
1

This document is copyright (C) Stanford Computer Science, Adam Keppler and Olayinka Adekola, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Nick Troccoli, Chris Gregg

NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed. (without expressed written permission)

CS107, Lecture 16
Heap Allocators

Reading: B&O 9.9, 9.11

2

Attendance

https://forms.gle/KwgK9A2KP3eF7APd7

3

Recap: Heap Allocator Goals

• Goal 1: Maximize throughput, or the number of requests completed per unit
time. This means minimizing the average time to satisfy a request.

• Goal 2: Maximize memory utilization, or how efficiently we make use of the
limited heap memory to satisfy requests.

4

Recap: Fragmentation

• The primary cause of poor utilization is fragmentation. Fragmentation occurs
when otherwise unused memory is not available to satisfy allocation requests.

• External Fragmentation: no single space is large enough to satisfy a request, even
though enough aggregate free memory is available

• Internal Fragmentation: space allocated for a block is larger than needed (more later).

5

Lecture Plan

• Method 1: Implicit Free List Allocator

• Method 2: Explicit Free List Allocator

6

Implicit Free List Allocator

• Key idea: in order to reuse blocks, we need a way to track which blocks are
allocated and which are free.

• We could store this information in a separate global data structure, but this is
inefficient.

• Instead: let’s allocate extra space before each block for a header storing its
payload size and whether it is allocated or free.

• When we allocate a block, we look through the blocks to find a free one, and
we update its header to reflect its allocated size and that it is now allocated.

• When we free a block, we update its header to reflect it is now free.
• The header should be 8 bytes (or larger).
• By storing the block size of each block, we implicitly have a list of free blocks.

7

Implicit Free List Allocator

void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x580x500x480x400x380x300x280x200x180x10

72
Free

8

Implicit Free List Allocator

void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x580x500x480x400x380x300x280x200x180x10

56
Free

a +
pad

8
Used

ValueVariable

0x18a

9

Implicit Free List Allocator

void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x580x500x480x400x380x300x280x200x180x10

40
Freeb8

Used
a +
pad

8
Used

ValueVariable

0x18a

0x28b

10

Implicit Free List Allocator

void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x580x500x480x400x380x300x280x200x180x10

24
Free

c +
pad

8
Usedb8

Used
a +
pad

8
Used

ValueVariable

0x18a

0x28b

0x38c

11

Implicit Free List Allocator

void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x580x500x480x400x380x300x280x200x180x10

24
Free

c +
pad

8
Usedb8

Free
a +
pad

8
Used

ValueVariable

0x18a

0x28b

0x38c

12

Implicit Free List Allocator

void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x580x500x480x400x380x300x280x200x180x10

24
Free

c +
pad

8
Usedd8

Used
a +
pad

8
Used

ValueVariable

0x18a

0x28b

0x38c

0x28d

13

Implicit Free List Allocator

void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x580x500x480x400x380x300x280x200x180x10

24
Free

c +
pad

8
Usedd8

Used
a +
pad

8
Free

ValueVariable

0x18a

0x28b

0x38c

0x28d

14

Implicit Free List Allocator

void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

ValueVariable

0x18a

0x28b

0x38c

0x28d

0x48e

0x580x500x480x400x380x300x280x200x180x10

e24
Used

c +
pad

8
Usedd8

Used
a +
pad

8
Free

15

Implicit Free List Allocator

void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

ValueVariable

0x18a

0x28b

0x38c

0x28d

0x48e

0x580x500x480x400x380x300x280x200x180x10

e24
Used

c +
pad

8
Usedd8

Used
a +
pad

8
Free

16

Representing Headers

How can we store both a size and a status (Free/Allocated) in 8 bytes?

Int for size, int for status?

Key idea: block sizes will always be multiples of 8. (Why?)
• Least-significant 3 bits will be unused!
• Solution: use one of the 3 least-significant bits to store free/allocated status

no! malloc/realloc use size_t for sizes!

17

Implicit Free List Allocator

• How can we choose a free block to use for an allocation request?
• First fit: search the list from beginning each time and choose first free block that fits.
• Next fit: instead of starting at the beginning, continue where previous search left off.
• Best fit: examine every free block and choose the one with the smallest size that fits.

• First fit/next fit easier to implement
• What are the pros/cons of each approach?

18

Implicit Free List Summary

For all blocks,
• Have a header that

stores size and status.
• Our list links all blocks,

allocated (A) and free (F).

Keeping track of free blocks:
• Improves memory utilization (vs bump allocator)
• Decreases throughput (worst case allocation request has O(A + F) time)
• Increases design complexity

Header (8 Bytes)

Block size 00X

alloc/free

0363

19

Implicit free list header design

Should we store the block size as
(A) payload size, or
(B) header + payload size?

Your decision affects how you
traverse the list (be careful of off-by-one)
Up to you!

Up to you!

20

Splitting Policy

...
void *e = malloc(16);

0x580x500x480x400x380x300x280x200x180x10

24
Free

c +
pad

8
Usedd8

Used
a +
pad

8
Free

So far, we have seen that a
reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

Up to you!

21

Splitting Policy

...
void *e = malloc(16);

0x580x500x480x400x380x300x280x200x180x10

???e16
Used

c +
pad

8
Usedd8

Used
a +
pad

8
Free

So far, we have seen that a
reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

Up to you!

22

Splitting Policy

...
void *e = malloc(16);

0x580x500x480x400x380x300x280x200x180x10

e + pad24
Used

c +
pad

8
Usedd8

Used
a +
pad

8
Free

So far, we have seen that a
reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

A. Throw into allocation for e as extra padding? Internal fragmentation –
unused bytes because of padding

Up to you!

23

Splitting Policy

...
void *e = malloc(16);

0x580x500x480x400x380x300x280x200x180x10

0
Freee16

Used
c +
pad

8
Usedd8

Used
a +
pad

8
Free

So far, we have seen that a
reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

A. Throw into allocation for e as extra padding?
B. Make a “zero-byte free block”? External fragmentation – unused free
blocks

Up to you!

24

Revisiting Our Goals

Questions we considered:
1. How do we keep track of free blocks? Using headers!
2. How do we choose an appropriate free block in which to place a newly

allocated block? Iterate through all blocks.
3. After we place a newly allocated block in some free block, what do we do

with the remainder of the free block? Try to make the most of it!
4. What do we do with a block that has just been freed? Update its header!

25

Practice 1: Implicit (first-fit)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
first-fit approach?

void *b = malloc(8);

0x580x500x480x400x380x300x280x200x180x10

A8
Used

32
Free

8
Free

26

Practice 1: Implicit (first-fit)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
first-fit approach?

void *b = malloc(8);

0x580x500x480x400x380x300x280x200x180x10

A8
Used

32
Free

8
Free

0x580x500x480x400x380x300x280x200x180x10

A8
Used

32
FreeB8

Used

27

Practice 2: Implicit (first-fit)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
first-fit approach?

void *a = malloc(8);

0x400x380x300x280x200x180x10

16
Free

24
Free

28

Practice 2: Implicit (first-fit)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
first-fit approach?

void *a = malloc(8);

0x400x380x300x280x200x180x10

16
Free

24
Free

0x400x380x300x280x200x180x10

16
Free

8
FreeA8

Used

0x400x380x300x280x200x180x10

16
FreeA8

Used

0x400x380x300x280x200x180x10

16
FreeA24

Used

0x400x380x300x280x200x180x10

A16
Used

24
Free

Space not tracked correctly

We can save extra for later

First fit chooses first available

29

Practice 3: Implicit (best-fit)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
best-fit approach?

void *b = malloc(8);

0x500x480x400x380x300x280x200x180x10

A8
Used

8
Free

24
Free

30

Practice 3: Implicit (best-fit)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
best-fit approach?

void *b = malloc(8);

0x500x480x400x380x300x280x200x180x10

A8
Used

8
Free

24
Free

0x500x480x400x380x300x280x200x180x10

A8
UsedB8

Used
24

Free

31

Final Assignment: Implicit Allocator

• Must have headers that track block information (size, status in-use or free) –
you must use the 8 byte header size, storing the status using the free bits (this
is larger than the 4 byte headers specified in the book, as this makes it easier
to satisfy the alignment constraint and store information).

• Must have free blocks that are recycled and reused for subsequent malloc
requests if possible

• Must have a malloc implementation that searches the heap for free blocks via
an implicit list (i.e. traverses block-by-block).

• Does not need to have coalescing of free blocks
• Does not need to support in-place realloc
(Note: these could be part of an implicit allocator, it’s just not a requirement for this assignment)

32

Coalescing

void *e = malloc(24); // returns NULL!

0x580x500x480x400x380x300x280x200x180x10

24
Used

8
Free

8
Free

8
Free

33

Coalescing

void *a = malloc(4);

0x580x500x480x400x380x300x280x200x180x10

72
Free

You do not need to worry about this
problem for the implicit allocator, but this
is a requirement for the explicit allocator!
(More about this later).

34

Realloc

void *a = malloc(4);
void *b = realloc(a, 8);

0x580x500x480x400x380x300x280x200x180x10

56
Free

a +
pad

8
Used

ValueVariable

0x18a

35

Realloc

void *a = malloc(4);
void *b = realloc(a, 8);

0x580x500x480x400x380x300x280x200x180x10

40
Freeb8

Used
a +
pad

8
Free

ValueVariable

0x10a

0x28b

The implicit allocator can always move memory to a new
location for a realloc request. The explicit allocator must
support in-place realloc (more on this later).

36

Summary: Implicit Allocator

An implicit allocator is a more efficient implementation that has reasonable
throughput and utilization due to its recycling of blocks.

Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse?
2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during realloc?

37

Checkpoint Review

Heap allocator terminology: What do the below terms mean/imply?
• Payload, Header, Free/Used(Allocated) status
• Splitting policy
• Memory utilization vs Throughput
• Bump allocator, Implicit free list Allocator
• First-fit approach, Best-fit approach
• Coalescing
• Realloc in place
• Fragmentation

38

Lecture Plan

• Method 1: Implicit Free List Allocator

• Method 2: Explicit Free List Allocator

39

Lecture Plan

• Method 1: Implicit Free List Allocator

• Method 2: Explicit Free List Allocator
• Explicit Allocator
• Coalescing
• In-place realloc

40

Can We Do Better?

• It would be nice if we could jump just between free blocks, rather than all
blocks, to find a block to reuse.

• Idea: let’s modify each header to add a pointer to the previous free block and
a pointer to the next free block.

0x680x600x580x500x480x400x380x300x280x200x180x10

56
Free

8
Used

8
Free

41

Can We Do Better?

• It would be nice if we could jump just between free blocks, rather than all
blocks, to find a block to reuse.

• Idea: let’s modify each header to add a pointer to the previous free block and
a pointer to the next free block.

0x680x600x580x500x480x400x380x300x280x200x180x10

null0x108
Free0x500x108

Used0x50null8
Free

42

Can We Do Better?

• It would be nice if we could jump just between free blocks, rather than all
blocks, to find a block to reuse.

• Idea: let’s modify each header to add a pointer to the previous free block and
a pointer to the next free block.

0x680x600x580x500x480x400x380x300x280x200x180x10

null0x108
Free0x500x108

Used0x50null8
Free

This is inefficient – it triples the size of every header,
when we just need to jump from one free block to
another. And even if we just made free headers bigger,
it’s complicated to have two different header sizes.

43

Can We Do Better?

• It would be nice if we could jump just between free blocks, rather than all
blocks, to find a block to reuse.

• Idea: let’s modify each header to add a pointer to the previous free block and
a pointer to the next free block. This is inefficient / complicated.

• Where can we put these pointers to the next/previous free block?
• Idea: In a separate data structure?

44

Can We Do Better?

• It would be nice if we could jump just between free blocks, rather than all
blocks, to find a block to reuse.

• Idea: let’s modify each header to add a pointer to the previous free block and
a pointer to the next free block. This is inefficient / complicated.

• Where can we put these pointers to the next/previous free block?
• Idea: In a separate data structure? More difficult to access in a separate place

– prefer storing near blocks on the heap itself.

45

Can We Do Better?

• Key Insight: the payloads of the free blocks aren’t being used, because they’re
free.

• Idea: since we only need to store these pointers for free blocks, let’s store
them in the first 16 bytes of each free block’s payload!

0x680x600x580x500x480x400x380x300x280x200x180x10

32
Free

24
Used

16
Free

46

Can We Do Better?

• Key Insight: the payloads of the free blocks aren’t being used, because they’re
free.

• Idea: since we only need to store these pointers for free blocks, let’s store
them in the first 16 bytes of each free block’s payload!

0x680x600x580x500x480x400x380x300x280x200x180x10

null0x1032
Free

24
Used0x48null16

Free

0x10

First free block

47

Can We Do Better?

• Key Insight: the payloads of the free blocks aren’t being used, because they’re
free.

• Idea: since we only need to store these pointers for free blocks, let’s store
them in the first 16 bytes of each free block’s payload!

• This means each payload must be big enough to store 2 pointers (16 bytes). So
we must require that for every block, free and allocated. (why?)

0x680x600x580x500x480x400x380x300x280x200x180x10

null0x1032
Free

24
Used0x48null16

Free

48

Explicit Free List Allocator

• This design builds on the implicit allocator, but also stores pointers to the next
and previous free block inside each free block’s payload.

• When we allocate a block, we look through just the free blocks using our linked
list to find a free one, and we update its header and the linked list to reflect its
allocated size and that it is now allocated.

• When we free a block, we update its header to reflect it is now free and
update the linked list.

This explicit list of free blocks increases
request throughput, with some costs
(design and internal fragmentation)

49

Explicit Free List: List Design

How do you want to organize your explicit free list?
(compare utilization/throughput)

A. Address-order (each block’s address
is less than successor block’s address)

B. Last-in first-out (LIFO)/like a stack, where
newly freed blocks are at the beginning of the list

C. Other (e.g., by size, etc.)

Better memory util,
Linear free

Constant free (push
recent block onto stack)

(more at end of lecture)

Up to you!

50

Explicit free list design

How do you want to organize your explicit free list?(utilization/throughput)
A. Address-order

B. Last-in first-out (LIFO)

C. Other (e.g., by size, etc.)

0x800x780x700x680x600x580x500x480x400x380x300x280x200x180x10

0x10null16
Free

16
Usednull0x1016

Free
16

Used0x400x7016
Free

Better memory util, linear free

Constant free (push recent block onto stack)

(see textbook)

Up to you!

0x680x600x580x500x480x400x380x300x280x200x180x10

null0x1032
Free

24
Used0x48null16

Free

0x10

First free
block

0x70

First free
block

51

Implicit vs. Explicit: So Far

Implicit Free List
• 8B header for size + alloc/free status

• Allocation requests are worst-case
linear in total number of blocks

• Implicitly address-order

Explicit Free List
• 8B header for size + alloc/free status
• Free block payloads store prev/next

free block pointers

• Allocation requests are worst-case
linear in number of free blocks

• Can choose block ordering

52

Revisiting Our Goals

Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse? Yes! We can use

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during realloc?

53

Revisiting Our Goals

Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse? Yes! We can use

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during realloc?

54

Lecture Plan

• Method 1: Implicit Free List Allocator

• Method 2: Explicit Free List Allocator
• Explicit Allocator
• Coalescing
• In-place realloc

55

Coalescing

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x500x480x400x380x300x280x200x180x10

64
Free

56

Coalescing

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x500x480x400x380x300x280x200x180x10

40
Freea + pad16

Used

57

Coalescing

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x500x480x400x380x300x280x200x180x10

16
Freeb + pad16

Useda + pad16
Used

58

Coalescing

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x500x480x400x380x300x280x200x180x10

c16
Usedb + pad16

Useda + pad16
Used

59

Coalescing

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x500x480x400x380x300x280x200x180x10

c16
Usedb + pad16

Freea + pad16
Used

60

Coalescing

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x500x480x400x380x300x280x200x180x10

c16
Usedb + pad16

Freea + pad16
Free

61

Coalescing

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x500x480x400x380x300x280x200x180x10

c16
Usedb + pad16

Freea + pad16
Free

We have enough memory space, but
it is fragmented into free blocks
sized from earlier requests!

We’d like to be able to merge
adjacent free blocks back together.
How can we do this?

62

Coalescing

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x500x480x400x380x300x280x200x180x10

c16
Usedb + pad16

Freea + pad16
Free

Hey, look! I have a free
neighbor. Let’s be

friends!

63

Coalescing

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x500x480x400x380x300x280x200x180x10

c16
Used

40
Free

Hey, look! I have a free
neighbor. Let’s be

friends!

64

Coalescing

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

The process of combining adjacent
free blocks is called coalescing.

For your explicit heap allocator only
(not required for implicit), you
should coalesce if possible when a
block is freed. You only need to
coalesce the most immediate right
neighbor.

0x500x480x400x380x300x280x200x180x10

c16
Used

40
Free

65

Practice 1: Explicit (coalesce)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free?

free(b);

0x580x500x480x400x380x300x280x200x180x10

A16
Used

16
FreeB24

Used

66

Practice 1: Explicit (coalesce)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free?

free(b);

0x580x500x480x400x380x300x280x200x180x10

A16
Used

16
FreeB24

Used

0x580x500x480x400x380x300x280x200x180x10

A16
Used

48
Free

67

Revisiting Our Goals

Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse? Yes! We can use

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available? Yes! We

can coalesce on free().
3. Can we avoid always copying/moving data during realloc?

68

Revisiting Our Goals

Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse? Yes! We can use

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available? Yes! We

can coalesce on free().
3. Can we avoid always copying/moving data during realloc?

69

Lecture Plan

• Method 1: Implicit Free List Allocator

• Method 2: Explicit Free List Allocator
• Explicit Allocator
• Coalescing
• In-place realloc

70

Realloc

• For the implicit free list allocator, we didn’t worry too much about realloc. We
always moved data when they requested a different amount of space.

• Note: realloc can grow or shrink the data size.

• But sometimes we may be able to keep the data in the same place. How?
• Case 1: size is growing, but we added padding to the block and can use that
• Case 2: size is shrinking, so we can use the existing block
• Case 3: size is growing, and current block isn’t big enough, but adjacent blocks are free.

71

Realloc: Growing In Place

void *a = malloc(42);
...
void *b = realloc(a, 48);

0x580x500x480x400x380x300x280x200x180x10

16
Freea + pad48

Used

a’s earlier request was too small, so
we added padding. Now they are
requesting a larger size we can
satisfy with that padding! So realloc
can return the same address.

72

Realloc: Growing In Place

void *a = malloc(42);
...
void *b = realloc(a, 16);

0x580x500x480x400x380x300x280x200x180x10

16
Freea + pad48

Used

If a realloc is requesting to shrink,
we can still use the same starting
address.

If we can, we should try to recycle
the now-freed memory into another
freed block.

73

Realloc: Growing In Place

void *a = malloc(42);
...
void *b = realloc(a, 16);

0x580x500x480x400x380x300x280x200x180x10

16
Freea24

Freea16
Used

If a realloc is requesting to shrink,
we can still use the same starting
address.

If we can, we should try to recycle
the now-freed memory into another
freed block.

74

Realloc: Growing In Place

void *a = malloc(42);
...
void *b = realloc(a, 72);

0x580x500x480x400x380x300x280x200x180x10

16
Freea + pad48

Used

Even with the padding, we don’t
have enough space to satisfy the
larger size. But we have an adjacent
neighbor that is free – let’s team up!

75

Realloc: Growing In Place

void *a = malloc(42);
...
void *b = realloc(a, 72);

0x580x500x480x400x380x300x280x200x180x10

a72
Used

Even with the padding, we don’t
have enough space to satisfy the
larger size. But we have an adjacent
neighbor that is free – let’s team up!

Now we can still return the same
address.

76

Realloc: Growing In Place

void *a = malloc(8);
...
void *b = realloc(a, 72);

0x580x500x480x400x380x300x280x200x180x10

24
Free

16
Freea + pad16

Used

For your project (explicit only), you
should combine with your right
neighbors as much as possible until
we get enough space, or until we
know we cannot get enough space.

77

Realloc: Growing In Place

void *a = malloc(8);
...
void *b = realloc(a, 72);

0x580x500x480x400x380x300x280x200x180x10

24
Freea40

Used

For your project (explicit only), you
should combine with your right
neighbors as much as possible until
we get enough space, or until we
know we cannot get enough space.

78

Realloc: Growing In Place

void *a = malloc(8);
...
void *b = realloc(a, 72);

0x580x500x480x400x380x300x280x200x180x10

a72
Used

For your project (explicit only), you
should combine with your right
neighbors as much as possible until
we get enough space, or until we
know we cannot get enough space.

79

Realloc

• For the implicit free list allocator, we didn’t worry too much about realloc. We
always moved data when they requested a different amount of space.

• Note: realloc can grow or shrink the data size.

• But sometimes we may be able to keep the data in the same place. How?
• Case 1: size is growing, but we added padding to the block and can use that
• Case 2: size is shrinking, so we can use the existing block
• Case 3: size is growing, and current block isn’t big enough, but adjacent blocks are free.

• If you can’t do an in-place realloc, then you should move the data elsewhere.

80

Practice 1: Explicit (realloc)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 24);

0x600x580x500x480x400x380x300x280x200x180x10

B16
Used

32
FreeA16

Used

81

Practice 1: Explicit (realloc)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 24);

0x600x580x500x480x400x380x300x280x200x180x10

B16
Used

32
FreeA16

Used

0x600x580x500x480x400x380x300x280x200x180x10

B16
Used

24
FreeA24

Used

82

Practice 2: Explicit (realloc)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 56);

0x600x580x500x480x400x380x300x280x200x180x10

B16
Used

32
FreeA16

Used

83

Practice 2: Explicit (realloc)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 56);
0x600x580x500x480x400x380x300x280x200x180x10

B16
UsedA56

Used

0x600x580x500x480x400x380x300x280x200x180x10

B16
Used

32
FreeA16

Used

84

Practice 3: Explicit (realloc)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 48);

0x600x580x500x480x400x380x300x280x200x180x10

B16
Used

32
FreeA16

Used

85

Practice 3: Explicit (realloc)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 48);
0x600x580x500x480x400x380x300x280x200x180x10

B16
UsedA56

Used

0x600x580x500x480x400x380x300x280x200x180x10

B16
Used

32
FreeA16

Used

86

Practice 3: Explicit (realloc)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 48);
0x600x580x500x480x400x380x300x280x200x180x10

B16
UsedA56

Used

0x600x580x500x480x400x380x300x280x200x180x10

B16
Used

32
FreeA16

Used

For the explicit allocator, note that
we can’t have payload less than 16
bytes, so here the only option for
the leftover 8 bytes is to use it as
padding for the existing block.

87

Final Assignment: Explicit Allocator

• Must have headers that track block information like in implicit (size, status in-
use or free) – you can copy from your implicit version

• Must have an explicit free list managed as a doubly-linked list, using the first
16 bytes of each free block’s payload for next/prev pointers.

• Must have a malloc implementation that searches the explicit list of free
blocks.

• Must coalesce a free block in free() whenever possible with its immediate right
neighbor. (only required for explicit)

• Must do in-place realloc when possible (only required for explicit). Even if an
in-place realloc is not possible, you should still absorb adjacent right free
blocks as much as possible until you either can realloc in place or can no longer
absorb and must realloc elsewhere.

88

Final Project Tips

Read B&O textbook.
• Offers some starting tips for implementing your heap allocators.
• Make sure to cite any design ideas you discover.
Honor Code/collaboration
• All non-textbook code is off-limits.
• Please do not discuss discuss code-level specifics with others.
• Your code should be designed, written, and debugged by you

independently.
Helper Hours
• We will provide good debugging techniques and strategies!
• Come and discuss design tradeoffs!

89

Heap metadata

Going beyond: Explicit list w/size buckets

• Explicit lists are much faster than implicit lists.
• However, a first-fit placement policy is still linear in total # of free blocks.
• What about an explicit free list sorted by size (e.g., as a tree)?
• What about several explicit free lists bucketed by size? (below)

small
medium

large
jumbo

Heap
memory

Read B&O Section 9.9.14!

90

In the wild: glibc allocator

• https://sourceware.org/glibc/wiki/MallocInternals

Footer/Boundary tag (see textbook)

