
1
This document is copyright (C) Stanford Computer Science and Jerry Cain, licensed under Creative Commons Attribution 2.5 License.  All rights reserved.

Based on slides created by Cynthia Lee, Nick Troccoli, Chris Gregg, Lisa Yan and others.

CS107, Lecture 2
Unix, C, Bits and Bytes, Integer Representations

Reading: Bryant & O’Hallaron, Ch. 2.2-2.3 (skim)
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5346005

https://edstem.org/us/courses/65949/discussion/5346005


2

CS107 Topic 1
How can a computer represent integer numbers?

Why is answering this question important?
• Helps us understand the limitations of computer arithmetic (today and Friday)
• Shows us how to more efficiently perform arithmetic (Friday and Monday)
• Shows us how we can encode data more compactly and efficiently (Friday)

assign1: implement 3 programs that manipulate binary representations to (1) work 
around the limitations of arithmetic with addition, (2) simulate an evolving colony of 
cells, and (3) print Unicode text to the terminal.



3

Learning Goals
• Understand the binary and hexadecimal number systems and how to convert 

between binary, hexadecimal, and decimal
• Understand how positive and negative numbers are represented in binary
• Learn about overflow, why it occurs, and how overflow can impact program 

execution



4

Demo: Unexpected 
Behavior

cp -r /afs/ir/class/cs107/lecture-code/lect02 .



5

Bits



6

Bits
Computers are built around the idea of two states: "on" and "off".  Transistors 
implement this in hardware, and bits represent this in software.



7

One Bit At A Time
• We can combine bits, as with base-10 numbers, to represent more data.  

     8 bits = 1 byte.
• Computer memory is just a large array of bytes. It is byte-addressable. 

meaning you can’t address a bit in isolation, only a full byte.
• Computers still fundamentally operate using bits. We have just gotten more 

creative about how to represent data.
• Images
• Audio
• Video
• Text
• And more…



8

Base 10

5 9 3 4
digits 0 – 9

(or rather, 0 through base – 1)



9

Base 10

5 9 3 4
onestens

hundreds

thousands

= 5 * 1000 + 9 * 100 + 3 * 10 + 4 * 1



10

Base 10

5 9 3 4
100101102103



11

Base 10

5 9 3 4
012310X:



12

Base 2

1 0 1 1
01232X:

digits 0 – 1

(or rather, 0 through base – 1)



13

Base 2

1 0 1 1
20212223



14

Base 2

1 0 1 1
onestwosfourseights

= 1 * 8 + 0 * 4 + 1 * 2 + 1 * 1 = 1110

Most significant bit (MSB) Least significant bit (LSB)



15

Base 10 to Base 2

_  _  _  _

Question: What is 6 in base 2?
• Strategy:

• What is the largest power of 2 ≤ 6? 
• Now, what is the largest power of 2 ≤ 6 – 22?  
• 6 – 22 – 21 = 0!

20212223

10 1 0
= 0*8 + 1*4 + 1*2 + 0*1 = 6

22=4
21=2



16

Practice: Base 2 to Base 10
What is the base-2 value of 1010 in base-10?
a) 20                
b) 101               
c) 10                 
d) 5                   
e) Other



17

Practice: Base 10 to Base 2
What is the base-10 value of 14 in base 2?
a) 1111                
b) 1110                 
c) 1010                 
d) Other



18

Byte Values
What are the minimum and maximum base-10 values that a single byte (8 bits) 
can represent?  

minimum = 0 maximum = ?

11111111
2x:            7   6    5    4    3    2   1    0 

• Strategy 1: 1 * 27 + 1 * 26 + 1 * 25 + 1 * 24 + 1 * 23+ 1 * 22 + 1 * 21 + 1 * 20 = 255
• Strategy 2: 28 – 1 = 255

255



19

Multiplying by Base

1450 x 10 = 14500
11002 x 102 = 11000

Key Idea: appending a 0 to the end effectively multiplies by the base!



20

Dividing by Base

1450 / 10 = 145
11002 / 102 = 110

Key Idea: chomping off a 0 from the end divides by the base!



21

Question Break



22

Hexadecimal
When working with 32- or 64-bit figures, numbers can get pretty large.
• Instead, we’ll often encode numbers in base-16, or hexadecimal, instead.

0110 1010 0011
0-150-150-15



23

Hexadecimal
When working with bits, oftentimes we have large numbers with 32 or 64 bits.
• Instead, we’ll generally encode numbers in base-16, or hexadecimal, instead.

0-150-150-15

Each quartet of bits can be rewritten as a single digit in base-16!



24

Hexadecimal
Hexadecimal is base-16, so we need digits for 1-15.  How?

0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f 
10   11    12   13    14   15



25

Hexadecimal
• If it's not clear from context, we can explicitly identify numbers as hexadecimal 

by prefixing them with 0x and identify numbers as binary using 0b instead.
• e.g., 0xf5 is 0b11110101

0x f  5
1111 0101



26

Hexadecimal

Hex digit 0 1 2 3 4 5 6 7
Decimal value 0 1 2 3 4 5 6 7
Binary value 0000 0001 0010 0011 0100 0101 0110 0111

Hex digit 8 9 A B C D E F
Decimal value 8 9 10 11 12 13 14 15
Binary value 1000 1001 1010 1011 1100 1101 1110 1111



27

Practice: Hexadecimal to Binary
What is 0x173A in binary?

Hexadecimal 1 7 3 A
Binary 0001 0111 0011 1010



28

Practice: Hexadecimal to Binary
What is 0b1111001010 in hexadecimal? (Hint: start from the right)

Binary 11 1100 1010
Hexadecimal 3 C A



29

Hexadecimal: Quirky but concise
• Let’s take a single byte (8 bits):

0b10100101

165

0xa5

base-10: Human-readable,
but cannot easily interpret on/off bits

base-2: Computers love this,
but most humans do not love this.

base-16: Easy to convert to base-2,
More easily digested format
(fun fact: a half-byte is called a nibble.. tee hee hee)



30

Number Representations
• Unsigned Integers: positive integers and 0. (e.g., 0, 1, 2, … 99999…)
• Signed Integers: negative, positive integers and 0. (e.g., …-2, -1, 0, 1,… 9999…)

• Floating Point Numbers: real numbers. (e,g. 0.1, -12.2, 1.5x1012)
Look up IEEE floating point if you’re interested!



31

Number Representations

C Declaration Size (Bytes)

int 4

double 8

float 4

char 1

char * 8

short 2

long 8



32

Back When Jerry Learned C

C Declaration Size (Bytes)

int 4

double 8

float 4

char 1

char * 4

short 2

long 4



33

Transitioning To Larger Data Types

• Early 2000s: most computers were 32-bit. This means that pointers were 4 
bytes (32 bits).  
• 32-bit pointers store a memory address from 0 to 232 - 1, equaling 232 bytes of 

addressable memory.  This equals 4 gigabytes, meaning that 32-bit computers 
could address at most 4GB of memory!
• Most computers now are to 64-bit.  Many data types got more memory, and 

pointers in programs are now 64 bits.
• 64-bit pointers can distinguish between addresses 0 to 264 - 1, equaling 264 

bytes of addressable memory.  This equals 16 exabytes, meaning that 64-bit 
computers could address up to 16 * 1024 * 1024 * 1024 GB of memory!



34

Unsigned Integers
• An unsigned integer is either 0 or some positive integer (no negatives).
• We have already discussed the conversion between decimal and binary.  

Examples:
    0b0001 = 1

    0b0101 = 5

    0b1011 = 11

    0b1111 = 15

• The range of an unsigned number is 0 → 2w - 1, where w is the number of bits. 
e.g., a 32-bit integer can represent 0 to 232 – 1 (4,294,967,295).



35

Unsigned Integers



36

Question Break



37

Signed Integers
A signed integer is a negative integer, 0, or a positive integer.
• Problem: How can we represent negative and positive numbers in binary?

Idea: let the most significant bit 
represent sign and let the others 

represent magnitude.



38

Sign Magnitude Representation: 4-bit

0110
positive 6

1011
negative 3



39

Sign Magnitude Representation: 4-bit

0000
positive 0

1000
negative 0

🤯



40

Sign Magnitude Representation: 4-bit

We’re only representing 15 different values via 16 different patterns.
#sadness

1 000 = -0
1 001 = -1
1 010 = -2
1 011 = -3
1 100 = -4
1 101 = -5
1 110 = -6
1 111 = -7

0 000 = 0
0 001 = 1
0 010 = 2
0 011 = 3
0 100 = 4
0 101 = 5
0 110 = 6
0 111 = 7



41

Sign Magnitude Representation
• Pro: easy to represent, and easy to convert to and from decimal.
• Con: +/-0 is 🤯
• Con: we lose a bit that could be used to represent more numbers
• Con: arithmetic is tricky: we need to find the sign, perhaps subtract (borrow 

and carry, etc.), maybe change the sign, maybe not. This complicates how 
hardware implements something as fundamental as addition. This is the 
disadvantage we really care about.

Can we do better?



42

A Better Idea
Ideally, binary addition should work whether the numbers are positive or negative.

0101
????
0000
+



43

A Better Idea
Ideally, binary addition should work whether the numbers are positive or negative.

0101
1011
0000
+



44

A Better Idea
Ideally, binary addition should work whether the numbers are positive or negative.

0011
????
0000
+



45

A Better Idea
Ideally, binary addition should work whether the numbers are positive or negative.

0011
1101
0000
+



46

A Better Idea
Ideally, binary addition should work whether the numbers are positive or negative.

0000
????
0000
+



47

A Better Idea
Ideally, binary addition should work whether the numbers are positive or negative.

0000
0000
0000
+



48

There Seems To Be A Pattern

0101
1011
0000
+

0011
1101
0000
+

0000
0000
0000

+

The negated number is the original number bitwise inverted, plus one more!



49

There Seems To Be A Pattern

A binary number plus its inverse is all 1s. Add 1 to this to carry over all 1s and get 0!

0101
1010
1111
+

1111
0001
0000

+



50

Two’s Complement
• With two’s complement, we represent a 

positive number as itself, and its 
negative counterpart as its two’s 
complement.
• The two’s complement of a number is 

the binary digits inverted, plus 1.
• This works to convert from positive to 

negative, and back from negative to 
positive!



51

History: Two’s complement
• Binary representation was first proposed by John von 

Neumann in First Draft of a Report on the EDVAC 
(1945).

• That same year, he invented the merge sort algorithm

• Many early computers used
either sign-magnitude or
one’s complement.

• The System/360, developed by IBM in 1964, was 
widely popular—it had 1024KB memory!!!—and 
established two’s complement as the dominant 
binary representation of integers.

EDVAC (1945)

System/360 (1964)

8-bit one’s complement

+7 0b0000 0111
-7 0b1111 1000



52

Two’s Complement
• Con: more difficult to represent, and 

difficult to convert to and from decimal, 
between positive and negative.
• Pro: only 1 representation for 0. 😍
• Pro: the most significant bit still indicates 

the sign of a number.
• Pro: addition works for any combination 

of positive and negative, and electrical 
engineers love this.



53

Two’s Complement
Adding two numbers is just that: adding!  And there is no special case for 
negative numbers.  e.g., what is 2 + -5?

0010
1011
1101
+

2

-5

-3



54

Two’s Complement
Subtracting one number from a second is the same as adding the two’s 
complement of that number from the second, e.g., 4 - 5 is just 4 + (-5).

0100
0101-

4

5
0100
1011
1111
+

4

-5

-1


