
This document is copyright (C) Stanford Computer Science, Lisa Yan, and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created byMarty Stepp, Cynthia Lee, Chris Gregg, Jerry Cain and others.

1

CS107 Lecture 3
Byte Ordering & Bitwise

Operators

reading:
Bryant & O’Hallaron, Ch. 2.1

Announcements
• Assign 0 due late today

• Lecture attendance 6/26 posted, please confirm

• Assign 1 out and due 7/3

• Assignment 1 IntelliCopilot Assistant Posted

• Office Hours calendar up

• Lab enrollment due today, labs start next week

Practice: Two’s Complement
Fill in the below table:

char x = ;
decimal binary

17

char y = -x;
decimal binary

0b1111 1100

0b0001 1000

0b0010 0100

1.

2.

3.

4. 0b1101 1111

It’s easier to compute
base-10 for positive
numbers, so use two’s
complement first if
negative.

Expanding Bit Representations
• Sometimes, we need to convert between two integers of different sizes

(e.g. short to int, or int to long).
• We might not be able to convert from a bigger data type to a smaller data

type and retain all information, but we should always be able to convert
from a smaller data type to a larger data type.

• For unsigned values, we can prepend leading zeros to the representation
("zero extension")

• For signed values, we can repeat the sign of the value for new digits ("sign
extension")

• Note: when doing <, >, <=, >= comparison between different size types, it
will promote the smaller type to the larger one.

Expanding Bit Representation
unsigned short s = 4;
// short is a 16-bit format, so s = 0000 0000 0000 0100b

unsigned int i = s;
// conversion to 32-bit int, so i = 0000 0000 0000 0000 0000 0000 0000 0100b

Expanding Bit Representation
short s = 4;
// short is a 16-bit format, so s = 0000 0000 0000 0100b

int i = s;
// conversion to 32-bit int, so i = 0000 0000 0000 0000 0000 0000 0000 0100b

— or —

short s = -4;
// short is a 16-bit format, so s = 1111 1111 1111 1100b

int i = s;
// conversion to 32-bit int, so i = 1111 1111 1111 1111 1111 1111 1111 1100b

Truncating Bit Representation

If we want to reduce the bit size of a number, C truncates the representation and
discards the more significant bits.

What happens here? Let's look at the bits in x (a 32-bit int), 53191:
0000 0000 0000 0000 1100 1111 1100 0111
When we cast x to a short, it only has 16-bits, and C truncates the number:
 1100 1111 1100 0111
This is -12345! And when we cast sx back an int, we sign-extend the number.
1111 1111 1111 1111 1100 1111 1100 0111 // still -12345

int x = 53191;
short sx = x;
int y = sx;

Truncating Bit Representation
If we want to reduce the bit size of a number, C truncates the representation
and discards the more significant bits.

What happens here? Let's look at the bits in x (a 32-bit int), -3:
1111 1111 1111 1111 1111 1111 1111 1101
When we cast x to a short, it only has 16-bits, and C truncates the number:
 1111 1111 1111 1101
This is -3! If the number does fit, it will convert fine. y looks like this:
1111 1111 1111 1111 1111 1111 1111 1101 // still -3

int x = -3;
short sx = x;
int y = sx;

Truncating Bit Representation

If we want to reduce the bit size of a number, C truncates the representation and
discards the more significant bits.

What happens here? Let's look at the bits in x (a 32-bit unsigned int), 128000:
0000 0000 0000 0001 1111 0100 0000 0000
When we cast x to a short, it only has 16-bits, and C truncates the number:
 1111 0100 0000 0000
This is 62464! Unsigned numbers can lose info too. Here is what y looks like:
0000 0000 0000 0000 1111 0100 0000 0000 // still 62464

unsigned int x = 128000;
unsigned short sx = x;
unsigned int y = sx;

Now that we understand
values are really stored in

binary, how can we manipulate
them at the bit level?

Bitwise Operators

3
4

• You’re already familiar with many operators in C:
• Arithmetic operators: +, -, *, /, %
• Comparison operators: ==, !=, <, >, <=, >=
• Logical Operators: &&, ||, !

• Today, we’re introducing a new category of operators: bitwise operators:
• &, |, ~, ^, <<, >>

And (&)

3
5

AND is a binary operator. The AND of 2 bits is 1 if both bits are 1, and 0
otherwise.

output = a & b;
a b output
0 0 0
0 1 0
1 0 0
1 1 1

& with 1 to let a bit through, & with 0 to zero out a bit

Or (|)

36

OR is a binary operator. The OR of 2 bits is 1 if either (or both) bits is 1.

output = a | b;
a b output
0 0 0
0 1 1
1 0 1
1 1 1

| with 1 to turn on a bit, | with 0 to let a bit go through

Not (~)

37

NOT is a unary operator. The NOT of a bit is 1 if the bit is 0, or 1 otherwise.

output = ~a;
a output

0 1

1 0

Exclusive Or (^)

38

Exclusive Or (XOR) is a binary operator. The XOR of 2 bits is 1 if exactly one of
the bits is 1, or 0 otherwise.

output = a ^ b;
a b output
0 0 0
0 1 1
1 0 1
1 1 0

^ with 1 to flip a bit, ^ with 0 to let a bit go through

Operators on Multiple Bits
• When these operators are applied to numbers (multiple bits), the operator is

applied to the corresponding bits in each number. For example:
AND OR XOR NOT

0110 0110 0110
& 1100 | 1100 ^ 1100 ~ 1100

0100 1110 1010 0011

Note: these are different from the logical
operators AND (&&), OR (||) and NOT (!).

39

13

Operators on Multiple Bits
• When these operators are applied to numbers (multiple bits), the operator is

applied to the corresponding bits in each number. For example:
AND OR XOR NOT

0110 0110 0110
& 1100 | 1100 ^ 1100 ~ 1100

0100 1110 1010 0011

This is different from logical AND (&&). The logical
AND returns true if both are nonzero, or false
otherwise. With &&, this would be 6 && 12,
which would evaluate to true (1).

14

Operators on Multiple Bits
• When these operators are applied to numbers (multiple bits), the operator is

applied to the corresponding bits in each number. For example:
AND OR XOR NOT

0110 0110 0110
& 1100 | 1100 ^ 1100 ~ 1100

0100 1110 1010 0011

This is different from logical OR (||). The logical
OR returns true if either are nonzero, or false
otherwise. With ||, this would be 6 || 12, which
would evaluate to true (1).

Operators on Multiple Bits
• When these operators are applied to numbers (multiple bits), the operator is

applied to the corresponding bits in each number. For example:
AND OR XOR NOT

0110 0110 0110
& 1100 | 1100 ^ 1100 ~ 1100

0100 1110 1010 0011

This is different from logical NOT (!). The logical NOT
returns true if this is zero, and false otherwise. With !,
this would be !12, which would evaluate to false (0).

42

Demo: Bits Playground

Bitmasks
We will frequently want to manipulate or otherwise isolate specific bits in a
larger collection of them. A bitmask is a constructed bit pattern that we can use,
along with standard bit operators like &, |, ^, ~, <<, and >>, to do this.

Motivating Example: Bit vectors
 Aside: C++ relies on bit vectors to efficiently implement vector<bool>.

Bit Vectors and Sets

45

• We can use bit vectors (ordered collections of bits) to represent finite sets, and
perform functions such as union, intersection, and complement.
• Example: we can represent current courses taken using a char.

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

Bit Vectors and Sets

• How do we find the union of two sets of courses taken? Use OR:

00100011
| 01100001

01100011

46

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

Bit Vectors and Sets

• How do we find the intersection of two sets of courses taken? Use AND:

00100011
& 01100001

00100001

47

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

Bit Masking
• We will frequently want to manipulate or isolate out specific bits in a larger

collection of bits. A bitmask is a constructed bit pattern that we can use, along
with bit operators, to do this.
• Example: how do we update our bit vector to indicate we’ve taken CS107?

00100011
| 00001000

00101011
48

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

Bit Masking

49

#define CS106A 0x1 /* 0000 0001 */
#define CS106B 0x2 /* 0000 0010 */
#define CS106X 0x4 /* 0000 0100 */
#define CS107 0x8 /* 0000 1000 */
#define CS110 0x10 /* 0001 0000 */
#define CS103 0x20 /* 0010 0000 */
#define CS109 0x40 /* 0100 0000 */
#define CS161 0x80 /* 1000 0000 */

char myClasses = ...;
myClasses = myClasses | CS107; // Add CS107

Bit Masking

50

#define CS106A 0x1 /* 0000 0001 */
#define CS106B 0x2 /* 0000 0010 */
#define CS106X 0x4 /* 0000 0100 */
#define CS107 0x8 /* 0000 1000 */
#define CS110 0x10 /* 0001 0000 */
#define CS103 0x20 /* 0010 0000 */
#define CS109 0x40 /* 0100 0000 */
#define CS161 0x80 /* 1000 0000 */

char myClasses = ...;
myClasses |= CS107; // Add CS107

23

Bit Masking
• Example: how do we update our bit vector to indicate we’ve not taken CS103?

00100011
& 11011111

00000011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
myClasses = myClasses & ~CS103; // Remove CS103

24

Bit Masking
• Example: how do we update our bit vector to indicate we’ve not taken CS103?

00100011
& 11011111

00000011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
myClasses &= ~CS103; // Remove CS103

25

Bit Masking
• Example: how do we check if we’ve taken CS106B?

00100011
& 00000010

00000010

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
if (myClasses & CS106B) {...

// taken CS106B!

Bit Masking
• Example: how do we check if we’ve not taken CS107?

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6X

CS
10
7

CS
11
0

CS
10
3

CS
10
9

CS
16
1

00100011
& 00001000

00000000

char myClasses = ...;
if (!(myClasses & CS107)) {...

// not taken CS107! 54

Bitwise Operator Tricks
• | with 1 is useful for turning select bits on
• & with 0 is useful for turning select bits off
• | is useful for taking the union of bits
• & is useful for taking the intersection of bits
• ^ is useful for flipping isolated bits
• ~ is useful for flipping all bits

Introducing GDB

Is there a way to step through the
execution of a program and print out
values as it’s running? e.g., to view

binary representations? Yes!

The GDB Debugger
• GDB is a command-line debugger, a text-based debugger with similar

functionality to other debuggers you may have used, such as in Qt Creator
• It lets you put breakpoints at specific places in your program to pause there
• It lets you step through execution line by line
• It lets you print out values of variables in various ways (including binary)
• It lets you track down where your program crashed
• And much, much more!

GDB is essential to your success in CS107 this quarter! We’ll be building our
familiarity with GDB over the course of the quarter.

GDB as an Interpreter

59

• gdb live_session run gdb on live_session executable
• p print variable (p varname) or evaluated expression (p 3L << 10)
• p/t, p/x
• p/d, p/u, p/c

• <enter>
• q

binary and hex formats.

Execute last command again
Quit gdb

Important When first launching gdb:
• Gdb is not running any program and therefore can’t print variables
• It can still process operators on constants

gdb on a program

60

• gdb live_session
• b

run gdb on executable
Set breakpoint on a function (e.g., b main)

or line (b 42)
Run with provided args

control forward execution (next, step into, continue)
• r 82
• n, s, continue
• p print variable (p varname) or evaluated expression (p 3L << 10)
• p/t, p/x
• p/d, p/u, p/c

• info

binary and hex formats.

args, locals

Important: gdb does not run the current line until you hit “next”

Demo: Bitmasks and GDB

gdb: highly recommended

62

At this point, setting breakpoints/stepping in gdb may seem like overkill for what
could otherwise be achieved by copious printf statements.
However, gdb is incredibly useful for assign1 (and all assignments):
• A fast “C interpreter”: p + <expression>
• Sandbox/try out ideas around bitshift operators, signed/unsigned types, etc.
• Can print values out in binary!
• Once you’re happy, then make changes to your C file

• Tip: Open two terminal windows and SSH into myth in both
• Keep one for emacs, the other for gdb/command-line
• Easily reference C file line numbers and variables while accessing gdb

• Tip: Every time you update your C file, make and then rerun gdb.
Gdb takes practice! But the payoff is tremendous!©

I've seen a few students who have been frustrated with stepping through functions in gdb.
Sometimes, they will accidentally step into a function like strlen or printf and get stuck.

There are three important gdb commands about stepping through a program:

step (abbreviation: s) : executes the next line and goes into function calls.

next (abbreviation: n) : executes the next line, and does not go into function calls. I.e., if you
want to run a line with strlen or printf but don't want to attempt to go into that function,
use next.

display (abbreviation: disp) : displays a variable (or other item) after each step.

finish (abbreviation: fin) : completes a function and returns to the calling function. This is the
command you want if you accidentally go into a function like strlen or printf! This
continues the program until the end of the function, putting you back into the calling function3 .

gdb step, next, finish

Bit Masking
Bit masking is also useful for integer representations as well. For instance, we
might want to check the value of the most-significant bit, or just one of the
middle bytes.

Example: If I have a 32-bit integer j, what operation should I perform if I want to
get just the lowest byte in j?

 int j = ...;
 int k = j & 0xff;// mask to get just lowest byte

Practice: Bit Masking
Practice 1: write an expression that, given a 32-bit integer j, sets its least-
significant byte to all 1s, but preserves all other bytes.

 j | 0xff

Practice 2: write an expression that, given a 32-bit integer j, flips
("complements") all but the least-significant byte, and preserves the last byte.
 j ^ ~0xff

Practice: Bit Masking
Practice 1: write an expression that, given a 32-bit integer j, sets its least-
significant byte to all 1s, but preserves all other bytes.

 j | 0xff

Practice 2: write an expression that, given a 32-bit integer j, flips
("complements") all but the least-significant byte, and preserves the last byte.
 j ^ ~0xff

Powers of 2

Without using loops, how can we detect if a
number num is a power of 2? What’s special
about its binary representation and how can
we take advantage of that?

Code: Powers of 2

bool is_power_of_2(unsigned long num){
 return (num != 0) && ((num & (num -1)) == 0)
}

Left Shift (<<)

70

The LEFT SHIFT operator shifts a bit pattern a certain number of positions to the
left. New lower order bits are filled in with 0s, and bits shifted off the end are
lost.

x << k;
x <<= k;

// evaluates to x shifted to the left by k bits
// shifts x to the left by k bits

8-bit examples:
00110111 << 2 results in 11011100
01100011 << 4 results in 00110000
10010101 << 4 results in 01010000

Right Shift (>>)

71

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.

x >> k;
x >>= k;

// evaluates to x shifted to the right by k bits
// shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Idea: let’s follow left-shift and fill with 0s.

short x = 2;
x >>= 1;

// 0000 0000 0000 0010
// 0000 0000 0000 0001

printf("%d\n", x); // 1

Right Shift (>>)

72

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.

x >> k;
x >>= k;

// evaluates to x shifted to the right by k
bit
// shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Idea: let’s follow left-shift and fill with 0s.

short x = -2; // 1111 1111 1111 1110
x >>= 1; // 0111 1111 1111 1111
printf("%d\n", x); // 32767!

Right Shift (>>)

73

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.

x >> k;
x >>= k;

// evaluates to x shifted to the right by k
bit
// shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Problem: always filling with zeros means we may change the sign bit.
Solution: let’s fill with the sign bit!

Right Shift (>>)

74

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.

x >> k;
x >>= k;

// evaluates to x shifted to the right by k
bit
// shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Solution: let’s fill with the sign bit!

short x = 2;
x >>= 1;

// 0000 0000 0000 0010
// 0000 0000 0000 0001

printf("%d\n", x); // 1

Right Shift (>>)

75

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.

x >> k;
x >>= k;

// evaluates to x shifted to the right by k
bit
// shifts x to the right by k bits

Question: how should we fill in new higher-order bits?
Solution: let’s fill with the sign bit!

short x = -2; // 1111 1111 1111 1110
x >>= 1; // 1111 1111 1111 1111
printf("%d\n", x); // -1!

Right Shift (>>)

76

There are two kinds of right shifts, depending on the value and type you are
shifting:
• Logical Right Shift: fill new high-order bits with 0s.
• Arithmetic Right Shift: fill new high-order bits with the most-significant bit.

Unsigned numbers are right-shifted using Logical Right Shift.
Signed numbers are right-shifted using Arithmetic Right Shift.

This way, the sign of the number (if applicable) is preserved!

Shift Operation Pitfalls

77

1. Technically, the C standard does not precisely define whether a right shift for
signed integers is logical or arithmetic. However, almost all
compilers/machines use arithmetic, and you can most likely assume this.

2. Operator precedence can be tricky! For example:

1<<2 + 3<<4 means 1 << (2+3) << 4 because addition and
subtraction have higher precedence than shifts! Always use parentheses
to be sure:

(1<<2) + (3<<4)

Bit Operator Pitfalls

78

• The default type of a number literal in your code is an int.
• Let’s say you want a long with the index-32 bit as 1:

long num = 1 << 32;

• This doesn’t work! 1 is by default an int, and you can’t shift an int by 32
because it only has 32 bits. You must specify that you want 1 to be a long.

long num = 1L << 32;

Code: Absolute Value

long abs_val(long num){
 long sign = num >> sizeof(long) * CHARBIT; // gives me 64 sign bits
 return (num ^ sign) – sign;
}

Bitwise Warmup
How can we use bitmasks + bitwise operators to…

0b00001101

1. …turn on a particular
set of bits?

2. …turn off a particular
set of bits?

3. …flip a particular
set of bits?

0b00001101 0b00001101 0b00001101

0b00001111 0b00001001 0b00001011
81

Bitwise Warmup
How can we use bitmasks + bitwise operators to…

0b00001101

1. …turn on a particular
set of bits?

2. …turn off a particular
set of bits?

3. …flip a particular
set of bits? XOR

0b00001101 0b00001101 0b00001101
0b00000010 | 0b11111011 & 0b00000110 ^

OR

0b00001111 0b00001001 0b00001011
82

AND

More Exercises
Suppose we have a 64-bit number.
How can we use bit operators, and the constant 1L or -1L to…
• …design a mask that turns on the i-th bit of a number for any i (0, 1, 2, …, 63)?

• …design a mask that zeros out (i.e., turns off) the bottom i bits (and keeps the
rest of the bits the same)?

long x = 0b1010010;

83

More Exercises
Suppose we have a 64-bit number.
How can we use bit operators, and the constant 1L or -1L to…
• …design a mask that turns on the i-th bit of a number for any i (0, 1, 2, …, 63)?

x | (1L << i)

• …design a mask that zeros out (i.e., turns off) the bottom i bits (and keeps the
rest of the bits the same)?

x & (-1L << i)

long x = 0b1010010;

84

On your own

85

• Print a variable
• Print (in binary, then in hex) result of left-shifting 14 and 32 by 4 bits.
• Print (in binary, then in hex) result of subtracting 1 from 128

1 << 32
• Why is this zero? Compare with 1 << 31.
• Print in hex to make it easier to count zeros.

References and Advanced Reading

•References:
•Two's complement calculator: http://www.convertforfree.com/twos-complement-
calculator/
•Wikipedia on Two's complement: https://en.wikipedia.org/wiki/
Two%27s_complement
• The sizeof operator: http://www.geeksforgeeks.org/sizeof-operator-c/

•Advanced Reading:
•Signed overflow: https://stackoverflow.com/questions/16056758/c-c-unsigned-
integer-overflow
•Integer overflow in C: https://www.gnu.org/software/autoconf/manual/
autoconf-2.62/html_node/Integer-Overflow.html
•https://stackoverflow.com/questions/34885966/when-an-int-is-cast-to-a-short-and-
truncated-how-is-the-new-value-determined

http://www.convertforfree.com/twos-complement-
http://www.geeksforgeeks.org/sizeof-operator-c/
http://www.gnu.org/software/autoconf/manual/
http://www.gnu.org/software/autoconf/manual/

References and Advanced Reading

•References:
• argc and argv: http://crasseux.com/books/ctutorial/argc-and-argv.html
• The C Language: https://en.wikipedia.org/wiki/C_(programming_language)
• Kernighan and Ritchie (K&R) C: https://www.youtube.com/watch?v=de2Hsvxaf8M
•C Standard Library: http://www.cplusplus.com/reference/clibrary/
• https://en.wikipedia.org/wiki/Bitwise_operations_in_C
• http://en.cppreference.com/w/c/language/operator_precedence

•Advanced Reading:
• After All These Years, the World is Still Powered by C Programming
• Is C Still Relevant in the 21st Century?
•Why Every Programmer Should Learn C

http://crasseux.com/books/ctutorial/argc-and-argv.html
http://www.youtube.com/watch?v=de2Hsvxaf8M
http://www.youtube.com/watch?v=de2Hsvxaf8M
http://www.cplusplus.com/reference/clibrary/
http://en.cppreference.com/w/c/language/operator_precedence

