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CS107 Lecture 3
Bits and Bytes, Integer Representations, Overflow

Reading: Bryant & O’Hallaron, Ch. 2.2-2.3 (skim)
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5359785

https://edstem.org/us/courses/65949/discussion/5359785
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Overflow
If you exceed the maximum value of your bit representation, you wrap around 
or overflow back to the smallest bit representation.

0b1111 + 0b1 =  0b0000
0b1111 + 0b10 = 0b0001

If you go below the minimum value of your bit representation, you wrap around 
or overflow (or rather, underflow) back to the largest bit representation.

0b0000 - 0b1 =  0b1111
0b0000 - 0b10 = 0b1110
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Min and Max Integer Values
Type Size Minimum Maximum

char 1 -128 (SCHAR_MIN) 127 (SCHAR_MAX)

unsigned char 1 0 255 (UCHAR_MAX)

short 2 -32768 (SHRT_MIN) 32767 (SHRT_MAX)

unsigned short 2 0 65535 (USHRT_MAX)

int 4 -2147483648 (INT_MIN) 2147483647 (INT_MAX)

unsigned int 4 0 4294967295 (UINT_MAX)

long 8 -9223372036854775808 (LONG_MIN) 9223372036854775807 (LONG_MAX)

unsigned long 8 0 18446744073709551615 (ULONG_MAX)
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Overflow
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Overflow

At which points can overflow occur for 
signed and unsigned int? (assume binary values 
shown are all 32 bits)

A. Signed and unsigned can both overflow 
at points X and Y

B. Signed can overflow only at X, unsigned 
only at Y

C. Signed can overflow only at Y, unsigned 
only at X

D. Signed can overflow at X and Y, 
unsigned only at X

E. Other

X

Y
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……

Key Idea: Overflow means discontinuity
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Unsigned Integers
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Signed Numbers
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Overflow In Practice: PSY

YouTube: "We never thought a video would be watched in numbers 
greater than a 32-bit integer (up to 2,147,483,647 views), but that was 
before we met PSY. 'Gangnam Style' has been viewed so many times we 
had to upgrade to a 64-bit integer (9,223,372,036,854,775,808)!" [link] 

"We saw this coming a couple months ago and updated our systems to 
prepare for it" [link]

https://www.bbc.com/news/world-asia-30288542
https://www.theverge.com/2014/12/3/7325819/gangnam-style-broke-youtube-view-counter
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Overflow In Practice: Timestamps
Many systems store timestamps as the number of seconds since Jan. 1, 1970, in 
a signed 32-bit integer.
• Problem: the latest timestamp that can be represented this way is 3:14:07 UTC 

on January 13, 2038!
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Overflow in Practice:
• Pacman Level 256
• Make sure to reboot Boeing Dreamliners every 248 days
• Comair/Delta airline had to cancel thousands of flights days before Christmas
• Reported vulnerability CVE-2019-3857 in libssh2 may allow a hacker to 

remotely execute code
• Donkey Kong Kill Screen

https://pacman.fandom.com/wiki/Map_256_Glitch
https://www.engadget.com/2015/05/01/boeing-787-dreamliner-software-bug/
https://arstechnica.com/uncategorized/2004/12/4490-2/
https://nvd.nist.gov/vuln/detail/CVE-2019-3857
https://errors.fandom.com/wiki/DK_kill_screen
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Recap
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Signed Integers
• Overflow

Monday: How can we manipulate individual bits and bytes?

Lecture 3 takeaway: computers 
represent everything in binary.  
We must determine how to 
represent our numbers (e.g., 
base-10 numbers) in a binary 
format so a computer can 
manipulate them. Finite 
representations come with 
limitations.
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Extra Practice
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Practice: Two’s Complement
Fill in the below table:

char x = ____; char y = -x;
decimal binary decimal binary

1. 0b1111 1100

2. 0b0001 1000

3. 0b0010 0100

4. 0b1101 1111

It’s easier to compute 
base-10 for positive 
numbers, so use two’s 
complement first if 
negative.
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Practice: Two’s Complement
Fill in the below table:

char x = ____; char y = -x;
decimal binary decimal binary

1. 0b1111 1100

2. 0b0001 1000

3. 0b0010 0100

4. 0b1101 1111

4 0b0000 0100-4

It’s easier to compute 
base-10 for positive 
numbers, so use two’s 
complement first if 
negative.
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Practice: Two’s Complement
Fill in the below table:

char x = ____; char y = -x;
decimal binary decimal binary

1. 0b1111 1100

2. 0b0001 1000

3. 0b0010 0100

4. 0b1101 1111

4

-24

-36

33

0b0000 0100

0b1110 1000

0b1101 1100

0b0010 0001

-4

24

36

-33

It’s easier to compute 
base-10 for positive 
numbers, so use two’s 
complement first if 
negative.
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Signed vs. Unsigned Integers
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Underspecified question
What is the following base-2 number in 
base-10?
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0b1101
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Underspecified question
What is the following base-2 number in 
base-10?
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0b1101

You need to know the type to determine the 
number! (Note by default, numeric constants 
in C are signed ints)

If 4-bit signed:   -3
If 4-bit unsigned:  13
If >4-bit signed or unsigned: 13
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Overflow
• What is happening here? Assume 4-bit numbers.

0 1
2

8 79
10

15

13
14

11

12 4

5
6

3

0b1101
0b0100+



20

Overflow
• What is happening here? Assume 4-bit numbers.

0b1101
0b0100+ 0 1

2
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Signed

-3 + 4 = 1

No overflow

Unsigned

13 + 4 = 1

Overflow
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Limits and Comparisons
1. What is

the… Largest unsigned? Largest signed? Smallest signed?

char

int
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Limits and Comparisons
1. What is

the…

These are available as 
UCHAR_MAX, INT_MIN, 
INT_MAX, etc. in the 
<limits.h> header.

Largest unsigned? Largest signed? Smallest signed?

char

int

28 - 1 = 255 27 – 1 = 127 -27 = -128

232 - 1 =
  4294967296

231 - 1 =
  2147483647

-231 =
 -2147483648


