
1

This document is copyright (C) Stanford Computer Science, Lisa Yan, Nick Troccoli and Katie Creel, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created byMarty Stepp, Cynthia Lee, Chris Gregg, Lisa Yan, Jerry Cain and others.

CS107, Lecture 5
From C Strings to Pointers

Reading: Essential C section 3

C Strings As Parameters

int doSomething(char str[]) { ...

2

When we pass a string as a parameter, it is passed as a char *. We can still
operate on the string the same way as with a char[]. (We’ll see why today!).

int doSomething(char *str) {
char secondChar = str[1];
...

}

// can also write this, but it is really a pointer

Arrays of Strings

11

We can make an array of strings to group multiple strings together:

char *stringArray[5]; // space to store 5 char *s

We can also use the following shorthand to initialize a string array:

char *stringArray[] = {
"Hello",
"Hi",
"Hey there"

};

Arrays of Strings

4

We can access each string using bracket syntax:

printf("%s\n", stringArray[0]); // print out first string

When an array is passed as a parameter in C, C passes a pointer to the first
element of the array. This is what argv is in main! This means we write the
parameter type as:

void myFunction(char **stringArray) {

// equivalent to this, but it is really a double pointer
void myFunction(char *stringArray[]) {

Practice: Password Verification

5

Write a function verifyPassword that accepts a candidate password and
certain password criteria and returns whether the password is valid.

bool verifyPassword(char *password, char *validChars, char
*badSubstrings[], int numBadSubstrings);

password is valid if it contains only letters in validChars, and does not contain
any substrings in badSubstrings.

14

Practice: Password Verification
bool verifyPassword(char *password, char *validChars, char
*badSubstrings[], int numBadSubstrings);

Example:

char *invalidSubstrings[] = { "1234" };

bool valid1 = verifyPassword("1572", "0123456789",
invalidSubstrings, 1); // true

bool valid2 = verifyPassword("141234", "0123456789",
invalidSubstrings, 1); // false

15

Practice: Password
Verification

verify_password.c

16

Lecture Plan
• Searching in Strings
• Practice: Password Verification
• Demo: Buffer Overflow and Valgrind
• Pointers
• Strings in Memory
• Security and Overflows
• Live Session

6
13
16
19
50
88

110

cp -r /afs/ir/class/cs107/lecture-code/lect5 .

17

Buffer Overflows
• We must always ensure that memory operations we perform don’t improperly

read or write memory.
• E.g. don’t copy a string into a space that is too small!
• E.g. don’t ask for the string length of an uninitialized string!

• The Valgrind tool may be able to help track down memory-related issues.
• See cs107.stanford.edu/resources/valgrind
• We’ll talk about Valgrind more when we talk about dynamically-allocated memory.

18

Demo: Memory Errors

memory_errors.c

19

Lecture Plan
• Searching in Strings
• Practice: Password Verification
• Demo: Buffer Overflow and Valgrind
• Pointers
• Strings in Memory
• Security and Overflows
• Live Session

6
13
16
19
50
88

110

cp -r /afs/ir/class/cs107/lecture-code/lect5 .

Pointers

12

• A pointer is a variable that stores a memory address.
• Because there is no pass-by-reference in C like in C++, pointers let us pass

around the address of one instance of memory, instead of making many
copies.
• One (8 byte) pointer can refer to any size memory location!
• Pointers are also essential for allocating memory on the heap, which we will

cover later.
• Pointers also let us refer to memory generically, which we will cover later.

Memory

13

• Memory is a big array of bytes.
• Each byte has a unique numeric index that is

commonly written in hexadecimal.
• A pointer stores one of these memory addresses. 0x105

0x104

0x103

0x102

0x101

0x100

…

'\0'

'e'

'l'

'p'

'p'

'a'

…

Address Value

Memory

14

• Memory is a big array of bytes.
• Each byte has a unique numeric index that is

commonly written in hexadecimal.
• A pointer stores one of these memory addresses. 261

260

259

258

257

256

…

'\0'

'e'

'l'

'p'

'p'

'a'

…

Address Value

Looking Back at C++

15

How would we write a program with a function that takes in an int and
modifies it? We might use pass by reference.

void myFunc(int& num) {
num = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 3!
...

}

Looking Ahead to C

16

• All parameters in C are “pass by value.” For efficiency purposes, arrays (and
strings, by extension) passed in as parameters are converted to pointers.
• This means whenever we pass something as a parameter, we pass a copy.
• If we want to modify a parameter value in the function we call and have the

changes persist afterwards, we can pass the location of the value instead of
the value itself. This way we make a copy of the address instead of a copy of
the value.

Pointers

17

int x = 2;

// Make a pointer that stores the address of x.
// (& means "address of")
int *xPtr = &x;

// Dereference the pointer to go to that address.
// (* means "dereference")
printf("%d", *xPtr); // prints 2

Pointers

18

A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

Pointers

19

A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

main
STACK

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

main

x 2

20

STACK

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

main

x 2

21

STACK

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

myFunc

intPtr

main

x 2

STACK

22

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

myFunc

intPtr

main

x 2

STACK

23

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

myFunc

intPtr

main

x 3

STACK

24

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

main

x 3

25

STACK

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

main

x 3

26

STACK

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

STACK
Address Value

x 0x1f0

…

2
…

main()

27

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

STACK
Address Value

…

0x1f0 2
…

xmain()

28

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

STACK
Address Value

…

0x1f0 2
…

0x10 0x1f0
…

x

intPtr

main()

myFunc()

29

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

STACK
Address Value

…

0x1f0 2
…

0x10 0x1f0
…

x

intPtr

main()

myFunc()

30

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

STACK
Address Value

…

0x1f0 3
…

0x10 0x1f0
…

x

intPtr

main()

myFunc()

31

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

x 0x1f0

…

3
…

STACK
Address Value

main()

32

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
*intPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(&x);
printf("%d", x); // 3!
...

}

STACK
Address Value

…

0x1f0 3
…

xmain()

33

Pointers Summary

34

• If you are performing an operation with some input and do not care about any
changes to the input, pass the data type itself. This makes a copy of the data.
• If you are modifying a specific instance of some value, pass the location of

what you would like to modify. This makes a copy of the data’s location.
• If a function takes an address (pointer) as a parameter, it can go to that

address if it needs the actual value.

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
val = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!
...

}

STACK
Address Value

x 0x1f0

…

2
…

main()

35

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
val = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!
...

}

STACK
Address Value

…

0x1f0 2
…

xmain()

36

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
val = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!
...

}

STACK
Address Value

…

0x1f0 2
…

0x10 2
…

x

val

main()

myFunc()

37

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
val = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!
...

}

STACK
Address Value

…

0x1f0 2
…

0x10 2
…

x

val

main()

myFunc()

38

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
val = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!
...

}

STACK
Address Value

…

0x1f0 2
…

0x10 3
…

x

val

main()

myFunc()

39

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
val = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!
...

}

STACK
Address Value

x 0x1f0

…

2
…

main()

40

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
val = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!
...

}

STACK
Address Value

…

0x1f0 2
…

xmain()

41

50

Lecture Plan
• Searching in Strings
• Practice: Password Verification
• Demo: Buffer Overflow and Valgrind
• Pointers
• Strings in Memory
• Security and Overflows
• Live Session

6
13
16
19
50
88

110

cp -r /afs/ir/class/cs107/lecture-code/lect5 .

Strings In Memory

43

1. If we create a string as a char[], we can modify its characters because its memory
lives in our stack space.

2. We cannot set a char[] equal to another value, because it is not a pointer; it refers
to the block of memory reserved for the original array.

3. If we pass a char[] as a parameter, set something equal to it, or perform arithmetic
with it, it’s automatically converted to a char *.

4. If we create a new string with new characters as a char *, we cannot modify its
characters because its memory lives in the data segment.

5. We can set a char * equal to another value, because it is a reassign-able pointer.
6. Adding an offset to a C string gives us a substring that many places past the first

character.
7. If we change characters in a string parameter, these changes will persist outside of the

function.

String Behavior #1: If we create a string as
a char[], we can modify its characters
because its memory lives in our stack space.

44

Character Arrays
STACK

Address Value

0x105

0x104

0x103

0x102

0x101

0x100

…

'\0'

'e'

'l'

'p'

'p'

'a'

…

When we declare an array of characters, contiguous
memory is allocated on the stack to store the contents of
the entire array. We can modify what is on the stack.

char str[6];
strcpy(str, "apple");

str

45

String Behavior #2: We cannot set a
char[] equal to another value, because it
is not a pointer; it refers to the block of
memory reserved for the original array.

46

Character Arrays

47

An array variable refers to an entire block of memory. We cannot reassign an
existing array to be equal to a new array.
char str[6];
strcpy(str, "apple");
char str2[8];
strcpy(str2, "apple 2");

str = str2; // not allowed!

An array’s size cannot be changed once we create it; we must create another
new array instead.

String Behavior #3: If we pass a char[]
as a parameter, set something equal to it, or
perform arithmetic with it, it’s automatically
converted to a char *.

48

String Parameters
How do you think the parameter str is being represented?

void fun_times(char *str) {
...

}

int main(int argc, char *argv[])
{ char local_str[5];
strcpy(local_str, "rice");
fun_times(local_str);
return 0;

}

str ?

49

A. A copy of the array local_str
B. A pointer containing an address to

the first element in local_str

local_str 'r' 'i' 'c' 'e' '\0'
0xa0 0xa1 0xa2 0xa3 0xa4

A. A copy of the array local_str

String Parameters
How do you think the parameter str is being represented?

void fun_times(char *str) {
...

}

int main(int argc, char *argv[])
{ char local_str[5];
strcpy(local_str, "rice");
fun_times(local_str);
return 0;

}

local_str 'r' 'i' 'c' 'e' '\0'
0xa0 0xa1 0xa2 0xa3 0xa4

str 0xa0

B. A pointer containing an address to
the first element in local_str

50

char * Variables
How do you think the local variable str is being represented?

int main(int argc, char *argv[])
{ char local_str[5];
strcpy(local_str, "rice");
char *str = local_str;
...
return 0;

}

str ?

A.
B.

A copy of the array local_str
A pointer containing an address to
the first element in local_str

51

local_str 'r' 'i' 'c' 'e' '\0'
0xa0 0xa1 0xa2 0xa3 0xa4

char * Variables
How do you think the local variable str is being represented?

int main(int argc, char *argv[])
{ char local_str[5];
strcpy(local_str, "rice");
char *str = local_str;
...
return 0;

}

str

local_str 'r' 'i' 'c' 'e' '\0'
0xa0 0xa1 0xa2 0xa3 0xa4

0xa0

A.
B.

A copy of the array local_str
A pointer containing an address to
the first element in local_str

52

char * Variables
How do you think the local variable str is being represented?

int main(int argc, char *argv[])
{ char local_str[5];
strcpy(local_str, "rice");
char *str = local_str + 2;
...
return 0;

}

str ?

A.
B.

A copy of part of the array local_str
A pointer containing an address to
the third element in local_str

53

local_str 'r' 'i' 'c' 'e' '\0'
0xa0 0xa1 0xa2 0xa3 0xa4

char * Variables
How do you think the local variable str is being represented?

int main(int argc, char *argv[])
{ char local_str[5];
strcpy(local_str, "rice");
char *str = local_str + 2;
...
return 0;

}

str

local_str 'r' 'i' 'c' 'e' '\0'
0xa0 0xa1 0xa2 0xa3 0xa4

0xa2

A.
B.

A copy of part of the array local_str
A pointer containing an address to
the third element in local_str

54

String Parameters

55

All string functions take char * parameters – they accept char[], but they are
implicitly converted to char * before being passed.

• strlen(char *str)
• strcmp(char *str1, char *str2)
• …

• char * is still a string in all the core ways a char[] is
• Access/modify characters using bracket notation
• Print it out
• Use string functions
• But under the hood they are represented differently!

• Takeaway: We create strings as char[], pass them around as char *

String Behavior #4: If we create a new
string with new characters as a char *, we
cannot modify its characters because its
memory lives in the data segment.

56

char *

There is another convenient way to create a string if we do not need to modify it
later. We can create a char * and set it directly equal to a string literal.

char *myString = "Hello, world!";
char *empty = "";

myString[0] = 'h';

57

// crashes!
// Hello, world!printf("%s", myString);

char *

Value
…

0x10
…
…

'\0'0x12
0x11 'i'
0x10 'h'

…

Address

str 0xff0

When we declare a char pointer equal to a string
literal, the characters are not stored on the stack.
Instead, they are stored in a special area of
memory called the “data segment”. We cannot
modify memory in this segment.
char *str = "hi";
The pointer variable (e.g. str) refers to the address
of the first character of the string in the data
segment.

STACK

DATASEGMENT

This applies only to creating new
strings with char *. This does not
apply for making a char * that
points to an existing stack string.

58

Memory Locations
For each code snippet below, can we modify the characters in myStr?

char myStr[6];

Key Question: where do its
characters live? Do they live in
memory we own? Or the read-
only data segment?

59

Memory Locations
For each code snippet below, can we modify the characters in myStr?

char *myStr = "Hi";

Key Question: where do its
characters live? Do they live in
memory we own? Or the read-
only data segment?

60

Memory Locations
For each code snippet below, can we modify the characters in myStr?

char buf[6];
strcpy(buf, "Hi");
char *myStr = buf;

Key Question: where do its
characters live? Do they live in
memory we own? Or the read-
only data segment?

61

Memory Locations
For each code snippet below, can we modify the characters in myStr?

char *otherStr = "Hi";
char *myStr = otherStr;

Key Question: where do its
characters live? Do they live in
memory we own? Or the read-
only data segment?

62

Memory Locations
For each code snippet below, can we modify the characters in myStr?

void myFunc(char *myStr) {
...

}

int main(int argc, char *argv[]) {
char buf[6];
strcpy(buf, "Hi");
myFunc(buf);
return 0;

}

Key Question: where do its
characters live? Do they live in
memory we own? Or the read-
only data segment?

63

Memory Locations

64

Q: Is there a way to check in code whether a string’s characters are modifiable?
A: No. This is something you can only tell by looking at the code itself and how
the string was created.

Q: So then if I am writing a string function that modifies a string, how can I tell if
the string passed in is modifiable?
A: You can’t! This is something you instead state as an assumption in your
function documentation. If someone calls your function with a read-only string,
it will crash, but that’s not your function’s fault :-)

String Behavior #5: We can set a char
* equal to another value, because it is a
reassign-able pointer.

65

char *

66

A char * variable refers to a single character. We can reassign an existing char *
pointer to be equal to another char * pointer.

char *str = "apple";
char *str2 = "apple 2";

// e.g. 0xfff0
// e.g. 0xfe0

str = str2; // ok! Both store address 0xfe0

Arrays and Pointers
We can also make a pointer equal to an array;
it will point to the first element in that array.

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
char *ptr = str;
...

}

STACK
Address Value

…

'\0'
'e'
'l'
'p'
'p'

0x100
…

str

0x105
0x104
0x103
0x102
0x101
0x100 'a'

ptr 0xf8

main()

67

76

Arrays and Pointers
We can also make a pointer equal to an array;
it will point to the first element in that array.

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
char *ptr = str;

// equivalent
char *ptr = &str[0];

// confusingly equivalent, avoid
char *ptr = &str;
...

}

STACK
Address Value

…

'\0'
'e'
'l'
'p'
'p'

0x100
…

str

0x105
0x104
0x103
0x102
0x101
0x100 'a'

ptr 0xf8

main()

String Behavior #6: Adding an offset to a
C string gives us a substring that many
places past the first character.

69

Pointer Arithmetic

70

When we do pointer arithmetic, we are adjusting
the pointer by a certain number of places (e.g.
characters).

char
char
char

*str
*str2
*str3

= "apple";
= str + 1;
= str + 3;

//
//
//

e.g.
e.g.
e.g.

0xff0
0xff1
0xff3

printf("%s", str); // apple
printf("%s", str2); // pple
printf("%s", str3); // le

0xff5

0xff4

0xff3

0xff2

0xff1

0xff0

…

'\0'

'e'

'l'

'p'

'p'

'a'

…

TEXT SEGMENT

Address Value

char *

71

When we use bracket notation with a pointer, we are
performing pointer arithmetic and dereferencing:

char *str = "apple"; // e.g. 0xff0

// both of these add three places to str,
// and then dereference to get the char there.
// E.g. get memory at 0xff3.
char thirdLetter = str[3];
char thirdLetter = *(str + 3);

// 'l'
// 'l'

0xff5

0xff4

0xff3

0xff2

0xff1

0xff0

…

'\0'

'e'

'l'

'p'

'p'

'a'

…

TEXT SEGMENT

Address Value

String Behavior #7: If we change
characters in a string parameter, these
changes will persist outside of the function.

72

81

Strings as Parameters
When we pass a char * string as a parameter,
C makes a copy of the address stored in the
char * and passes it to the function. This
means they both refer to the same memory
location.

void myFunc(char *myStr) {
...

}

int main(int argc, char *argv[]) {
char *str = "apple";
myFunc(str);
...

}

STACK
Address Value

0xff0

…

0x10

…

…

0x10

…

str 0xfff0

myStr

main()

myFunc()

28

Strings as Parameters
When we pass a char array as a parameter, C
makes a copy of the address of the first array
element and passes it (as a char *) to the function.

void myFunc(char *myStr) {
...

}

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
myFunc(str);
...

}

STACK
Address Value

…
'\0'
'e'
'l'
'p'
'p'

0x105
0x104
0x103
0x102
0x101
0x100 'a'

…
…

0xf 0x100
…

str

myStr

main()

myFunc()

38

Strings as Parameters
When we pass a char array as a parameter, C
makes a copy of the address of the first array
element and passes it (as a char *) to the function.

void myFunc(char *myStr) {
...

}

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
// equivalent
char *strAlt = str;
myFunc(strAlt);
...

STACK
Address Value

…
'\0'
'e'
'l'
'p'
'p'

0x105
0x104
0x103
0x102
0x101
0x100 'a'

…
…

0xf 0x100
…

str

myStr

main()

myFunc()

Strings as Parameters
This means if we modify characters in myFunc,
the changes will persist back in main!

void myFunc(char *myStr) {
myStr[4] = 'y';

}

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
myFunc(str);
printf("%s", str); // apply
...

STACK
Address Value

…
'\0'
'e'
'l'
'p'
'p'

0x105
0x104
0x103
0x102
0x101
0x100 'a'

…
…

0xf 0x100

str

myStr

main()

myFunc()

8

}
… 4

Strings as Parameters
This means if we modify characters in myFunc,
the changes will persist back in main!

void myFunc(char *myStr) {
myStr[4] = 'y';

}

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
myFunc(str);
printf("%s", str); // apply
...

STACK
Address Value

…
'\0'
'y'
'l'
'p'
'p'

0x105
0x104
0x103
0x102
0x101
0x100 'a'

…
…

0xf 0x100

str

myStr

main()

myFunc()

8

}
… 5

1. If we create a string as a char[], we can modify its characters because its memory
lives in our stack space.

2. We cannot set a char[] equal to another value, because it is not a pointer; it refers
to the block of memory reserved for the original array.

3. If we pass a char[] as a parameter, set something equal to it, or perform arithmetic
with it, it’s automatically converted to a char *.

4. If we create a new string with new characters as a char *, we cannot modify its
characters because its memory lives in the data segment.

5. We can set a char * equal to another value, because it is a reassign-able pointer.
6. Adding an offset to a C string gives us a substring that many places past the first

character.
7. If we change characters in a string parameter, these changes will persist outside of the

function.
86

Strings In Memory

87

Lecture Plan
• Searching in Strings
• Practice: Password Verification
• Demo: Buffer Overflow and Valgrind
• Pointers
• Strings in Memory
• Security and Overflows
• Live Session

6
13
16
19
50
88

110

cp -r /afs/ir/class/cs107/lecture-code/lect5 .

Recall: Integer Overflow in Practice

80

• PSY – Gangnam Style
• The End of 32-bit Time aka January 13, 2038
• Gandhi in “Civilization”
• Pacman Level 256
• Make sure to reboot Boeing Dreamliners every 248 days
• Comair/Delta airline had to cancel thousands of flights days before Christmas
• Reported vulnerability CVE-2019-3857 in libssh2 may allow a hacker to

remotely execute code
• Donkey Kong Kill Screen

Assignment 1: Ariane-5 Case Study

81

Integer Overflow in the National
Vulnerability Database

82

' ' 'w' 'o-'other'prr'ogram'lm'emo'ryd-' '!' '\0'

Recall: Buffer Overflows
char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other
memory!

str1

'h' 'e' 'l' 'l' 'o' ','
0 1 2 3 4 5

str2

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

83

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Buffer Overflow Vulnerabilities
are Very Common

84

~70% of serious bugs for Chrome and
Microsoft are related to memory safety

Memory safety issues include buffer overflows ...
85

How can we fix buffer overflows?

86

Idea 1: Constant Vigilance (While Programming)
• Check all buffers and trace their possible modifications

void printCapitalized(char *str1) {
// make a copy first
char buf[BUF_SIZE];
strcpy(buf, str1);
...

}

How can we fix buffer overflows?

87

Idea 1: Constant Vigilance (While Programming)
• Check all buffers and trace their possible modifications
• Scrutinize functions that do not include bounds checking
• common offenders include strcpy, printf, sprintf

int sprintf(char *str, const char *format, ...)

How can we fix buffer overflows?

88

Idea 1: Constant Vigilance (While Programming)
• Check all buffers and trace their possible modifications
• Scrutinize functions that do not include bounds checking
• Some library functions later deprecated for this reason

MAN page for gets():
“Never use gets(). Because it is impossible to tell
without knowing the data in advance how many characters
gets() will read, and because gets() will continue to
store characters past the end of the buffer, it is
extremely dangerous to use. It has been used to break
computer security. Use fgets() instead.”

How can we fix buffer overflows?

89

Idea 1: Constant Vigilance (While Programming)
• Check all buffers and trace their possible modifications
• Scrutinize functions that do not include bounds checking
• Consider use of strn- functions like strncpy
• These functions will not write more than the size you
specify
• However, they do not ensure that strings are null-
terminated
• Use them, but use with care

How can we fix buffer overflows?

90

Idea 1: Constant Vigilance (While Programming)
• Check all buffers and trace their possible modifications
• Scrutinize functions that do not include bounds checking
• Consider use of strn- functions like strncopy

Conclusion: Constant vigilance is
necessary but not sufficient in the
struggle to identify & fix buffer
overflows

How Can We Fix Overflows?
Idea 2: Testing
• Valgrind: Your Greatest Ally
• Write your own tests
• Consider writing tests before writing the main program

cs107.stanford.edu/testing.html

91

How Can We Fix Overflows?

92

Idea 3: Documentation (Written by You)
• Document your assumptions about what will be stored in the
buffer
• This will allow others (including your future self) to
write better tests

How Can We Fix Overflows?

93

Idea 4: Documentation & MAN Pages (Written by Others)
“The strcpy() function copies the string pointed to by src,
including the terminating null byte (‘\0’), to the buffer
pointed to by dest. The strings may not overlap, and the
destination Beware ofstring dest must be large enough to receive the
copy. buffer overruns! (See BUGS.) …
BUGS
If the destination string of a strcpy() is not large enough,
then anything might happen. Overflowing fixed-length string
buffers is a favorite cracker technique for taking complete
control of the machine. Any time a program reads or copies data
into a buffer, the program first needs to check that there’s
enough space. This may be unnecessary if you can show that
overflow is impossible, but be careful: programs can get changed
over time, in ways that may make the impossible possible.”

Memory Safe Systems Programming

94

Idea 5: Choose your Tools & Languages Carefully

Existing code bases or requirements for a project may dictate what tools you
use. Knowing C is crucial – it is and will remain widely used.
When you you are choosing tools for systems programming, consider languages
that can help guard against programmer error.

• Rust (Mozilla)
• Go (Google)
• Project Verona (Microsoft)

Why Should We Fix Overflows?

95

• Why should I fix overflows?
• So that my program doesn’t crash

Why Should We Fix Overflows?

96

• Why should I fix overflows?
• So that my program doesn’t crash
• So that my program works and accomplishes its goal

Why Should We Fix Overflows?

97

• Why should
• So that
• So that

I
my
my

fix overflows?
program doesn’t crash
program works and accomplishes its goal

• So
my

that
code

I can protect others who use and interact with

• So that I can be a good computer scientist

Association for Computing Machinery
(ACM) Code of Ethics

98

ACM Code of Ethics on Security

99

Plan For Today
First 5 minutes: post questions or comments on Ed for what we should discuss

Lecture 5 takeaway: C strings are pointers and arrays;
understanding how pointers and arrays work help us
better understand C string behavior. C strings are error-
prone, and issues like buffer overflows can arise!

100

Review
• Parameters in C are passed by value; if we pass something as a parameter, we

pass a copy of it
• Therefore, if a function tries to change the value of a parameter itself, this will

always change its local copy, not the original:
void myFunc(SOME_TYPE param) {

param = ... // changes local copy
...

}

int main(int argc, char *argv[])
{ SOME_TYPE x = ...
myFunc(x);
// x will always be the same here
...

} 101

Review

...
} 102

• If we wish to have another function modify some local variable, we must pass
its location (address). Thus, we pass a copy of its address, not the value.
• The function can then dereference that address and modify what’s there, and

the changes will persist.
void myFunc(SOME_TYPE *param) {

*param = ... // changes original copy
...

}

int main(int argc, char *argv[])
{ SOME_TYPE x = ...
myFunc(&x);
// x will be changed here

Arrays vs. Pointers

103

• When you create an array, you are making space for each element in the array.
• When you create a pointer, you are making space for an 8 byte address.
• Arrays ”decay to pointers” when you perform arithmetic or pass as

parameters.
• You cannot set an array equal to something after initialization, but you can set

a pointer equal to something at any time.
• &arr does nothing on arrays, but &ptr on pointers gets its address
• sizeof(arr) gets the size of an array in bytes, but sizeof(ptr) is always 8

void func(char *str) {
str[0] = 'S';
str++;
*str = 'u';
str = str + 3;
str[-2] = 'm';

}

int main(int argc, const char *argv[]) {
char buf[] = "Monday";
printf("before func: %s\n", buf);
func(buf);
printf("after func: %s\n", buf);
return 0;

1. Pointer arithmetic
1
2
3
4
5
6
7

8
9
10
11
12
13

• Will there be a compile error/segfault?
• If no errors, what is printed?

14 }
• Draw memory diagrams!
• Pointers store addresses! Make up addresses if it helps your mental model.

104

void func(char *str) {
str[0] = 'S';
str++;
*str = 'u';
str = str + 3;
str[-2] = 'm';

}

int main(int argc, const char *argv[]) {
char buf[] = "Monday";
printf("before func: %s\n", buf);
func(buf);
printf("after func: %s\n", buf);
return 0;

1. Pointer arithmetic
1
2
3
4
5
6
7

8
9
10
11
12
13

main

0x60 0x61 0x62 0x63 0x64 0x65 0x66

buf

func

str

14 }
• Draw memory diagrams!
• Pointers store addresses! Make up addresses if it helps your mental model.

105

2. Code study: strncpy

1 char *strncpy(char *dest, const
2 size_t i;

char *src, siz

3 for (i = 0; i < n && src[i] != '\0'; i++)
4 dest[i] = src[i];
5 for (; i < n; i++)
6 dest[i] = '\0';
7 return dest;
8 }

'M' 'o' 'n' 'd' 'a' 'y' '\0'
0x60 0x61 0x62 0x63 0x64 0x65 0x66

'F' 'r' 'i' '\0'
0x58 0x59 0x5a 0x5b

buf

str

e_t n) {

What happens if we call strncpy(buf, str, 5);? 106

2. Code study: strncpy

char *strncpy(char *dest, const char *src, size_t n) {
size_t i;
for (i = 0; i < n && src[i] != '\0'; i++)

dest[i] = src[i];
for (; i < n; i++)

dest[i] = '\0';
return dest;

}

1
2
3
4
5
6
7
8

dest

'M' 'o' 'n' 'd' 'a' 'y' '\0'
0x60 0x61 0x62 0x63 0x64 0x65 0x66

'F' 'r' 'i' '\0'
0x58 0x59 0x5a 0x5b

src

i

buf

str

5

What happens if we call strncpy(buf, str, 5);? 107

n

120

3. char* vs char[] exercises
Suppose we use a
variable str
as follows:

For each of the following initializations:
• Will there be a compile

error/segfault?
• If no errors, what is printed?

// initialize as below
A. str = str + 1;
B. str[1] = 'u’;
C. printf("%s", str)

1. char str[7];
strcpy(str, "Hello1");

2. char *str = "Hello2";

3. char arr[7];
strcpy(arr, "Hello3");
char *str = arr;

4. char *ptr = "Hello4";
char *str = ptr;

121

3. char* vs char[] exercises
Suppose we use a
variable str
as follows:

For each of the following initializations:
• Will there be a compile

error/segfault?
• If no errors, what is printed?

// initialize as below
A. str = str + 1;
B. str[1] = 'u’;
C. printf("%s", str)

1. char str[7];
strcpy(str, "Hello1");

Line A: Compile error
(cannot reassign array)

3. char arr[7];
strcpy(arr, "Hello3");
char *str = arr;

Prints eulo3

2. char *str = "Hello2";

4. char *ptr = "Hello4";
char *str = ptr;

Line B: Segmentation fault
(string literal)

Line B: Segmentation fault
(string literal)

4. Bonus: Tricky addresses
void tricky_addresses() {
char buf[] = "Local";
char *ptr1 = buf;
char **double_ptr = &ptr1;
printf("ptr1's value:
printf("ptr1’s deref
printf(" address:

%p\n", ptr1);
: %c\n", *ptr1);
%p\n", &ptr1);

printf("double_ptr value: %p\n", double_ptr);
printf("buf's address: %p\n", &buf);

char *ptr2 = &buf;
printf("ptr2's value: %s\n", ptr2);

}

1
2
3
4
5
6
7
8
9

10
11
12

What is stored in each
variable? (We cover double
pointers more in Lecture 6)

110

4. Bonus: Tricky addresses
void tricky_addresses() {
char buf[] = "Local";
char *ptr1 = buf;
char **double_ptr = &ptr1;
printf("ptr1's value:
printf("ptr1’s deref
printf(" address:

%p\n", ptr1);
: %c\n", *ptr1);
%p\n", &ptr1);

printf("double_ptr value: %p\n", double_ptr);
printf("buf's address: %p\n", &buf);

char *ptr2 = &buf;
printf("ptr2's value: %s\n", ptr2);

}

1
2
3
4
5
6
7
8
9

10
11
12

ptr1

0x10

0x18
double

_ptr

ptr2

0x20

'L' 'o' 'c' 'a' 'l' '\0'
0x28 0x29 0x2a 0x2b 0x2c 0x2d

buf

While Line 10 raises a compiler
warning, functionally it will still work—
because pointers are addresses.

111

