
https://forms.gle/uGUBDvKyT
uZHrrbK7

Code: mov

https://forms.gle/uGUBDvKyTuZHrrbK7
https://forms.gle/uGUBDvKyTuZHrrbK7

CS 107, Lecture 11
Assembly Continued

Reading: B&O 3.1-3.4

mov

3

The mov instruction copies bytes from one place to another;
it is similar to the assignment operator (=) in C.

mov src,dst

The src and dst can each be one of:
• Immediate (constant value, like a number) (only src)

• Register

• Memory Location
(at most one of src, dst)

$0x104

%rbx
0x6005c0Direct address

Operand Forms: Immediate

mov $0x104,

Copy the value
0x104 into some

destination.

4

Operand Forms: Registers

mov %rbx,

mov ,%rbx

Copy the value in
register %rbx into
some destination.

Copy the value
from some source
into register %rbx.

5

39

Operand Forms: Absolute Addresses

mov 0x104,

mov

Copy the value at
address 0x104 into
some destination.

,0x104
Copy the value

from some source
into the memory at

address 0x104.

41

Operand Forms: Indirect

mov (%rbx),

mov ,(%rbx)

Copy the value at the
address stored in register

%rbx into some destination.

Copy the value from some source
into the memory at the address

stored in register %rbx.

Operand Forms: Base + Displacement

mov 0x10(%rax),

mov ,0x10(%rax)

Copy the value at the
address (0x10 plus what is
stored in register %rax) into

some destination.

Copy the value from some source
into the memory at the address (0x10
plus what is stored in register %rax).42

43

Operand Forms: Indexed

mov

mov ,(%rax,%rdx)

Copy the value at the address which is
(the sum of the values in registers %rax

and %rdx) into some destination.

(%rax,%rdx),

Copy the value from some source into the
memory at the address which is (the sum of

the values in registers %rax and %rdx).

44

Operand Forms: Indexed

mov

mov ,0x10(%rax,%rdx)

Copy the value at the address which is (the
sum of 0x10 plus the values in registers
%rax and %rdx) into some destination.

0x10(%rax,%rdx),

Copy the value from some source into the
memory at the address which is (the sum of 0x10

plus the values in registers %rax and %rdx).

Practice #2: Operand Forms
What are the results of the following move instructions (executed separately)?
For this problem, assume the value 0x11 is stored at address 0x10C, 0xAB is
stored at address 0x104, 0x100 is stored in register %rax and 0x3 is stored in
%rdx.

1. mov
2. mov
3. mov

$0x42,(%rax)
4(%rax),%rcx
9(%rax,%rdx),%rcx

Imm(rb, ri) is equivalent to address Imm + R[rb] + R[ri]

Displacement: positive or
negative constant (if missing, = 0)

Base: register
(if missing, = 0)

Index: register
(if missing, = 0) 45

46

Operand Forms: Scaled Indexed

mov (,%rdx,4),

mov ,(,%rdx,4)

Copy the value at the address which
is (4 times the value in register

%rdx) into some destination.

Copy the value from some source into the
memory at the address which is (4 times

the value in register %rdx).

The scaling factor
(e.g. 4 here) must
be hardcoded to
be either 1, 2, 4
or 8.

47

Operand Forms: Scaled Indexed

mov 0x4(,%rdx,4),

mov ,0x4(,%rdx,4)

Copy the value at the address which is
(4 times the value in register %rdx, plus

0x4), into some destination.

Copy the value from some source into the
memory at the address which is (4 times

the value in register %rdx, plus 0x4).

48

Operand Forms: Scaled Indexed

mov (%rax,%rdx,2),

mov ,(%rax,%rdx,2)

Copy the value at the address which is (the
value in register %rax plus 2 times the value in

register %rdx) into some destination.

Copy the value from some source into the memory at
the address which is (the value in register %rax

plus 2 times the value in register %rdx).

49

Operand Forms: Scaled Indexed

mov 0x4(%rax,%rdx,2),

mov ,0x4(%rax,%rdx,2)

Copy the value at the address which is (0x4 plus the
value in register %rax plus 2 times the value in

register %rdx) into some destination.

Copy the value from some source into the memory at
the address which is (0x4 plus the value in register

%rax plus 2 times the value in register %rdx).

Most General Operand Form

17

Imm(rb,ri,s)

is equivalent to…

Imm + R[rb] + R[ri]*s

Most General Operand Form

Imm(rb, ri, s) is equivalent to
address Imm + R[rb] + R[ri]*s

Displacement:
pos/neg constant
(if missing, = 0)

Index: register
(if missing, = 0)

Scale must be
1,2,4, or 8
(if missing, = 1)

Base: register (if
missing, = 0)

18

52

Operand Forms
Type Form Operand Value Name

Immediate $𝐼𝑚𝑚 𝐼𝑚𝑚 Immediate

Register 𝑟! R[𝑟!] Register

Memory 𝐼𝑚𝑚 M[𝐼𝑚𝑚] Absolute

Memory (𝑟!) M[R 𝑟!] Indirect

Memory 𝐼𝑚𝑚(𝑟") M[𝐼𝑚𝑚 + R 𝑟"] Base + displacement

Memory (𝑟", 𝑟#) M[R 𝑟" + R 𝑟#] Indexed

Memory 𝐼𝑚𝑚(𝑟", 𝑟#) M[𝐼𝑚𝑚 +	R 𝑟" + R 𝑟#] Indexed

Memory (, 𝑟#, 𝑠) M[R 𝑟# . 𝑠] Scaled indexed

Memory 𝐼𝑚𝑚(, 𝑟#, 𝑠) M[𝐼𝑚𝑚 +	R 𝑟# . 𝑠] Scaled indexed

Memory (𝑟", 𝑟#, 𝑠) M[R 𝑟" + R 𝑟# . 𝑠] Scaled indexed

Memory 𝐼𝑚𝑚(𝑟", 𝑟#, 𝑠) M[𝐼𝑚𝑚 +	R 𝑟" + R 𝑟# . 𝑠] Scaled indexed

Figure 3.3 from the book: “Operand forms. Operands can denote immediate (constant) values, register values,
or values from memory. The scaling factor s must be either. 1, 2, 4, or 8.”

Practice #3: Operand Forms
What are the results of the following move instructions (executed separately)?
For this problem, assume the value 0x1 is stored in register %rcx, the value
0x100 is stored in register %rax, the value 0x3 is stored in register %rdx, and
value 0x11 is stored at address 0x10C.

1. mov $0x42,0xfc(,%rcx,4)

2. mov (%rax,%rdx,4),%rbx
Imm(rb, ri, s) is equivalent to
address Imm + R[rb] + R[ri]*s

20

Displacement Base Index Scale
(1,2,4,8)

Goals of indirect addressing: C

21

Why are there so many forms of
indirect addressing?

We see these indirect addressing
paradigms in C as well!

55

Our First Assembly
int sum_array(int arr[], int nelems) {

int sum = 0;
for (int i = 0; i < nelems; i++) {

sum += arr[i];
}
return sum;

}

00000000004005b6 <sum_array>:
4005b6: ba 00 00 00 00 mov $0x0,%edx
4005bb: b8 00 00 00 00 mov $0x0,%eax
4005c0: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslq %edx,%rcx
4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
4005c8: 83 c2 01 add

cmp
jl

$0x1,%edx
%esi,%edx
4005c2 <sum_array+0xc>

4005cb: 39 f2
4005cd: 7c f3
4005cf: f3 c3 repz retq

We’re 1/4th of the way to understanding assembly!
What looks understandable right now?
Some notes:
• Registers store addresses and values
• mov src, dst copies value into dst
• sizeof(int) is 4
• Instructions executed sequentially

We’ll come back to this
example in future lectures!

Why are we reading assembly?

• We will not be writing assembly! (that’s the compiler’s job)
• Rather, we want to translate the assembly back into our C code.
• Knowing how our C code is converted into machine instructions gives us

insight into how to write more efficient, cleaner code.

Programmer-
generated

Main goal: Information retrieval

C codeidea
Assembly

code Machine code

gcc (compiler+assembler)
generated

26

Extended warmup: Information Synthesis
Spend a few minutes thinking about the main paradigms of the mov instruction.
• What might be the equivalent C-like operation?
• Examples (note %r registers are 64-bit):
1. mov
2. mov
3. mov
4. mov

$0x0,%rdx
%rdx,%rcx
$0x42,(%rdi)
(%rax,%rcx,8),%rax

27

Extended warmup: Information Synthesis
Spend a few minutes thinking about the main paradigms of the mov instruction.
• What might be the equivalent C-like operation?
• Examples (note %r registers are 64-bit):

$0x0,%rdx -> maybe long x = 0
%rdx,%rcx -> maybe long x = y;
$0x42,(%rdi) -> maybe *ptr = 0x42;

1. mov
2. mov
3. mov
4. mov (%rax,%rcx,8),%rax -> maybe long x = arr[i];

Indirect addressing
is like pointer
arithmetic/deref!

28

5

Lecture Plan
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

7
11
24
30
38

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

6

Helpful Assembly Resources
• Course textbook (reminder: see relevant readings for each lecture on the

Schedule page, http://cs107.stanford.edu/schedule.html)
• CS107 Assembly Reference Sheet: http://cs107.stanford.edu/resources/x86-

64-reference.pdf
• CS107 Guide to x86-64: http://cs107.stanford.edu/guide/x86-64.html

http://cs107.stanford.edu/schedule.html)
http://cs107.stanford.edu/resources/x86-
http://cs107.stanford.edu/guide/x86-64.html

54

References and Advanced Reading
• References:

•

•
•
•

• Stanford guide to x86-64: https://web.stanford.edu/class/cs107/guide/
x86-64.html
CS107 one-page of x86-64: https://web.stanford.edu/class/cs107/resources/
onepage_x86-64.pdf
gdbtui: https://beej.us/guide/bggdb/
More gdbtui: https://sourceware.org/gdb/onlinedocs/gdb/TUI.html
Compiler explorer: https://gcc.godbolt.org

• Advanced Reading:

•

•

• x86-64 Intel Software Developer manual: https://software.intel.com/sites/
default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
history of x86 instructions: https://en.wikipedia.org/wiki/
X86_instruction_listings
x86-64 Wikipedia: https://en.wikipedia.org/wiki/X86-64

7

Lecture Plan
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

7
11
24
30
38

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

8

mov
The mov instruction copies bytes from one place to another;
it is similar to the assignment operator (=) in C.

mov src,dst

The src and dst can each be one of:
• Immediate (constant value, like a number) (only src)

• Register

• Memory Location
(at most one of src, dst)

Memory Location Syntax
Syntax Meaning

0x104 Address 0x104 (no $)

(%rax) What’s in %rax

4(%rax) What’s in %rax, plus 4

(%rax, %rdx) Sum of what’s in %rax and %rdx

4(%rax, %rdx) Sum of values in %rax and %rdx, plus 4

(, %rcx, 4) What’s in %rcx, times 4 (multiplier can be 1,
2, 4, 8)

(%rax, %rcx, 2) What’s in %rax, plus 2 times what’s in %rcx

8(%rax, %rcx, 2) What’s in %rax, plus 2 times what’s in %rcx,
plus 8 9

10

Operand Forms
Type Form Operand Value Name

Immediate $𝐼𝑚𝑚 𝐼𝑚𝑚 Immediate

Register 𝑟! R[𝑟!] Register

Memory 𝐼𝑚𝑚 M[𝐼𝑚𝑚] Absolute

Memory (𝑟!) M[R 𝑟!] Indirect

Memory 𝐼𝑚𝑚(𝑟") M[𝐼𝑚𝑚 + R 𝑟"] Base + displacement

Memory (𝑟", 𝑟#) M[R 𝑟" + R 𝑟#] Indexed

Memory 𝐼𝑚𝑚(𝑟", 𝑟#) M[𝐼𝑚𝑚 +	R 𝑟" + R 𝑟#] Indexed

Memory (, 𝑟#, 𝑠) M[R 𝑟# . 𝑠] Scaled indexed

Memory 𝐼𝑚𝑚(, 𝑟#, 𝑠) M[𝐼𝑚𝑚 +	R 𝑟# . 𝑠] Scaled indexed

Memory (𝑟", 𝑟#, 𝑠) M[R 𝑟" + R 𝑟# . 𝑠] Scaled indexed

Memory 𝐼𝑚𝑚(𝑟", 𝑟#, 𝑠) M[𝐼𝑚𝑚 +	R 𝑟" + R 𝑟# . 𝑠] Scaled indexed

Figure 3.3 from the book: “Operand forms. Operands can denote immediate (constant) values, register values,
or values from memory. The scaling factor s must be either. 1, 2, 4, or 8.”

11

Lecture Plan
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

7
11
24
30
38

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

12

Data Sizes
Data sizes in assembly have slightly different terminology to get used to:
• A byte is 1 byte.
• A word is 2 bytes.
• A double word is 4 bytes.
• A quad word is 8 bytes.

Assembly instructions can have suffixes to refer to these sizes:
• b means byte
• w means word
• l means double word
• q means quad word

Register Sizes
63Bit: 071531

%rax %eax %ax %al

%rbx %ebx %bx %bl

%rcx %ecx %cx %cl

%rdx %edx %dx %dl

%rsi %esi %si %sil

%rdi %edi %di %dil

46

Register Sizes
63Bit: 071531

%rbp %ebp %bp %bpl

%rsp %esp %sp %spl

%r8 %r8d %r8w %r8b

%r9 %r9d %r9w %r9b

%r10 %r10d %r10w %r10b

%r11 %r11d %r11w %r11b

47

Register Sizes
63Bit: 071531

%r12 %r12d %r12w %r12b

%r13 %r13d %r13w %r13b

%r14 %r14d %r14w %r14b

%r15 %r15d %r15w %r15b

48

16

Register Responsibilities
Some registers take on special responsibilities during program execution.
• %rax stores the return value
• %rdi stores the first parameter to a function
• %rsi stores the second parameter to a function
• %rdx stores the third parameter to a function
• %rip stores the address of the next instruction to execute
• %rsp stores the address of the current top of the stack

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

mov Variants

50

• mov can take an optional suffix (b,w,l,q) that specifies the size of data to move:
movb, movw, movl, movq

• mov only updates the specific register bytes or memory locations indicated.
• Exception: movl writing to a register will also set high order 4 bytes to 0.

Practice: mov And Data Sizes

51

For each of the following mov instructions, determine the appropriate suffix
based on the operands (e.g. movb, movw, movl or movq).

1. mov %eax, (%rsp)
2. mov (%rax), %dx
3. mov $0xff, %bl
4. mov (%rsp,%rdx,4),%dl
5. mov (%rdx), %rax
6. mov %dx, (%rax)

Practice: mov And Data Sizes

52

For each of the following mov instructions, determine the appropriate suffix
based on the operands (e.g. movb, movw, movl or movq).

1. movl %eax, (%rsp)
2. movw (%rax), %dx
3. movb $0xff, %bl
4. movb (%rsp,%rdx,4),%dl
5. movq (%rdx), %rax
6. movw %dx, (%rax)

mov

53

• The movabsq instruction is used to write a 64-bit Immediate (constant) value.
• The regular movq instruction can only take 32-bit immediates.
• 64-bit immediate as source, only register as destination.

movabsq $0x0011223344556677, %rax

movz and movs

54

• There are two mov instructions that can be used to copy a smaller source to a
larger destination: movz and movs.

• movz fills the remaining bytes with zeros
• movs fills the remaining bytes by sign-extending the most significant bit in the

source.
• The source must be from memory or a register, and the destination is a

register.

movz and movs

55

Instruction Description

movzbw Move zero-extended byte to word

movzbl Move zero-extended byte to double word

movzwl Move zero-extended word to double word

movzbq Move zero-extended byte to quad word

movzwq Move zero-extended word to quad word

MOVZ S,R R ← ZeroExtend(S)

movz and movs

56

Instruction Description

movsbw Move sign-extended byte to word

movsbl Move sign-extended byte to double word

movswl Move sign-extended word to double word

movsbq Move sign-extended byte to quad word

movswq Move sign-extended word to quad word

movslq Move sign-extended double word to quad word

cltq Sign-extend %eax to %rax
%rax <- SignExtend(%eax)

MOVS S,R R ← SignExtend(S)

24

Lecture Plan
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

7
11
24
30
38

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

lea
The lea instruction copies an “effective address” from one place to another.

lea src,dst

Unlike mov, which copies data at the address src to the destination, lea copies
the value of src itself to the destination.

The syntax for the destinations is the same as
mov. The difference is how it handles the src.

58

lea vs. mov

59

Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Copy 6 + what’s in %rax into %rdx.

lea vs. mov

60

Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Copy 6 + what’s in %rax into %rdx.

(%rax, %rcx), %rdx Go to the address (what’s in %rax +
what’s in %rcx) and copy data there into
%rdx

Copy (what’s in %rax + what’s in %rcx)
into %rdx.

lea vs. mov

61

Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Copy 6 + what’s in %rax into %rdx.

(%rax, %rcx), %rdx Go to the address (what’s in %rax +
what’s in %rcx) and copy data there into
%rdx

Copy (what’s in %rax + what’s in %rcx)
into %rdx.

(%rax, %rcx, 4), %rdx Go to the address (%rax + 4 * %rcx) and
copy data there into %rdx.

Copy (%rax + 4 * %rcx) into %rdx.

lea vs. mov
Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Copy 6 + what’s in %rax into %rdx.

(%rax, %rcx), %rdx Go to the address (what’s in %rax +
what’s in %rcx) and copy data there into
%rdx

Copy (what’s in %rax + what’s in %rcx)
into %rdx.

(%rax, %rcx, 4), %rdx Go to the address (%rax + 4 * %rcx) and
copy data there into %rdx.

Copy (%rax + 4 * %rcx) into %rdx.

7(%rax, %rax, 8), %rdx Go to the address (7 + %rax + 8 * %rax)
and copy data there into %rdx.

Copy (7 + %rax + 8 * %rax) into %rdx.

Unlike mov, which copies data at the address
src to the destination, lea copies the value of
src itself to the destination.

62

30

Lecture Plan
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

7
11
24
30
38

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

31

Unary Instructions
The following instructions operate on a single operand (register or memory):

Examples:
incq 16(%rax)
dec %rdx
not %rcx

Instruction Effect Description

inc D D ← D + 1 Increment

dec D D ← D - 1 Decrement

neg D D ← -D Negate

not D D ← ~D Complement

32

Binary Instructions
The following instructions operate on two operands (both can be register or
memory, source can also be immediate). Both cannot be memory locations.
Read it as, e.g. “Subtract S from D”:

Examples:
addq %rcx,(%rax)

xorq $16,(%rax, %rdx, 8)
subq %rdx,8(%rax)

Instruction Effect Description

add S, D D ← D + S Add

sub S, D D ← D - S Subtract

imul S, D D ← D * S Multiply

xor S, D D ← D ^ S Exclusive-or

or S, D D ← D | S Or

and S, D D ← D & S And

Large Multiplication

66

• Multiplying 64-bit numbers can produce a 128-bit result. How does x86-64
support this with only 64-bit registers?

• If you specify two operands to imul, it multiplies them together and truncates
until it fits in a 64-bit register.

imul S, D D ← D * S
• If you specify one operand, it multiplies that by %rax, and splits the product

across 2 registers. It puts the high-order 64 bits in %rdx and the low-order 64
bits in %rax.

Instruction Effect Description

imulq S R[%rdx]:R[%rax] ← S x R[%rax] Signed full multiply

mulq S R[%rdx]:R[%rax] ← S x R[%rax] Unsigned full multiply

Division and Remainder

• Terminology: dividend / divisor = quotient + remainder
• x86-64 supports dividing up to a 128-bit value by a 64-bit value.
• The high-order 64 bits of the dividend are in %rdx, and the low-order 64 bits

are in %rax. The divisor is the operand to the instruction.
• The quotient is stored in %rax, and the remainder in %rdx.

Instruction Effect Description

idivq S R[%rdx]
R[%rax]

←
←
R[%rdx]:R[%rax]
R[%rdx]:R[%rax]

mod S;
S

Signed divide

divq S R[%rdx]
R[%rax]

←
←
R[%rdx]:R[%rax]
R[%rdx]:R[%rax]

mod S;
S

Unsigned divide

67

Division and Remainder

• Terminology: dividend / divisor = quotient + remainder
• The high-order 64 bits of the dividend are in %rdx, and the low-order 64 bits

are in %rax. The divisor is the operand to the instruction.
• Most division uses only 64-bit dividends. The cqto instruction sign-extends the

64-bit value in %rax into %rdx to fill both registers with the dividend, as the
division instruction expects.

Instruction Effect Description

idivq S R[%rdx]
R[%rax]

←
←
R[%rdx]:R[%rax]
R[%rdx]:R[%rax]

mod S;
S

Signed divide

divq S R[%rdx]
R[%rax]

←
←
R[%rdx]:R[%rax]
R[%rdx]:R[%rax]

mod S;
S

Unsigned divide

cqto R[%rdx]:R[%rax] ← SignExtend(R[%rax]) Convert to oct word

68

Shift Instructions

69

The following instructions have two operands: the shift amount k and the
destination to shift, D. k can be either an immediate value, or the byte register
%cl (and only that register!)

Examples:
shll $3,(%rax)
shrl %cl,(%rax,%rdx,8)
sarl $4,8(%rax)

Instruction Effect Description

sal k, D D ← D << k Left shift

shl k, D D ← D << k Left shift (same as sal)

sar k, D D ← D >>A k Arithmetic right shift

shr k, D D ← D >>L k Logical right shift

Shift Amount

70

• When using %cl, the width of what you are shifting determines what portion
of %cl is used.

• For w bits of data, it looks at the low-order log2(w) bits of %cl to know how
much to shift.
• If %cl = 0xff, then: shlb shifts by 7 because it considers only the low-order log2(8) = 3

bits, which represent 7. shlw shifts by 15 because it considers only the low-order
log2(16) = 4 bits, which represent 15.

Instruction Effect Description

sal k, D D ← D << k Left shift

shl k, D D ← D << k Left shift (same as sal)

sar k, D D ← D >>A k Arithmetic right shift

shr k, D D ← D >>L k Logical right shift

38

Lecture Plan
• Recap: mov so far
• Data and Register Sizes
• The lea Instruction
• Logical and Arithmetic Operations
• Practice: Reverse Engineering

7
11
24
30
38

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

Assembly Exploration

72

• Let’s pull these commands together and see how some C code might be
translated to assembly.

• Compiler Explorer is a handy website that lets you quickly write C code and see
its assembly translation. Let’s check it out!

• https://godbolt.org/z/WPzz6G4a9

Code Reference: add_to_first
// Returns the sum of x and the first element in
arr
int add_to_first(int x, int arr[]) {

int sum = x;
sum += arr[0];
return sum;

}

add_to_first:
movl %edi, %eax
addl (%rsi), %eax
ret

73

Code Reference: full_divide
// Returns x/y, stores remainder in location stored in
remainder_ptr
long full_divide(long x, long y, long *remainder_ptr) {

long quotient = x / y;
long remainder = x % y;
*remainder_ptr = remainder;
return quotient;

}

full_divide:

41ret

movq %rdi, %rax
movq %rdx, %rcx
cqto
idivq %rsi
movq %rdx, (%rcx)

42

Assembly Exercise 1
000000000040116e <sum_example1>:
40116e: 8d 04 37
401171: c3

lea (%rdi,%rsi,1),%eax
retq

Which of the following is most likely to have generated the above assembly?

// A)
void sum_example1() {

int x;
int y;
int sum = x + y;

}
// C)
void sum_example1(int x, int y) {

int sum = x + y;
}

// B)
int sum_example1(int x, int y) {

return x + y;
}

42

Assembly Exercise 1
000000000040116e <sum_example1>:
40116e: 8d 04 37
401171: c3

lea (%rdi,%rsi,1),%eax
retq

Which of the following is most likely to have generated the above assembly?

// A)
void sum_example1() {

int x;
int y;
int sum = x + y;

}
// C)
void sum_example1(int x, int y) {

int sum = x + y;
}

// B)
int sum_example1(int x, int y) {

return x + y;
}

Assembly Exercise 2
0000000000401172 <sum_example2>:

401172: 8b 47 0c mov 0xc(%rdi),%eax
401175: 03 07 add (%rdi),%eax
401177:
40117a:

2b
c3

47 18 sub
retq

0x18(%rdi),%eax

int sum_example2(int arr[]) {
int sum = 0;
sum += arr[0];
sum += arr[3];
sum -= arr[6];
return sum;

} 77

What location or value in the assembly above represents the
C code’s sum variable?

Assembly Exercise 2
0000000000401172 <sum_example2>:

401172: 8b 47 0c mov 0xc(%rdi),%eax
401175: 03 07 add (%rdi),%eax
401177:
40117a:

2b
c3

47 18 sub
retq

0x18(%rdi),%eax

int sum_example2(int arr[]) {
int sum = 0;
sum += arr[0];
sum += arr[3];
sum -= arr[6];
return sum;

} 78

What location or value in the assembly above represents the
C code’s sum variable?

%eax

Assembly Exercise 3
0000000000401172 <sum_example2>:

401172: 8b 47 0c mov 0xc(%rdi),%eax
401175: 03 07 add (%rdi),%eax
401177:
40117a:

2b
c3

47 18 sub
retq

0x18(%rdi),%eax

int sum_example2(int arr[]) {
int sum = 0;
sum += arr[0];
sum += arr[3];
sum -= arr[6];
return sum;

} 79

What location or value in the assembly code above
represents the C code’s 6 (as in arr[6])?

Assembly Exercise 3
0000000000401172 <sum_example2>:

401172: 8b 47 0c mov 0xc(%rdi),%eax
401175: 03 07 add (%rdi),%eax
401177:
40117a:

2b
c3

47 18 sub
retq

0x18(%rdi),%eax

int sum_example2(int arr[]) {
int sum = 0;
sum += arr[0];
sum += arr[3];
sum -= arr[6];
return sum;

} 80

What location or value in the assembly code above
represents the C code’s 6 (as in arr[6])?

0x18

45

Our First Assembly
int sum_array(int arr[], int nelems) {

int sum = 0;
for (int i = 0; i < nelems; i++) {

sum += arr[i];
}
return sum;

}

0000000000401136 <sum_array>:
401136: b8 00 00 00 00 mov $0x0,%eax
40113b:
401140:

ba
39

00
f0

00 00 00 mov
cmp

$0x0,%edx
%esi,%eax

401142: 7d 0b jge 40114f <sum_array+0x19>
401144: 48 63 c8 movslq %eax,%rcx
401147: 03 14 8f add (%rdi,%rcx,4),%edx
40114a:
40114d:

83
eb

c0
f1

01 add
jmp

$0x1,%eax
401140 <sum_array+0xa>

40114f: 89 d0 mov %edx,%eax
401151: c3 retq

We’re 1/2 of the way to understanding assembly!
What looks understandable right now?

A Note About Operand Forms

82

• Many instructions share the same address operand forms that mov uses.
• Eg. 7(%rax, %rcx, 2).

• These forms work the same way for other instructions, e.g. sub:
• sub 8(%rax,%rdx),%rcx -> Go to 8 + %rax + %rdx, subtract what’s there from %rcx

• The exception is lea:
• It interprets this form as just the calculation, not the dereferencing
• lea 8(%rax,%rdx),%rcx -> Calculate 8 + %rax + %rdx, put it in %rcx

Extra Practice

85

https://godbolt.org/z/hGKPWszq4

Learning Goals

96

• Learn about how assembly stores comparison and operation results in
condition codes

• Understand how assembly implements loops and control flow

Executing Instructions

99

What does it mean for a program
to execute?

Executing Instructions
So far:
• Program values can be stored in memory or registers.
• Assembly instructions read/write values back and forth

between registers (on the CPU) and memory.
• Assembly instructions are also stored in memory.

Today:
• Who controls the instructions?

How do we know what to do now or next?
Answer:
• The program counter (PC), %rip.

4004fd
4004fc

4004fb
4004fa

4004f9

4004f8

4004f7
4004f6

4004f5

4004f4
4004f3

4004f2
4004f1

4004f0
4004ef

4004ee

4004ed

fa

eb

01
fc

45

83

00

00
00

00

fc

45

c7

e5

89

48

55
10
0

Register Responsibilities

10
1

Some registers take on special responsibilities during program execution.
• %rax stores the return value
• %rdi stores the first parameter to a function
• %rsi stores the second parameter to a function
• %rdx stores the third parameter to a function
• %rip stores the address of the next instruction to execute
• %rsp stores the address of the current top of the stack

See the x86-64 Guide and Reference Sheet on the Resources webpage for more!

Instructions Are Just Bytes!

0x0

Stack

Heap

Data

Text (code)Machine code
instructions

10
4

Main Memory

p
00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8:
4004fc:

83
eb

45
fa

fc 01 addl
jmp

$0x1,-0x4(%rbp)
4004f8 <loop+0xb>

%ri4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

Stack

Heap

Data

Text (code)

Main Memory

10
5

%rip
00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004ed

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

%rip 10
6

%rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004ee

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

%rip 10
7

%rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

00000000004004ed <loop>:

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed. 0x4004f1

%rip 15

4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

%rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

00000000004004ed <loop>:

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed. 0x4004f8

%rip 16

4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

%rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

00000000004004ed <loop>:

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed. 0x4004fc

%rip 17

4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

%rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

Special hardware sets the program counter
to the next instruction:
%rip += size of bytes of current instruction

0x4004fc

%rip 18

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

