Lecture 18: Sockets Programming

Slides by Adam Keppler and Daniel Rebelsky, modeled in part off of slides from Nick Troccoli and Jerry Cain, and
content in part from Al and Beej’s Guide to Network Programming Using Internet Sockets

Google Forms

IntelliCopilot Survey:
https://forms.gle/vcyecuCTkPErHKkL39

Attendance:

https://forms.gle/zg4kjyzfEsfpzp519

Quick Overview

data unit layers

lication
Data I App o
Network Process to Application

Y Presentation
Data Data Representation

NG and Encryption
Yy

Host Layers
AL

Dat Session
1L Interhost Communication
A
Y Transport
Segments End-to-End Connections
AL and Reliability

] a Network
Packets Path Determination and

Logical Addressing (IP)

Y Data Link
Frames Physical Addressing
A (MAC and LLC)

Physical
Bits Media, Signal and
| Binary Transmission

Media Layers
AL

CultureDuQ, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via
Wikimedia Commons

TCP and UDP

 Both run on top of IP

 Both have a port number (16 bits)

— Official port usage is assigned by IANA

— Ports under 1024 are typically reserved (i.e., on the myth
machines, you need special permission to bind to them)

— Common ports include: 22 (SSH), 53 (DNS), 80 (HTTP), 443
(HTTPS)—see also https://www.iana.org/assignments/service-
names-port-numbers/service-names-port-numbers.xhtml or
/etc/services

TCP and UDP (continued)

 So, to connect to a remote server, we need both an IP address and
a port number

— Quick aside on IP addresses: IPv4 addresses are only 32 bits long, which
only makes for about 4 billion total IPs, which we’ve fully allocated; IPv6
addresses, by contrast, are 128 bits long
* |Pv4 addresses are often written in dotted quad formatof 192.168.1.1

 |Pv6 addresses are a little more complicated, but can be written as
2607:£6d0:0:0:0:0:0:0 (which can also be writtenas 2607 :£6d0: :)

 Either way, IP addresses can be a little cumbersome to write, so we use DNS
(domain name service) to map from domain names (e.g.,
web.stanford.edu)to IP addresses (e.g., 171.67.215.200)

TCP and UDP (continued)

 Quick aside on client server model: for the rest of the lecture, we’ll be
implicitly referencing this model—the rough idea is that we have a server
(imagine, e.g., Google) which serves data to one or more clients (imagine,
e.g., people Googling)

* TCP and UDP both allow us to send arbitrary bytes over the network

* [tisimportant that we send bytes in a way that both the client and server
will understand

— A protocol specifies how the bytes will be interpreted

— |P and TCP/UDP level details specify that the network byte order
should be big-endian (myth machines are little-endian)

TCP and UDP (continued)

TCP provides a “reliable bytestream” abstraction (except in

exceptional cases, the data will arrive correctly on the other side)

— Useful for non-time critical applications (e.g., web servers (HTTP prior to
HTTP/ 3 runs over TCP), ssh, etc...)

UDP provides an unreliable datagram abstraction (it’s effectively

just a userspace wrapper around IP, hence “User Datagram
Protocol”)

— Useful for time critical applications, or applications that can deal with some
data loss (e.g., video conferencing, online gaming, etc...)

SOCKET PROGRAMMING BASICS

socket ()

int socket (int domain, 1int type, 1nt protocol);

The domain specifies what type of socket we want—for this lecture, it will
be one of PE INET or P INET6

The type for this lecture will always be SOCK STREAM (meaning TCP, it
could also be SOCK_DGRAM for UDP)

The protocol is the protocol number (e.g., one of IPPROTO TCP or
IPPROTO_UDP, but we can use O since SOCK_STREAM means TCP, and
it will figure it out)

Returns a “file descriptor” on success and <0 on error (setting errno as
appropriate)

Detour: file descriptors

* You may encounter the phrase “everything is a file” when working in a
Unix/Linux context

* File descriptors are one incarnation of this—a FILE * is a convenient
wrapper around a file descriptor

— Afile descriptor is an integer that the OS hands to our process that we
can use syscalls on to read/write data (e.g., read, write) or
otherwise modify (e.g., fcntl)

— WEe’ll have the following file descriptors always by default: 0 (stdin),
1 (stdout), 2 (stderr)

* Note that we use file descriptors for both real files and for sockets (among
other things)

Detour: error handling

Many system calls (and wrapping C functions) can fail

In C, we’ll often see failure represented as a negative value, with errno (see man errno) set
appropriately (perror will print the corresponding error message)

Basically every function today can fail in this manner

In 107, we’ve mostly ignored this up until this point, but there are a few ways to handle this in C

Explicitly check every return value that might fail, write out the failure condition
Wrap functions in safe forms (e.g., the textbook creates Write fromwrite)

Use macros to help simplify

gotos are often used for clean up, but given their potential for misuse, we won’t cover them to
closely here

On the (optional) sockets assignment, we’ll provide a few options for error handling (which you
should be doing)

Detour: man pages

 While, in general, we like to tell you to read the manpage for
the functions, the man pages for sockets programming tend to

be comparatively more difficult to actually find and
understand

* | would recommend using the fake man pages from

https://beej.us/guide/bgnet/ and then consulting the real
man pages later, as appropriate (and if necessary)

“bind”s a socket to a particular address/port combo

int bind(int sockfd, struct sockaddr
*my addr, 1int addrlen);

Note, we tend to only use bind as a server (as a client, we
tend not to actually care what our port is)

struct sockaddr

e struct sockaddr isthe generic type for a socket address, but we’ll use
struct sockaddr inorstruct sockaddr iné6 andcastto a
struct sockaddr

struct sockaddr {

unsigned short sa family; // address family, AF xxx
char sa datall4]l; // 14 bytes of protocol address

i
struct sockaddr in {
short int sin family; // Address family, AF INET
unsigned short int sin port; // Port number
struct in addr sin addr; // Internet address
unsigned char sin zerol[8]; // Same size as struct sockaddr
}s
struct in addr {
uint32 t s _addr; // that's a

W

2-bit int (4 bytes)
b7
struct sockaddr in6 {
u_intl6 t sin6 family; // address family, AF INET6
u_intlé _t siné port; // port number, Network Byte Order
u_int32 t sin6é flowinfo; // IPv6 flow information
struct In6 addr sin6_addr; // IPv6 address
u int32 t sin6 scope id; // Scope ID
b7
struct in6_addr {
unsigned char s6_addr([16]; // IPv6 address

i

inet pton(),inet addr(),and

inet aton()

aton and addr only work for IPv4 addresses

int inet aton(const char *cp, struct
in addr *1inp);

in addr t 1inet addr (const char *cp);
cp is a string of a dotted quad IP address

int inet pton(int af, const char *src,
volid *dst);

getaddrinfo ()

int getaddrinfo (const char *node, // e.qg. "www.example.com" or IP
const char *service, // e.g. "http" or port number
const struct addrinfo *hints,
struct addrinfo **res);

. Gives us a linked list of struct addrinfos

struct addrinfo {
int ai flags; // AI PASSIVE, AI CANONNAME, etc.
int ai family; // AF INET, AF INET6, AF UNSPEC
int ai socktype; // SOCK STREAM, SOCK DGRAM
int ai protocol; // use 0 for "any"
size t ai _addrlen; // size of ai addr in bytes
struct sockaddr *ai addr; // struct sockaddr in or 1iné6
char *ai canonname; // full canonical hostname
struct addrinfo *ai next; // linked list, next node

int bind(int sockfd, struct sockaddr
*my addr, int addrlen);

Binds our socket to the address and port specified by
my addr
We will often use INADDR ANY to indicate that we want to

accept any IPv4 connection (slightly different for IPv6, see
“Jumping from IPv4 to IPv6” on Beej’s guide)

listen ()

* 1nt listen(int sockfd, 1nt backloqg);

e Starts our socket “listening” (what a server would do)
* backlogis how many outstanding requests can be queued
until we accept them

accept()

* 1nt accept(int sockfd, struct sockaddr *addr, socklen t
*addrlen) ;
* Returns a file descriptor for a remote connection

* We'lluseastruct sockaddr storage (guaranteed large enough to store any
address) for the address

struct sockaddr storage {
sa family t ss family; // address family
// all this 1is padding, implementation specific, ignore it:
char ss padl[SS PADISIZE];
into4 t ss align;
char ss pad2[SS PAD2SIZE];

connect ()

* Int connect(int sockfd, struct sockaddr
*serv addr, 1nt addrlen);

e Useful for the client, connects our local socket to the remote
address

send ()

int send(int sockfd, const void *msg, 1nt
len, int flags);

Returns how many bytes were actually sent (may be less than
we requested, which we’ll have to handle)

flags can be 0 by default

Note that while we could use write, we tend to use send

instead since it lets us to more specific socket things (see the
man page for f1ags)

int recv(int sockfd, void *buf, 1nt len,
int flags);

Returns how many bytes were received (no more than 1en)
Returns <0 on error, 0 when remote side has closed

close (sockfd) ;

Prevents any further reads or writes to the socket, the remote
peer will receive an error on trying to read or write

Also, marks the fd as usable again (no longer counts toward
our per-process limit)

shutdown ()

* Int shutdown(int sockfd, int how);

* Note that you will still have to c1ose eventually

0 Further receives are disallowed
1 Further sends are disallowed
2 Further sends and receives are

disallowed (like close())

CODE DEMO

Handling multiple clients

* We may not get to this in lecture, but you should investigate
using select () and/orpoll () (or epoll if you want to

get really fancy) for the assignment

