
1
This document is copyright (C) Stanford Computer Science and Jerry Cain, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Lisa Yan, Nick Troccoli, Chris Gregg, and others.

CS107 Lecture 3
Bits and Bytes, Integer Representations, Overflow

Reading: Bryant & O’Hallaron, Ch. 2.2-2.3 (skim)
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5359785

https://edstem.org/us/courses/65949/discussion/5359785

2

Overflow
If you exceed the maximum value of your bit representation, you wrap around
or overflow back to the smallest bit representation.

0b1111 + 0b1 = 0b0000
0b1111 + 0b10 = 0b0001

If you go below the minimum value of your bit representation, you wrap around
or overflow (or rather, underflow) back to the largest bit representation.

0b0000 - 0b1 = 0b1111
0b0000 - 0b10 = 0b1110

3

Min and Max Integer Values
Type Size Minimum Maximum

char 1 -128 (SCHAR_MIN) 127 (SCHAR_MAX)

unsigned char 1 0 255 (UCHAR_MAX)

short 2 -32768 (SHRT_MIN) 32767 (SHRT_MAX)

unsigned short 2 0 65535 (USHRT_MAX)

int 4 -2147483648 (INT_MIN) 2147483647 (INT_MAX)

unsigned int 4 0 4294967295 (UINT_MAX)

long 8 -9223372036854775808 (LONG_MIN) 9223372036854775807 (LONG_MAX)

unsigned long 8 0 18446744073709551615 (ULONG_MAX)

4

Overflow

000…000111…111

011…111100…000

000…001
000…010

000…011

111…110
111…101

111…100

100…001
100…010

011…110
011…101

+1

+1

+1

……

5

Overflow

At which points can overflow occur for
signed and unsigned int? (assume binary values
shown are all 32 bits)

A. Signed and unsigned can both overflow
at points X and Y

B. Signed can overflow only at X, unsigned
only at Y

C. Signed can overflow only at Y, unsigned
only at X

D. Signed can overflow at X and Y,
unsigned only at X

E. Other

X

Y

000…000111…111

011…111100…000

000…001
000…010

000…011

111…110
111…101

111…100

100…001
100…010

011…110
011…101

……

Key Idea: Overflow means discontinuity

6

Unsigned Integers

000…000111…111

011…111100…000

000…001
000…010

000…011

111…110
111…101

111…100

100…001
100…010

011…110
011…101

……

0≈+4billion

Discontinuity
means overflow

possible here

Increasing positive num
bers

M
or

e
in

cr
ea

si
ng

 p
os

iti
ve

 n
um

be
rs

7

Signed Numbers

000…000111…111

011…111100…000

000…001
000…010

000…011

111…110
111…101

111…100

100…001
100…010

011…110
011…101

……

0-1

Discontinuity
means overflow

possible here

Increasing positive num
bers

N
eg

at
iv

e
nu

m
be

rs
 b

ec
om

in
g

le
ss

 n
eg

at
iv

e
(i.

e.
 in

cr
ea

si
ng

)

≈+2billion≈-2billion

+1

8

Overflow In Practice: PSY

YouTube: "We never thought a video would be watched in numbers
greater than a 32-bit integer (up to 2,147,483,647 views), but that was
before we met PSY. 'Gangnam Style' has been viewed so many times we
had to upgrade to a 64-bit integer (9,223,372,036,854,775,808)!" [link]

"We saw this coming a couple months ago and updated our systems to
prepare for it" [link]

https://www.bbc.com/news/world-asia-30288542
https://www.theverge.com/2014/12/3/7325819/gangnam-style-broke-youtube-view-counter

9

Overflow In Practice: Timestamps
Many systems store timestamps as the number of seconds since Jan. 1, 1970, in
a signed 32-bit integer.
• Problem: the latest timestamp that can be represented this way is 3:14:07 UTC

on January 13, 2038!

10

Overflow in Practice:
• Pacman Level 256
• Make sure to reboot Boeing Dreamliners every 248 days
• Comair/Delta airline had to cancel thousands of flights days before Christmas
• Reported vulnerability CVE-2019-3857 in libssh2 may allow a hacker to

remotely execute code
• Donkey Kong Kill Screen

https://pacman.fandom.com/wiki/Map_256_Glitch
https://www.engadget.com/2015/05/01/boeing-787-dreamliner-software-bug/
https://arstechnica.com/uncategorized/2004/12/4490-2/
https://nvd.nist.gov/vuln/detail/CVE-2019-3857
https://errors.fandom.com/wiki/DK_kill_screen

11

Recap
• Bits and Bytes
• Hexadecimal
• Integer Representations
• Unsigned Integers
• Signed Integers
• Overflow

Monday: How can we manipulate individual bits and bytes?

Lecture 3 takeaway: computers
represent everything in binary.
We must determine how to
represent our numbers (e.g.,
base-10 numbers) in a binary
format so a computer can
manipulate them. Finite
representations come with
limitations.

12

Extra Practice

13

Practice: Two’s Complement
Fill in the below table:

char x = ____; char y = -x;
decimal binary decimal binary

1. 0b1111 1100

2. 0b0001 1000

3. 0b0010 0100

4. 0b1101 1111

It’s easier to compute
base-10 for positive
numbers, so use two’s
complement first if
negative.

14

Practice: Two’s Complement
Fill in the below table:

char x = ____; char y = -x;
decimal binary decimal binary

1. 0b1111 1100

2. 0b0001 1000

3. 0b0010 0100

4. 0b1101 1111

4 0b0000 0100-4

It’s easier to compute
base-10 for positive
numbers, so use two’s
complement first if
negative.

15

Practice: Two’s Complement
Fill in the below table:

char x = ____; char y = -x;
decimal binary decimal binary

1. 0b1111 1100

2. 0b0001 1000

3. 0b0010 0100

4. 0b1101 1111

4

-24

-36

33

0b0000 0100

0b1110 1000

0b1101 1100

0b0010 0001

-4

24

36

-33

It’s easier to compute
base-10 for positive
numbers, so use two’s
complement first if
negative.

16

Signed vs. Unsigned Integers

0 1
2

8 79
10

15

13
14

11

12 4

5
6

3

17

Underspecified question
What is the following base-2 number in
base-10?

0 1
2

8 79
10

15

13
14

11

12 4

5
6

3

0b1101

18

Underspecified question
What is the following base-2 number in
base-10?

0 1
2

8 79
10

15

13
14

11

12 4

5
6

3

0b1101

You need to know the type to determine the
number! (Note by default, numeric constants
in C are signed ints)

If 4-bit signed: -3
If 4-bit unsigned: 13
If >4-bit signed or unsigned: 13

19

Overflow
• What is happening here? Assume 4-bit numbers.

0 1
2

8 79
10

15

13
14

11

12 4

5
6

3

0b1101
0b0100+

20

Overflow
• What is happening here? Assume 4-bit numbers.

0b1101
0b0100+ 0 1

2

8 79
10

15

13
14

11

12 4

5
6

3

Signed

-3 + 4 = 1

No overflow

Unsigned

13 + 4 = 1

Overflow

21

Limits and Comparisons
1. What is

the… Largest unsigned? Largest signed? Smallest signed?

char

int

22

Limits and Comparisons
1. What is

the…

These are available as
UCHAR_MAX, INT_MIN,
INT_MAX, etc. in the
<limits.h> header.

Largest unsigned? Largest signed? Smallest signed?

char

int

28 - 1 = 255 27 – 1 = 127 -27 = -128

232 - 1 =
 4294967296

231 - 1 =
 2147483647

-231 =
 -2147483648

