
CS107, Lecture 14
Alignment, Optimization, & Basic Architecture

This document is copyright (C) Stanford Computer Science, Adam Keppler and Olayinka Adekola, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Nick Troccoli, Chris Gregg, and Raymond Klefstad

https://forms.gle/mUWfemVpi1R81VyW6

2

Attendance

Registers Vs Addresses

3

• So far, we’ve often seen local variables stored directly in registers, rather than
on the stack.

• There are three common reasons that local data must be in memory:
• We’ve run out of registers
• The ‘&’ operator is used on it, so we must generate an address for it
• They are arrays or structs (need to use address arithmetic)

Data Alignment
• Computer systems often put restrictions on the allowable addresses for primitive

data types, requiring that the address for some objects must be a multiple of some
value K (normally 2, 4, or 8).

• These alignment restrictions simplify the design of the hardware.
• For example, suppose that a processor always fetches 8 bytes from the memory

system, and an address must be a multiple of 8. If we can guarantee that any
double will be aligned to have its address as a multiple of 8, then we can read or
write the values with a single memory access.

• For x86-64, Intel recommends the following alignments for best performance:

TypesK

char1

short2

int, float4

long, double, char *8
4

Data Alignment
• The compiler enforces alignment by making sure that every data type is organized

in such a way that every field within the struct satisfies the alignment restrictions.
• For example, let's look at the following struct:
struct S1 {

int i;
char c;
int j;

};
• If the compiler used a minimal allocation:
• This would make it impossible to align fields i (offset 0) and j (offset 5). Instead,

the compiler inserts a 3-byte gap between fields c and j:

9540Offset

jciContents

128540Offset

jciContents

• So, don't be surprised if your structs have a sizeof() that is larger than you expect!
5

GCC Optimizations

7

Optimization

Most of what you need to do with optimization can be summarized by:

1) If doing something seldom and only on small inputs, do whatever is simplest
to code, understand, and debug

2) If doing things a lot, or on big inputs, make the primary algorithm’s Big-O cost
reasonable

3) Let gcc do its magic from there
4) Optimize explicitly as a last resort

Optimizations you’ll see

nop
• nop/nopl are “no-op” instructions – they do nothing!
• Intent: Make functions align on address boundaries that are nice multiples of 8.
• “Sometimes, doing nothing is how to be most productive” – Philosopher Nick

mov %ebx,%ebx
• Zeros out the top 32 register bits (because a mov on an e-register zeros out rest

of 64 bits).

8

GCC For Loop Output

9

Possible Alternative

Initialization
Jump to test
Body
Update
Test
Jump to body if success

GCC Common For Loop Output
Initialization
Test
Jump past loop if success
Body
Update
Jump to test

GCC For Loop Output

GCC Common For Loop Output
Initialization
Test
Jump past loop if success
Body
Update
Jump to test

Possible Alternative

Initialization
Jump to test
Body
Update
Test
Jump to body if success

for (int i = 0; i < n; i++) // n = 100

10

GCC For Loop Output

GCC Common For Loop Output
Initialization
Test
Jump past loop if success
Body
Update
Jump to test

Possible Alternative

Initialization
Jump to test
Body
Update
Test
Jump to body if success

for (int i = 0; i < n; i++)

Body
Update
Jump
...

to test

11

// n = 100

Initialization
Test
No jump
Body
Update
Jump to test
Test
No jump

GCC For Loop Output

GCC Common For Loop Output
Initialization
Test
Jump past loop if success
Body
Update
Jump to test

Possible Alternative

Initialization
Jump to test
Body
Update
Test
Jump to body if success

for (int i = 0; i < n; i++)

Body
Update
Jump
...

to test

12

// n = 100

Initialization
Test
No jump
Body
Update
Jump to test
Test
No jump

GCC For Loop Output

GCC Common For Loop Output
Initialization
Test
Jump past loop if passes
Body
Update
Jump to test

Possible Alternative

Initialization
Jump to test
Body
Update
Test
Jump to body if success

for (int i = 0; i < n; i++) // n = 100

Initialization
Jump to test
Test
Jump to body
Body
Update
Test
Jump to body
Body
Update
Test
Jump to body
... 13

GCC For Loop Output

GCC Common For Loop Output
Initialization
Test
Jump past loop if passes
Body
Update
Jump to test

Possible Alternative

Initialization
Jump to test
Body
Update
Test
Jump to body if success

for (int i = 0; i < n; i++) // n = 100

Initialization
Jump to test
Test
Jump to body
Body
Update
Test
Jump to body
Body
Update
Test
Jump to body
... 14

GCC For Loop Output

GCC Common For Loop Output
Initialization
Test
Jump past loop if passes
Body
Update
Jump to test

Possible Alternative

Initialization
Jump to test
Body
Update
Test
Jump to body if success

Which instructions are better when n = 0? n = 1000?

for (int i = 0; i < n; i++)
15

Optimizing Instruction Counts

16

• Both versions have the same static instruction count (# of written instructions).
• But they have different dynamic instruction counts (# of executed instructions

when program is run).
• If n = 0, left (GCC common output) is best b/c fewer instructions
• If n is large, right (alternative) is best b/c fewer instructions

• The compiler may emit a static instruction count that is several times longer
than an alternative, but it may be more efficient if loop executes many times.

• Does the compiler know that a loop will execute many times? (in general, no)
• So what if our code had loops that always execute a small number of times?

How do we know when gcc makes a bad decision?
• (take EE108, EE180, CS316 for more!)

Optimizations

17

• Conditional Moves can sometimes eliminate “branches” (jumps), which are
particularly inefficient on modern computer hardware.

• Processors try to predict the future execution of instructions for maximum
performance. This is difficult to do with jumps.

18

GCC Optimization
• Today, we’ll be comparing two levels of optimization in the gcc compiler:

• gcc –O0 // mostly just literal translation of C
• gcc –O2 // enable nearly all reasonable optimizations
• (we also use –Og, like –O0 but more debugging friendly)

• There are other custom and more aggressive levels of optimization, e.g.:
• -O3 //more aggressive than O2, trade size for speed
• -Os //optimize for size
• -Ofast //disregard standards compliance (!!)

• Exhaustive list of gcc optimization-related flags:
• https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

19

Compiler optimizations

https://stackoverflow.co
m/questions/1778538/ho
w-many-gcc-optimization-
levels-are-there

Gcc supports numbers up to
3. Anything above is
interpreted as 3

20

GCC Optimizations

• Constant Folding
• Common Sub-expression Elimination
• Dead Code
• Strength Reduction
• Code Motion
• Loop Unrolling

21

Constant Folding

Constant Folding pre-calculates constants at compile-time where possible.

int seconds = 60 * 60 * 24 * n_days;

22

Constant Folding

Constant Folding pre-calculates constants at compile-time where possible.

int seconds = 60 * 60 * 24 * n_days;

int seconds = 86400 * n_days;

23

Constant Folding
int fold(int param) {

char arr[5];
int a = 0x107;
int b = a * sizeof(arr);
int c = 1;
return a * param + (a + 0x15 / c + strlen("Hello") * b - 0x37) / 4;

}

24

Constant Folding
int fold(int param) {

char arr[5];
int a = 0x107;
int b = a * sizeof(arr);
int c = 1;
return a * param + (a + 0x15 / c + strlen("Hello") * b - 0x37) / 4;

}

int fold(int param) {
char arr[5];
int a = 0x107;
int b = a * 5;
int c = 1;
return a * param + (a + 0x15 / c + 5 * b - 0x37) / 4;

}

25

Constant Folding
int fold(int param) {

int a = 0x107;
int b = a * 5;
int c = 1;
return a * param + (a + 0x15 / c + 5 * b - 0x37) / 4;

}

int fold(int param) {
int b = 0x107 * 5;
int c = 1;
return 0x107*param+(0x107+0x15/c+5*b-0x37) / 4;

}

26

Constant Folding
int fold(int param) {

int b = 0x107 * 5;
int c = 1;
return 0x107*param+(0x107+0x15/c+5*b-0x37) / 4;

}

int fold(int param) {
return 0x107*param+(0x11c/1+5* 0x107 * 5 -0x37) / 4;

}

27

Constant Folding
int fold(int param) {

int b = 0x107 * 5;
int c = 1;
return 0x107*param+(0x107+0x15/c+5*b-0x37) / 4;

}

int fold(int param) {
return 0x107*param+(0x107 + 0x15/1+5* 0x107 * 5 -0x37) / 4;

}

int fold(int param) {
return 0x107 * param + 1701;

}

28

Constant Folding: Before (-O0)
00000000000011b9 <fold>:

11b9: 55 push %rbp
11ba: 48 89 e5 mov %rsp,%rbp
11bd: 41 54 push %r12
11bf: 53 push %rbx
11c0: 48 83 ec 30 sub $0x30,%rsp
11c4: 89 7d cc mov %edi,-0x34(%rbp)
11c7: c7 45 ec 07 01 00 00 movl $0x107,-0x14(%rbp)
11ce: 8b 45 ec mov -0x14(%rbp),%eax
11d1: 48 98 cltq
11d3: 89 c2 mov %eax,%edx
11d5: 89 d0 mov %edx,%eax
11d7: c1 e0 02 shl $0x2,%eax
11da: 01 d0 add %edx,%eax
11dc: 89 45 e8 mov %eax,-0x18(%rbp)
11df: 48 8b 05 2a 0e 00 00 mov 0xe2a(%rip),%rax # 2010 <_IO_stdin_used+0x10>
11e6: 66 48 0f 6e c0 movq %rax,%xmm0
11eb: e8 b0 fe ff ff callq 10a0 <sqrt@plt>
11f0: f2 0f 2c c0 cvttsd2si %xmm0,%eax
11f4: 89 45 e4 mov %eax,-0x1c(%rbp)
11f7: 8b 45 ec mov -0x14(%rbp),%eax
11fa: 0f af 45 cc imul -0x34(%rbp),%eax
11fe: 41 89 c4 mov %eax,%r12d
1201: b8 15 00 00 00 mov $0x15,%eax
1206: 99 cltd
1207: f7 7d e4 idivl -0x1c(%rbp)
120a: 89 c2 mov %eax,%edx
120c: 8b 45 ec mov -0x14(%rbp),%eax
120f: 01 d0 add %edx,%eax
1211: 48 63 d8 movslq %eax,%rbx
1214: 48 8d 3d ed 0d 00 00 lea 0xded(%rip),%rdi # 2008 <_IO_stdin_used+0x8>
121b: e8 20 fe ff ff callq 1040 <strlen@plt>
1220: 8b 55 e8 mov -0x18(%rbp),%edx
1223: 48 63 d2 movslq %edx,%rdx
1226: 48 0f af c2 imul %rdx,%rax
122a: 48 01 d8 add %rbx,%rax
122d: 48 83 e8 37 sub $0x37,%rax
1231: 48 c1 e8 02 shr $0x2,%rax
1235: 44 01 e0 add %r12d,%eax
1238: 48 83 c4 30 add $0x30,%rsp
123c: 5b pop %rbx
123d: 41 5c pop %r12
123f: 5d pop %rbp
1240: c3 retq

29

Constant Folding: After (-O2)
00000000000011b0 <fold>:

11b0: 69 c7 07 01 00 00 imul $0x107,%edi,%eax
11b6: 05 a5 06 00 00 add $0x6a5,%eax
11bb: c3 retq

What is the consequence of this for you as a programmer? What should you do
differently or the same knowing that compilers can do this for you?

30

GCC Optimizations

• Constant Folding
• Common Sub-expression Elimination
• Dead Code
• Strength Reduction
• Code Motion
• Loop Unrolling

31

Common Sub-Expression Elimination

Common Sub-Expression Elimination prevents the recalculation of the same
thing many times by doing it once and saving the result.

int a = (param2 + 0x107);
int b = param1 * (param2 + 0x107) + a;
return a * (param2 + 0x107) + b * (param2 + 0x107);

32

Common Sub-Expression Elimination

Common Sub-Expression Elimination prevents the recalculation of the same
thing many times by doing it once and saving the result.

int a = (param2 + 0x107);
int b = param1 * (param2 + 0x107) + a;
return a * (param2 + 0x107) + b * (param2 + 0x107);
// = 2 * a * a + param1 * a * a

00000000000011b0 <subexp>: // param1 in %edi, param2 in %esi
11b0: lea 0x107(%rsi),%eax // %eax stores a
11b6: imul %eax,%edi // param1 * a
11b9: lea (%rdi,%rax,2),%esi // 2 * a + param1 * a
11bc: imul %esi,%eax // a * (2 * a + param1 * a)
11bf: retq

33

Common Sub-Expression Elimination

Why should we bother saving repeated calculations in variables if the compiler
has common subexpression elimination?
1) The compiler may not always be able to optimize every instance.
2) Helps reduce redundancy!
3) Makes code more readable!

34

GCC Optimizations

• Constant Folding
• Common Sub-expression Elimination
• Dead Code
• Strength Reduction
• Code Motion
• Loop Unrolling

35

Dead Code
Dead code elimination removes code that doesn’t serve a purpose:
if (param1 < param2 && param1 > param2) {

printf("This test can never be true!\n");
}

// Empty for loop
for (int i = 0; i < 1000; i++);

// If/else that does the same operation in both cases
if (param1 == param2) {

param1++;
} else {

param1++;
}

// If/else that more trickily does the same operation in both cases
if (param1 == 0) {

return 0;
} else {

return param1;
}

36

Dead Code: Before (-O0)
00000000000011a9 <dead_code>:

11a9: 55 push %rbp
11aa: 48 89 e5 mov %rsp,%rbp
11ad: 48 83 ec 20 sub $0x20,%rsp
11b1: 89 7d ec mov %edi,-0x14(%rbp)
11b4: 89 75 e8 mov %esi,-0x18(%rbp)
11b7: 8b 45 ec mov -0x14(%rbp),%eax
11ba: 3b 45 e8 cmp -0x18(%rbp),%eax
11bd: 7d 19 jge 11d8 <dead_code+0x2f>
11bf: 8b 45 ec mov -0x14(%rbp),%eax
11c2: 3b 45 e8 cmp -0x18(%rbp),%eax
11c5: 7e 11 jle 11d8 <dead_code+0x2f>
11c7: 48 8d 3d 36 0e 00 00 lea 0xe36(%rip),%rdi # 2004 <_IO_stdin_used+0x4>
11ce: b8 00 00 00 00 mov $0x0,%eax
11d3: e8 68 fe ff ff callq 1040 <printf@plt>
11d8: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
11df: eb 04 jmp 11e5 <dead_code+0x3c>
11e1: 83 45 fc 01 addl $0x1,-0x4(%rbp)
11e5: 81 7d fc e7 03 00 00 cmpl $0x3e7,-0x4(%rbp)
11ec: 7e f3 jle 11e1 <dead_code+0x38>
11ee: 8b 45 ec mov -0x14(%rbp),%eax
11f1: 3b 45 e8 cmp -0x18(%rbp),%eax
11f4: 75 06 jne 11fc <dead_code+0x53>
11f6: 83 45 ec 01 addl $0x1,-0x14(%rbp)
11fa: eb 04 jmp 1200 <dead_code+0x57>
11fc: 83 45 ec 01 addl $0x1,-0x14(%rbp)
1200: 83 7d ec 00 cmpl $0x0,-0x14(%rbp)
1204: 75 07 jne 120d <dead_code+0x64>
1206: b8 00 00 00 00 mov $0x0,%eax
120b: eb 03 jmp 1210 <dead_code+0x67>
120d: 8b 45 ec mov -0x14(%rbp),%eax
1210: c9 leaveq
1211: c3 retq

37

Dead Code: After (-O2)
00000000000011b0 <dead_code>:

11b0: 8d 47 01 lea 0x1(%rdi),%eax
11b3: c3 retq

38

GCC Optimizations

• Constant Folding
• Common Sub-expression Elimination
• Dead Code
• Strength Reduction
• Code Motion
• Loop Unrolling

39

Strength Reduction

Strength reduction changes divide to multiply, multiply to add/shift, and mod to
AND to avoid using instructions that cost many cycles (multiply and divide).

int a = param2 * 32;
int b = a * 7;
int c = b / 2;
int d = param2 % 2;

for (int i = 0; i <= param2; i++) {
c += param1[i] + 0x107 * i;

}
return c + d;

40

Shifting into Shifts

• int a = param2 * 32;
Becomes:

• int a = param2 << 5;

• int b = a * 7;
Becomes:

• int b = a + (a << 2) + (a << 1); or // (a << 3) - a

• int c = b / 2;
Becomes

• int c = b >> 1 // Division by odd numbers is more complex

41

GCC Optimizations

• Constant Folding
• Common Sub-expression Elimination
• Dead Code
• Strength Reduction
• Code Motion
• Loop Unrolling

42

Code Motion

Code motion moves code outside of a loop if possible.

for (int i = 0; i < n; i++) {
sum += arr[i] + foo * (bar + 3);

}

Common subexpression elimination deals with expressions that appear multiple
times in the code. Here, the expression appears once, but is calculated each
loop iteration, even though none of its values change during the loop.

43

Code Motion

Code motion moves code outside of a loop if possible.

int temp = foo * (bar + 3);
for (int i = 0; i < n; i++) {

sum += arr[i] + temp;
}

Moving it out of the loop allows the computation to happen only once.

44

Practice: GCC Optimization

int char_sum(char *s) {
int sum = 0;
for (size_t i = 0; i < strlen(s); i++) {

sum += s[i];
}
return sum;

}

What is the bottleneck? What (if anything) can GCC do?

45

Practice: GCC Optimization

int char_sum(char *s) {
int sum = 0;
for (size_t i = 0; i < strlen(s); i++) {

sum += s[i];
}
return sum;

}

What is the bottleneck? What (if anything) can GCC do?

strlen is called every loop iteration – code motion can pull it out of the loop

46

GCC Optimizations

• Constant Folding
• Common Sub-expression Elimination
• Dead Code
• Strength Reduction
• Code Motion
• Loop Unrolling

47

Loop Unrolling

Loop Unrolling: Do n loop iterations’ worth of work per actual loop iteration, so
we save ourselves from doing the loop overhead (test and jump) every time, and
instead incur overhead only every n-th time.

for (int i = 0; i <= n - 4; i += 4) {
sum += arr[i];
sum += arr[i + 1];
sum += arr[i + 2];
sum += arr[i + 3];

} // after the loop handle any leftovers

48

Into the Architecture!

49

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)scanf / printf

Program Specific Interactions

50

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

GCC

Where GCC Gets Its Name

51

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Start

How far GCC can reach

Run a.out

52

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

GNU Assembler (Inside GCC)

AS/GAS

53

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

OS Manages Program -> Hardware

RUN

54

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Processing the Machine Code

RUN

55

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

VLSI

Very-Large-Scale Integration

56

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

RTL

RTL (Register-Transfer Level)

57

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Many
Steps

Floorplanning

58

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Many
Steps

Wire Routing
– Don’t Cross the Wires

59

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Many
Steps

Clock Tree Synthesis – Got to
Time it Just Right

60

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Many
Steps

Heat & Capacitance

61

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

ASML

Checkout EUV Lithography

62

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Which layer throws
a segfault?

63

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

HAL IS
WATCHING

Program Memory Managed
By The OS

64

More on the Compiler

65

How Does GCC Work?

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227

• One Unix Command – A lot of steps!

gcc hello.c -o hello

66

How Does GCC Work?

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227

• Preprocessing – Handle Programmer Conveniences
• #Macros convert to normal C code
• Lines split by \ are joined
• Comments are removed

• NOTE: Some comments are added, but our comments are removed
• Bring in functions and variables from the headers

• This is how the #include is resolved

gcc -E hello.c > pre_processed_hello

67

How Does GCC Work?

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227

• Compilation – C to Assembly

gcc -S hello.c

• Will generate intermediate ‘human-readable’ assembly

• There are different styles/syntax for x86, we use AT&T
• AT&T is also the gcc default

68

How Does GCC Work?

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227

• Object Generation – C to Object File

gcc -c hello.c

• “Just compile; Don't link"

• This outputs a non-human readable Object File
• It is defined as a type of incomplete machine code
• With extra metadata to power linking

• Using objdump –d hello.o , we can see the assembly

69

How Does GCC Work?

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227

• Linking – Bringing All the pieces together
• Object Files & Libraries -> Fully Executable Machine Code

gcc hello.o -o hello
ld -o hello hello.o -lc -dynamic-linker /lib64/ld-linux-x86-64.so.2
/usr/lib/x86_64-linux-gnu/crt1.o /usr/lib/x86_64-linux-gnu/crti.o
/usr/lib/x86_64-linux-gnu/crtn.o

• NOTE: We can get our .o in more than one-way
gcc -c hello.c
OR
as hello.s

70

What does the Assembler Do?

71

A Two Step Process
• Pass 1: Setup Memory Addresses

• The program reads in the assembly program identifying and tracking:
• Labels
• Literals
• Data Variables

• Pass 2: Generate the Machine Code (Byte/Binary Code)
• Identify Opcode from the mnemonic assembly
• Resolve labels/literals/variables using the tables from Step 1
• Convert Data to Binary
• Identifies External (Out of Program) References and places markers for the Linker
• Setup Metadata for linking if this program has loadable parts

Final Output is not runnable, but has all the parts need if linking can complete

72

Why do we need a linker?

73

Many Links
• Every C file corresponds to a .o

• Libraries can also be made into linkable formats

• We don’t want to have to write all our code in 1 file and we want to use the STL

• The linker makes this all possible

74

How Does GCC Work?

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227

• Multi-Step Process -> Multiple Failure Points

• Compilation can fail for many reasons at different points

• Mainly two areas that fail ‘Compilation’ or Linking

• If compilation succeeds, Intermediate Assembly will be good!

75

Peeking at Memory

76

Speed vs Space

• CPU is the most important place
• Closer to CPU, less travel time
• But limited space, so bottleneck getting there

• Think of the CPU like downtown, generally
expensive and highly desirable real estate

• The BUS (actual technical name) is our transit
system around the computer

• Places close to the CPU are more limited and more
valuable, since they can get to the CPU faster

77

Speed vs Space

• All of Memory (Temporary Storage on the right)
and the registers is rent only, so data is constantly
moving around

• Many algorithms developed to decide which data
gets to live where and for how long

• Proper access makes a huge difference on
performance

78

Speed vs Space

• Approximate Access Times
Latency TimeResource

0 Cycles (already here)Register

~0.5 nsLevel 1 Cache

~7 ns (14x L1)Level 2 Cache

~100 ns (20x L2, 200x L1)RAM

~100-150 us (~14Kx L2, 200Kx L1)SSD

~10 ms (~2.8Mx L2, 40Mx L1)Hard (Spinning) Disk

~150 ms (~21Mx L2, 300Mx L1)Network Packet CA -> Netherlands ->
CA

~200 ms (~28Mx L2, 400Mx L1)Average Human Response Time to
Visual Stimulus

For more on speed checkout:
https://www.cs.princeton.edu/courses/archive/spring20/cos217/lectures/20_Mem_Storage_Hierarchy.pdf

https://gist.github.com/jboner/2841832

79

Speed vs Space
• Pre-emptive requests and moving of data is critical

• Orders of Magnitude Improvements from high
locality

• Every part of the pyramid is working on making
this faster

• Better BUS, faster storage(both temporary and
permanent), bigger RAM, better algorithms

80

What is Locality?

• Temporal Locality
• Has the data been used recently? Then we expect to be used again soon

• Spatial Locality
• The data appears close together in the program/memory, so it will likely be needed at

the same time.

• Hardware and OS designers consider algorithms to predict and leverage
locality to optimize management of memory resources

• Cache in particular is a limited resource and must be used effectively to
leverage benefits

81

Who Gets to Manage the Memory?

• Registers – Managed by the Compiler/Assembler

• Cache – Managed by Hardware Designers

• Memory – Mainly the OS, influenced by hardware

• Disk – Managed by the user and occasionally OS

82

Architecture & The ISA

83

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Processor

These levels are integrally linked

84

A ‘Simple’ Example

• MIC-1 Architecture (Tanenbaum -
Structured Computer Organization 6th

Edition)

• IJVM ISA – Subset of the Java Virtual
Machine

• A ‘Vanilla’ processor design

84

85

A ‘Simple’ Example
• Control Store is the most important part!

• Our ISA is defined by that unit

• 9 wires in -> 2**9 possible combinations,
2**9 (512) possible commands

• Each command drives 36 wires to control
the chip

• Assembly/Machine Language is defined by
the hardware 85

86

A ‘Simple’ Example
• ALU – Arithmetic & Logic Unit

• Performs Math & Logic Operations

• MAR – H are the registers

• B + Decoder – Enables Register to load onto B Bus

• Z and N act similar to our condition codes, but in a
much more limited/simple way

• C controls the C Bus, informing the destination
register to receive its value

86

87

A ‘Simple’ Example

• Notice how the ALU is only able to take in
the left operand from the H register

• All two operand ALU operations, would
need to first load the left operand to H

• This would be an example of a hardware
based constraint

87

88

Better Design Better Performance

• The MIC-2 Fixes this issue by adding
another BUS improving the Datapath

• Design directly impacts the ISA that we can
make available

88

Some Extra Reading

Key GDB Tips For Assembly

90

• Examine 4 giant words (8 bytes) on the stack:
$rspx/4g(gdb)

0x00000000004005590x00000000000000050x7fffffffe870:
0x00000000004005750x00000000000000000x7fffffffe880:

• display/undisplay (prints out things every time you step/next)
(gdb) display/4w $rsp
1: x/4xw $rsp
0x7fffffffe8a8:
0xf7a2d830 0x00007fff 0x00000000 0x00000000

Key GDB Tips For Assembly

91

• stepi/finish: step into current function call/return to caller:
(gdb) finish

• Set register values during the run
(gdb) p $rdi = $rdi + 1

(Might be useful to write down the original value of $rdi somewhere)
• Tui things

• refresh
• focus cmd – use up/down arrows on gdb command line (vs focus asm, focus
regs)

• layout regs, layout asm

gdb tips

layout split
Print all registersinfo reg

Print register valuep $eax
Print all condition codes currently setp $eflags

Set breakpoint at assembly instructionb *0x400546
Set conditional breakpoint98>$eaxifb *0x400550

Next assembly instructionni

Step into assembly instruction (will step
into function calls)

si

View C, assembly, and gdb(ctrl-x a: exit,
ctrl-l: resize)

92

gdb tips
p/x $rdi
p/t $rsi

x $rdi
x/4bx $rdi
x/4wx $rdi

Print register value in hex
Print register value in binary

Examine the byte stored at this address
Examine 4 bytes starting at this address
Examine 4 ints starting at this address

93

References and Advanced
Reading• References:

•

•

•

•

• Stanford guide to x86-64: https://web.stanford.edu/class/cs107/guide/
x86-64.html
CS107 one-page of x86-64: https://web.stanford.edu/class/cs107/resources/
onepage_x86-64.pdf
gdbtui: https://beej.us/guide/bggdb/
More gdbtui: https://sourceware.org/gdb/onlinedocs/gdb/TUI.html
Compiler explorer: https://gcc.godbolt.org

• Advanced Reading:

•

•

•

• Stack frame layout on x86-64: https://eli.thegreenplace.net/2011/09/06/stack-
frame-layout-on-x86-64
x86-64 Intel Software Developer manual: https://software.intel.com/sites/
default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
history of x86 instructions: https://en.wikipedia.org/wiki/X86_instruction_listings
x86-64 Wikipedia: https://en.wikipedia.org/wiki/X86-64

94

