_size_bytes = sizeof(short); // 2
long char_size_bytes = sizeof(char); // 1

```
sizeof takes a variable type as a parameter and returns the size of that type, in bytes.

\section*{The sizeof Operator}

As we have seen, integer types are limited by the number of bits they hold. On the 64-bit myth machines, we can use the sizeof operator to find how many bytes each type uses:
```

int main() {
printf("sizeof(char): %d\n", (int) sizeof(char));
printf("sizeof(short): %d\n", (int) sizeof(short));
printf("sizeof(int): %d\n", (int) sizeof(int));
printf("sizeof(unsigned int): %d\n", (int) sizeof(unsigned int));
printf("sizeof(long): %d\n", (int) sizeof(long));
printf("sizeof(long long): %d\n", (int) sizeof(long long));
printf("sizeof(size_t): %d\n", (int) sizeof(size_t));
printf("sizeof(void *): %d\n", (int) sizeof(void *));
return 0;

```
```

\$./sizeof
sizeof(char): 1
sizeof(short): 2
sizeof(int): 4
sizeof(unsigned int): 4
sizeof(long): 8
sizeof(long long): 8
sizeof(size_t): 8
sizeof(void *): 8

```
\begin{tabular}{|l|c|c|}
\hline Type & Width in bytes & Width in bits \\
\hline char & 1 & 8 \\
\hline short & 2 & 16 \\
\hline int & 4 & 32 \\
\hline long & 8 & 64 \\
\hline void \(\star\) & 8 & 64 \\
\hline
\end{tabular}

\section*{MIN and MAX values for integers}

Because we now know how bit patterns for integers works, we can figure out the maximum and minimum values, designated by INT_MAX, UINT_MAX, INT_MIN, (etc.), which are defined in limits.h
\begin{tabular}{|c|c|c|c|c|}
\hline Type & Width (bytes) & \begin{tabular}{l}
Width \\
(bits)
\end{tabular} & Min in hex (name) & Max in hex (name) \\
\hline char & 1 & 8 & 80 (CHAR_MIN) & 7F (CHAR_MAX) \\
\hline unsigned char & 1 & 8 & 0 & FF (UCHAR_MAX) \\
\hline short & 2 & 16 & 8000 (SHRT_MIN) & 7FFF (SHRT_MAX) \\
\hline unsigned short & 2 & 16 & 0 & FFFF (USHRT_MAX) \\
\hline int & 4 & 32 & 80000000 (INT_MIN) & 7EFFFFFF (INT_MAX) \\
\hline unsigned int & 4 & 32 & 0 & FFFFFFFF (UINT_MAX) \\
\hline long & 8 & 64 & 8000000000000000 (LONG_MIN) & 7FFFFFFFFFFFFFFF (LONG_MAX) \\
\hline unsigned long & 8 & 64 & 0 & FFFFFFFFFFFFFFFF (ULONG_MAX) \\
\hline
\end{tabular}

\section*{Min and Max Integer Values}
- You can also find constants in the standard library that define the max and min for each type on that machine(architecture)
- Visit <limits.h> or <cstdint.h> and look for variables like:
```

INT_MIN
INT MAX
UINT MAX
LONG MIN
LONG_MAX
ULONG_MAX

```

\section*{Expanding Bit Representations}
- Sometimes, we want to convert between two integers of different sizes (e.g. short to int, or int to long).
- We might not be able to convert from a bigger data type to a smaller data type, but we do want to always be able to convert from a smaller data type to a bigger data type.
- For unsigned values, we can add leading zeros to the representation ("zero extension")
- For signed values, we can repeat the sign of the value for new digits ("sign extension"
- Note: when doing \(<,>,<=,>=\) comparison between different size types, it will promote to the larger type.

\section*{Expanding the bit representation of a number}

For signed values, we want the number to remain the same, just with more bits. In this case, we perform a "sign extension" by repeating the sign of the value for the new digits. E.g.,
```

short s = 4;
// short is a 16-bit format, so s = 0000 0000 0000 0100.b
int i = s;
// conversion to 32-bit int, so i = 0000 0000 0000 0000 0000 0000 0000 0100b
_ or -
short s = -4;
// short is a 16-bit format, so s = 1111 1111 1111 1100.b
int i = s;
// conversion to 32-bit int, so i = 1111 1111 1111 1111 1111 1111 1111 1100b

```

Converting from a smaller type to a larger type is also often called promotion
I.E. the number was promoted from short to int

\section*{Sign-extension Example}
```

// show_bytes() defined on pg. 45, Bryant and O'Halloran
int main() {
short sx = -12345; // -12345
unsigned short usx = sx; // 53191
int x = sx; // -12345
unsigned ux = usx; // 53191
printf("sx = %d:\t", sx);
show_bytes((byte_pointer) \&sx, sizeof(short));
printf("usx = %u:\t", usx);
show_bytes((byte_pointer) \&usx, sizeof(unsigned short));
printf("x = %d:\t", x);
show_bytes((byte_pointer) \&x, sizeof(int));
printf("ux = %u:\t", ux);
show_bytes((byte_pointer) \&ux, sizeof(unsigned));
return 0;

```
```

\$./sign_extension
sx = -12345: c7 cf
usx = 53191: c7 cf
x = -12345: c7 cf ff ff
ux = 53191: c7 cf 00 00

```
(careful: this was printed on the littleendian myth machines!)

\section*{Truncating Numbers: Signed}

What if we want to reduce the number of bits that a number holds? E.g.
```

int x = 53191; // 53191
short sx = (short) x; // -12345
int y = sx;

```

This is a form of overflow! We have altered the value of the number. Be careful!

We don't have enough bits to store the int in the short for the value we have in the int, so the strange values occur.

What is y above? We are converting a short to an int, so we sign-extend, and we get -12345!

11111111111111111100111111000111
Play around here: http://www.convertforfree.com/twos-complement-calculator/

\section*{Truncating Numbers: Signed}

If the number does fit into the smaller representation in the current form, it will convert just fine.
\begin{tabular}{lllllllll}
\(\mathrm{x}: 1111\) & 1111 & 1111 & 1111 & 1111 & 1111 & 1111 & 1101 becomes \\
\(\mathrm{sx}:\) & & & & 1111 & 1111 & 1111 & 1101
\end{tabular}

Play around here: http://www.convertforfree.com/twos-complement-calculator/

\section*{Truncating Numbers: Unsigned}

We can also lose information with unsigned numbers:
```

unsigned int x = 128000;
unsigned short sx = (short) x;
unsigned int }Y=sx

```

Bit representation for \(\mathrm{x}=128000\) (32-bit unsigned int):
\[
00000000000000011111010000000000
\]

Truncated unsigned short sx:
\[
1111010000000000
\]
which equals 62464 decimal.
Converting back to an unsigned int, \(\mathrm{y}=62464\)

\section*{Overflow in Signed Addition}

Signed overflow wraps around to the negative numbers:


YouTube fell into this trap - their view counter was a signed, 32-bit int. They fixed it after it was noticed, but for a while, the view count for Gangnam Style (the first video with over INT_MAX number of views) was negative.

\section*{Overflow In Practice: PSY}

\section*{PSY - GANGNAM STYLE (강남스타일) M/V}

YouTube: "We never thought a video would be watched in numbers greater than a 32-bit integer ( \(=2,147,483,647\) views), but that was before we met PSY. "Gangnam Style" has been viewed so many times we had to upgrade to a 64-bit integer ( \(9,223,372,036,854,775,808\) )!"

\section*{Overflow in Signed Addition}

In the news on January 5, 2022 (!):


An integer overflow/underflow crash lets misbehaving apps lock users out of 911.
RON AMADEO - 1/5/2022, 3:09 PM
https://arstechnica.com/gadgets/2022/01/google-fixes-nightmare-android-bug-that-stopped-user-from-calling-911/

\section*{Overflow in Signed Addition}

Signed overflow wraps around to the negative numbers.
```

\#include<stdio.h>
\#include<stdlib.h>
\#include<limits.h> // for INT_MAX
int main() {
int a = INT_MAX;
int b = 1;
int c = a + b;
printf("a = %d\n",a);
printf("b = %d\n",b);
printf("a + b = %d\n",c);
return 0;

```
```

\$./signed_overflow
a = 2147483647
b = 1
a + b = -2147483648

```

Technically, signed integers in C produce undefined behavior when they overflow. On two's complement machines (virtually all machines these days), it does overflow predictably. You can test to see if your addition will be correct:
```

// for addition
\#include <limits.h>
int a = <something>;
int x = <something>;
if ((x > 0) \&\& (a > INT_MAX - x)) /* `a + x` would overflow */;
if ((x < 0) \&\& (a < INT_MIN - x)) /* `a + x` would underflow */;

```

\section*{Overflow}

At which points can overflow occur for signed and unsigned int? (assume binary values shown are all 32 bits)
A. Signed and unsigned can both overflow at points \(X\) and \(Y\)
B. Signed can overflow only at \(X\), unsigned only at \(Y\)
C. Signed can overflow only at \(Y\), unsigned only at X
D. Signed can overflow at \(X\) and \(Y\), unsigned only at \(X\)
E. Other


\section*{Overflow In Practice: Timestamps}
- Many systems store timestamps as the number of seconds since Jan. 1, 1970 in a signed 32-bit integer.
- Problem: the latest timestamp that can be represented this way is 3:14:07 UTC on Jan. 13 2038!

\section*{Overflow In Practice: Gandhi}
- In the game "Civilization", each civilization leader had an "aggression" rating. Gandhi was meant to be peaceful, and had a score of 1 .
- If you adopted "democracy", all players' aggression reduced by 2. Gandhi's went from 1 to 255!
- Gandhi then became a big fan of nuclear weapons.

https://kotaku.com/why-gandhi-is-such-an-asshole-in-civilization-1653818245

\section*{Overflow in Practice:}
- Pacman Level 256
- Make sure to reboot Boeing Dreamliners every 248 days
- Comair/Delta airline had to cancel thousands of flights days before Christmas
- Reported vulnerability CVE-2019-3857 in libssh2 may allow a hacker to remotely execute code
- Donkey Kong Kill Screen

\section*{3 Minute Break}

\section*{WHEN CSTOD COESTOOO CAST}
```

