
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Nick Troccoli, Lisa Yan, Jerry Cain and others.

CS107 Lecture 4
Bits and Bytes; Bitwise Operators

Reading: Bryant & O’Hallaron, Ch. 2.1
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5374105

https://edstem.org/us/courses/65949/discussion/5374105

2

Casting
What happens at the byte level when we cast between variable types? The
bytes remain the same! This means they may be interpreted differently
depending on the type.

 int v = -12345;
 unsigned int uv = v;
 printf("v = %d, uv = %u\n", v, uv);

This prints out: "v = -12345, uv = 4294954951". Why?
The bit representation for -12345 is
0b11111111111111111100111111000111.
If we treat this as an unsigned, inherently positive number, it’s huge!

3

Casting

4

Casting
You can cast something to another type by putting that type in parentheses in
front of the value:

 int v = -12345;
 ...(unsigned int)v...

You can also use the U suffix after a number literal to treat it as unsigned:

 -12345U

5

Comparisons Between Different Types
Be careful when comparing signed and unsigned integers. C will implicitly cast
the signed argument to unsigned and then evaluate the expression assuming
both numbers are unsigned and nonnegative.

Expression Comparison
Type? Evaluates To? Mathematically correct?

0 == 0U

6

Comparisons Between Different Types
Be careful when comparing signed and unsigned integers. C will implicitly cast
the signed argument to unsigned and then evaluate the expression assuming
both numbers are unsigned and nonnegative.

Expression Comparison
Type? Evaluates To? Mathematically correct?

0 == 0U Unsigned true yes

7

Comparisons Between Different Types
Be careful when comparing signed and unsigned integers. C will implicitly cast
the signed argument to unsigned and then evaluate the expression assuming
both numbers are unsigned and nonnegative.

Expression Comparison
Type? Evaluates To? Mathematically correct?

0 == 0U Unsigned true yes
-1 < 0

8

Comparisons Between Different Types
Be careful when comparing signed and unsigned integers. C will implicitly cast
the signed argument to unsigned and then evaluate the expression assuming
both numbers are unsigned and nonnegative.

Expression Comparison
Type? Evaluates To? Mathematically correct?

0 == 0U Unsigned true yes
-1 < 0 Signed true yes

9

Comparisons Between Different Types
Be careful when comparing signed and unsigned integers. C will implicitly cast
the signed argument to unsigned and then evaluate the expression assuming
both numbers are unsigned and nonnegative.

Expression Comparison
Type? Evaluates To? Mathematically correct?

0 == 0U Unsigned true yes
-1 < 0 Signed true yes
-1 < 0U

10

Comparisons Between Different Types
Be careful when comparing signed and unsigned integers. C will implicitly cast
the signed argument to unsigned and then evaluate the expression assuming
both numbers are unsigned and nonnegative.

Expression Comparison
Type? Evaluates To? Mathematically correct?

0 == 0U Unsigned true yes
-1 < 0 Signed true yes
-1 < 0U Unsigned false No!

11

Comparisons Between Different Types
Be careful when comparing signed and unsigned integers. C will implicitly cast
the signed argument to unsigned and then evaluate the expression assuming
both numbers are unsigned and nonnegative.

Expression Comparison
Type? Evaluates To? Mathematically correct?

0 == 0U Unsigned true yes
-1 < 0 Signed true yes
-1 < 0U Unsigned false No!
2147483647 > -2147483648

12

Comparisons Between Different Types
Be careful when comparing signed and unsigned integers. C will implicitly cast
the signed argument to unsigned and then evaluate the expression assuming
both numbers are unsigned and nonnegative.

Expression Comparison
Type? Evaluates To? Mathematically correct?

0 == 0U Unsigned true yes
-1 < 0 Signed true yes
-1 < 0U Unsigned false No!
2147483647 > -2147483648 Signed true yes

13

Comparisons Between Different Types
Be careful when comparing signed and unsigned integers. C will implicitly cast
the signed argument to unsigned and then evaluate the expression assuming
both numbers are unsigned and nonnegative.

Expression Comparison
Type? Evaluates To? Mathematically correct?

0 == 0U Unsigned true yes
-1 < 0 Signed true yes
-1 < 0U Unsigned false No!
2147483647 > -2147483648 Signed true yes
2147483647U > -2147483648

14

Comparisons Between Different Types
Be careful when comparing signed and unsigned integers. C will implicitly cast
the signed argument to unsigned and then evaluate the expression assuming
both numbers are unsigned and nonnegative.

Expression Comparison
Type? Evaluates To? Mathematically correct?

0 == 0U Unsigned true yes
-1 < 0 Signed true yes
-1 < 0U Unsigned false No!
2147483647 > -2147483648 Signed true yes
2147483647U > -2147483648 Unsigned false No!

15

Comparisons Between Different Types
Be careful when comparing signed and unsigned integers. C will implicitly cast
the signed argument to unsigned and then evaluate the expression assuming
both numbers are unsigned and nonnegative.

Expression Comparison
Type? Evaluates To? Mathematically correct?

0 == 0U Unsigned true yes
-1 < 0 Signed true yes
-1 < 0U Unsigned false No!
2147483647 > -2147483648 Signed true yes
2147483647U > -2147483648 Unsigned false No!
-1 > -2

(unsigned)-1 > -2

16

Comparisons Between Different Types
Be careful when comparing signed and unsigned integers. C will implicitly cast
the signed argument to unsigned and then evaluate the expression assuming
both numbers are unsigned and nonnegative.

Expression Comparison
Type? Evaluates To? Mathematically correct?

0 == 0U Unsigned true yes
-1 < 0 Signed true yes
-1 < 0U Unsigned false No!
2147483647 > -2147483648 Signed true yes
2147483647U > -2147483648 Unsigned false No!
-1 > -2 Signed true yes
(unsigned)-1 > -2 Unsigned true yes

17

Expanding Bit Representations
• Sometimes, we need to convert between two integers of different sizes (e.g.
short to int, or int to long).
• We might not be able to convert from a bigger data type to a smaller data type

and retain all information, but we should always be able to convert from a
smaller data type to a larger data type.
• For unsigned values, we can prepend leading zeros to the representation

("zero extension")
• For signed values, we can repeat the sign of the value for new digits ("sign

extension")
• Note: when doing <, >, <=, >= comparison between different size types, it will

promote the smaller type to the larger one.

18

Expanding Bit Representation
unsigned short s = 4;

// short is a 16-bit format, so s = 0000 0000 0000 0100b

unsigned int i = s;

// conversion to 32-bit int, so i = 0000 0000 0000 0000 0000 0000 0000 0100b

19

Expanding Bit Representation
short s = 4;

// short is a 16-bit format, so s = 0000 0000 0000 0100b

int i = s;

// conversion to 32-bit int, so i = 0000 0000 0000 0000 0000 0000 0000 0100b

— or —

short s = -4;

// short is a 16-bit format, so s = 1111 1111 1111 1100b

int i = s;

// conversion to 32-bit int, so i = 1111 1111 1111 1111 1111 1111 1111 1100b

20

Truncating Bit Representation
If we want to reduce the bit size of a number, C truncates the representation
and discards the more significant bits.

What happens here? Let's look at the bits in x (a 32-bit int), 53191:
0000 0000 0000 0000 1100 1111 1100 0111
When we cast x to a short, it only has 16-bits, and C truncates the number:
 1100 1111 1100 0111
This is -12345! And when we cast sx back an int, we sign-extend the number.
1111 1111 1111 1111 1100 1111 1100 0111 // still -12345

int x = 53191;
short sx = x;
int y = sx;

21

Truncating Bit Representation
If we want to reduce the bit size of a number, C truncates the representation
and discards the more significant bits.

What happens here? Let's look at the bits in x (a 32-bit int), -3:
1111 1111 1111 1111 1111 1111 1111 1101
When we cast x to a short, it only has 16-bits, and C truncates the number:
 1111 1111 1111 1101
This is -3! If the number does fit, it will convert fine. y looks like this:
1111 1111 1111 1111 1111 1111 1111 1101 // still -3

int x = -3;
short sx = x;
int y = sx;

22

Truncating Bit Representation
If we want to reduce the bit size of a number, C truncates the representation
and discards the more significant bits.

What happens here? Let's look at the bits in x (a 32-bit unsigned int), 128000:
0000 0000 0000 0001 1111 0100 0000 0000
When we cast x to a short, it only has 16-bits, and C truncates the number:
 1111 0100 0000 0000
This is 62464! Unsigned numbers can lose info too. Here is what y looks like:
0000 0000 0000 0000 1111 0100 0000 0000 // still 62464

unsigned int x = 128000;
unsigned short sx = x;
unsigned int y = sx;

23

Now that we understand
values are really stored in

binary, how can we
manipulate them at the bit

level?

24

Bitwise Operators
• You’re already familiar with many operators in C:

• Arithmetic operators: +, -, *, /, %
• Comparison operators: ==, !=, <, >, <=, >=
• Logical Operators: &&, ||, !

• Today and Wednesday, we’ll be discussing a new category of operators:
bitwise operators:

&, |, ~, ^, <<, >>

25

And (&)
AND is a binary operator. The AND of 2 bits is 1 if both bits are 1, and 0
otherwise.

a b output
0 0 0
0 1 0
1 0 0
1 1 1

output = a & b;

& with 1 to let a bit through, & with 0 to zero out a bit

26

Or (|)
OR is a binary operator. The OR of 2 bits is 1 if either (or both) bits is 1.

a b output
0 0 0
0 1 1
1 0 1
1 1 1

output = a | b;

| with 1 to turn on a bit, | with 0 to let a bit go through

27

Not (~)
NOT is a unary operator. The NOT of a bit is 1 if the bit is 0, or 1 otherwise.

a output

0 1

1 0

output = ~a;

28

Exclusive Or (^)
Exclusive Or (XOR) is a binary operator. The XOR of 2 bits is 1 if exactly one of
the bits is 1, or 0 otherwise.

a b output
0 0 0
0 1 1
1 0 1
1 1 0

output = a ^ b;

^ with 1 to flip a bit, ^ with 0 to let a bit go through unmodified

29

Operators on Multiple Bits
• When these operators are applied to numbers (multiple bits), the operator is

applied to the corresponding bits in each number. For example:

0110
& 1100

0100

0110
| 1100

1110

0110
^ 1100

1010

~ 1100

0011

AND OR XOR NOT

30

Operators on Multiple Bits
• When these operators are applied to numbers (multiple bits), the operator is

applied to the corresponding bits in each number. For example:

0110
& 1100

0100

0110
| 1100

1110

0110
^ 1100

1010

~ 1100

0011

AND OR XOR NOT

Note: these are different from the logical
operators AND (&&), OR (||) and NOT (!).

31

Operators on Multiple Bits
• When these operators are applied to numbers (multiple bits), the operator is

applied to the corresponding bits in each number. For example:

0110
& 1100

0100

0110
| 1100

1110

0110
^ 1100

1010

~ 1100

0011

AND OR XOR NOT

This is different from logical AND (&&). The logical
AND returns true if both are nonzero, or false
otherwise. With &&, this would be 6 && 12,
which would evaluate to true (1).

32

Operators on Multiple Bits
• When these operators are applied to numbers (multiple bits), the operator is

applied to the corresponding bits in each number. For example:

0110
& 1100

0100

0110
| 1100

1110

0110
^ 1100

1010

~ 1100

0011

AND OR XOR NOT

This is different from logical OR (||). The logical
OR returns true if either are nonzero, or false
otherwise. With ||, this would be 6 || 12, which
would evaluate to true (1).

33

Operators on Multiple Bits
• When these operators are applied to numbers (multiple bits), the operator is

applied to the corresponding bits in each number. For example:

0110
& 1100

0100

0110
| 1100

1110

0110
^ 1100

1010

~ 1100

0011

AND OR XOR NOT

This is different from logical NOT (!). The logical NOT
returns true if this is zero, and false otherwise. With !,
this would be !12, which would evaluate to false (0).

34

Bitmasks
We will frequently want to manipulate or otherwise isolate specific bits in a
larger collection of them. A bitmask is a constructed bit pattern that we can
use, along with standard bit operators like &, |, ^, ~, <<, and >>, to do this.

Motivating Example: Bit vectors
 Aside: C++ relies on bit vectors to efficiently implement vector<bool>.

35

Bit Vectors and Sets
Instead of using arrays of Booleans, one can more compactly store Boolean
information in bits instead.
• Example: we can represent current courses taken using a char and

manipulate its contents using bit operators.

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6A
X

CS
10
7

CS
11
1

CS
10
3

CS
10
9

CS
16
1

36

Bit Vectors and Sets

• How do we find the union of two sets of courses taken? Use OR:

00100011
| 01100001

01100011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6A
X

CS
10
7

CS
11
1

CS
10
3

CS
10
9

CS
16
1

37

Bit Vectors and Sets

• How do we find the intersection of two sets of courses taken? Use AND:

00100011
& 01100001

00100001

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6A
X

CS
10
7

CS
11
1

CS
10
3

CS
10
9

CS
16
1

38

Bit Masking
Example: how do we update our bit vector to indicate we’ve taken CS107?

00100011
| 00001000

00101011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6A
X

CS
10
7

CS
11
1

CS
10
3

CS
10
9

CS
16
1

39

Bit Masking
#define CS106A 0x1 /* 0000 0001 */
#define CS106B 0x2 /* 0000 0010, or 0x1 << 1 */
#define CS106AX 0x4 /* 0000 0100, or 0x1 << 2 */
#define CS107 0x8 /* 0000 1000, or 0x1 << 3 */
#define CS111 0x10 /* 0001 0000, or 0x1 << 4 */
#define CS103 0x20 /* 0010 0000, or 0x1 << 5 */
#define CS109 0x40 /* 0100 0000, or 0x1 << 6 */
#define CS161 0x80 /* 1000 0000, or 0x1 << 7 */

char myClasses = ...;
myClasses = myClasses | CS107; // include CS107!

40

Bit Masking
#define CS106A 0x1 /* 0000 0001 */
#define CS106B 0x2 /* 0000 0010, or 0x1 << 1 */
#define CS106AX 0x4 /* 0000 0100, or 0x1 << 2 */
#define CS107 0x8 /* 0000 1000, or 0x1 << 3 */
#define CS111 0x10 /* 0001 0000, or 0x1 << 4 */
#define CS103 0x20 /* 0010 0000, or 0x1 << 5 */
#define CS109 0x40 /* 0100 0000, or 0x1 << 6 */
#define CS161 0x80 /* 1000 0000, or 0x1 << 7 */

char myClasses = ...;
myClasses |= CS107; // include CS107!

41

Bit Masking
• Example: how do we update our bit vector to indicate we’ve dropped CS103?

00100011
& 11011111

00000011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6A
X

CS
10
7

CS
11
1

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
myClasses &= ~CS103; // Drop CS103

42

Bit Masking
• Example: how do we check if we’ve taken CS106B?

00100011
& 00000010

00000010

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6A
X

CS
10
7

CS
11
1

CS
10
3

CS
10
9

CS
16
1

char myClasses = ...;
if (myClasses & CS106B) {...
 // taken CS106B!

43

Bitwise Operator Tricks
• | with 1 is useful for turning select bits on
• & with 0 is useful for turning select bits off
• | is useful for taking the union of bits
• & is useful for taking the intersection of bits
• ^ is useful for flipping isolated bits
• ~ is useful for flipping all bits

