
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Nick Troccoli, Lisa Yan, Jerry Cain and others..

CS107, Lecture 8
Introduction to Pointers

Reading: K&R (1.9, 5.5, Appendix B3) or Essential C section 3
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5447944

https://edstem.org/us/courses/65949/discussion/5447944

2

Pointers
• A pointer is a variable that stores the address of some figure in memory.
• There is no true pass-by-reference in C like there is in C++, so we rely on

pointers to share the addresses of variables with other functions.
• A single pointer can identify a single byte or an arbitrarily large data structure.
• Pointers are essential to dynamic memory allocation (coming soon).
• Pointers allow us to generically identify memory (coming less soon, but still

soon).

3

Memory
• Memory is a big array of bytes.
• Each byte has a unique numeric index that is

generally written in hexadecimal.
• A pointer stores any one of these memory

addresses.

Address Value

…

0x105 '\0'

0x104 'e'

0x103 'l'

0x102 'p'

0x101 'p'

0x100 'a'

…

4

Looking Back at C++
How would we write a program with a function that takes in an int and
modifies it? We might use pass by reference.

void myFunc(int& num) {
 num = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(x);
 printf("%d", x); // 3!
 ...
}

5

Looking Ahead to C
• All parameters in C are passed "by value". For efficiency reasons, arrays (and

strings, by extension) passed in as parameters are really caught as pointers.
• If an address is passed as a parameter, the address itself is copied as all

parameters are. But because that address is the location of data meaningful to
program execution, we have access to, and can even modify, that data.
• More generally, if we want to modify a parameter value in a function and have

any changes persist afterward the function returns, we can share the location
of the value—that is, share its address—instead of sharing the value itself. This
way we copy the address instead of the value.

6

Pointers
int x = 2;

// Make a pointer that stores the address of x.
// (& means "address of")
int *xptr = &x;

// Dereference the pointer to go to that address.
// (* means "dereference")
printf("%d", *xptr); // prints 2

If declaration: "pointer"
 ex: int * is "pointer to an int”
If operation: "dereference/the value at address”
 ex: *num is "the value at address num"

*

7

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

8

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

main

STACK

9

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

main

x

2

STACK

10

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

main

x

myFunc

intPtr

2

STACK

11

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

main

x

myFunc

intPtr

2

STACK

12

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

main

x

myFunc

intPtr

3

STACK

13

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

main

x

3

STACK

14

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

main

x

3

STACK

15

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

STACK
Address Value

…

0x1f0 2
…

xmain()

16

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

Address Value
…

0x1f0 2
…

xmain()

STACK

17

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

Address Value
…

0x1f0 2
…

0x10 0x1f0
…

x

intPtr

main()

myFunc()

STACK

18

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

Address Value
…

0x1f0 2
…

0x10 0x1f0
…

x

intPtr

main()

myFunc()

STACK

19

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

Address Value
…

0x1f0 3
…

0x10 0x1f0
…

x

intPtr

main()

myFunc()

STACK

20

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

Address Value
…

0x1f0 3
…

xmain()

STACK

21

Pointers
A pointer is a variable that stores a memory
address.

void myFunc(int *intPtr) {
 *intPtr = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(&x);
 printf("%d", x); // 3!
 ...
}

Address Value
…

0x1f0 3
…

xmain()

STACK

22

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
 val = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(x);
 printf("%d", x); // 2!
 ...
}

STACK
Address Value

…

0x1f0 2
…

xmain()

23

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
 val = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(x);
 printf("%d", x); // 2!
 ...
}

STACK
Address Value

…

0x1f0 2
…

xmain()

24

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
 val = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(x);
 printf("%d", x); // 2!
 ...
}

STACK
Address Value

…

0x1f0 2
…

0x10 2
…

x

val

main()

myFunc()

25

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
 val = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(x);
 printf("%d", x); // 2!
 ...
}

STACK
Address Value

…

0x1f0 2
…

0x10 2
…

x

val

main()

myFunc()

26

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
 val = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(x);
 printf("%d", x); // 2!
 ...
}

STACK
Address Value

…

0x1f0 2
…

0x10 3
…

x

val

main()

myFunc()

27

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
 val = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(x);
 printf("%d", x); // 2!
 ...
}

STACK
Address Value

…

0x1f0 2
…

xmain()

28

Pointers
Without pointers, we would make copies.

void myFunc(int val) {
 val = 3;
}

int main(int argc, char *argv[]) {
 int x = 2;
 myFunc(x);
 printf("%d", x); // 2!
 ...
}

STACK
Address Value

…

0x1f0 2
…

xmain()

29

How to draw memory diagrams?
Address Value

…
0x105 '\0'
0x104 'y'
0x103 'l'
0x102 'p'
0x101 'p'
0x100 'a'

…
…

0xf 0x100
…

str

myStr

main()

myFunc()

STACK
Address Value

0x1f2 '\0'

0x1f1 'i'

0x1f0 'h'
...

0xff

0xfe

0xfd

0xfc

0xfb

0xfa

0xf9

0xf8

str

mystr

main()

STACK

0x1f0myFunc()

Choose whatever style is convenient for you,
keeping in mind that (1) memory is contiguous,
and (2) C types are different sizes.

30

C Parameters
When you pass a value as a parameter, C passes a copy of that value.

void myFunction(int x) {
 …
}

int main(int argc, char *argv[]) {
 int num = 4;
 myFunction(num); // passes copy of 4
}

31

C Parameters
When you pass a value as a parameter, C passes a copy of that value.

void myFunction(int *x) {
 …
}

int main(int argc, char *argv[]) {
 int num = 4;
 myFunction(&num); // passes copy of e.g. 0xffed63
}

32

C Parameters
When you pass a value as a parameter, C passes a copy of that value.

void myFunction(char ch) {
 …
}

int main(int argc, char *argv[]) {
 char *myStr = "Hello!";
 myFunction(myStr[1]); // passes copy of 'e'
}

33

C Parameters
If you are modifying a specific instance of some value, pass the location of what
you would like to modify.

Do I care about modifying this instance of my
data? If so, I need to pass where that instance

lives, as a parameter, so it can be modified.

34

Pointers
If you are modifying a specific instance of some value, pass the location of what
you would like to modify.

void capitalize(char *ch) {
 // modifies what is at the address stored in ch
}

int main(int argc, char *argv[]) {
 char letter = 'h';
 /* We don’t want to capitalize any instance of 'h'.
 * We want to capitalize *this* instance of 'h'! */
 capitalize(&letter);
 printf("%c", letter); // want to print 'H';
}

35

Pointers
If you are modifying a specific instance of some value, pass the location of what
you would like to modify.

void doubleNum(int *x) {
 // modifies what is at the address stored in x
}

int main(int argc, char *argv[]) {
 int num = 2;
 /* We don’t want to double any instance of 2.
 * We want to double *this* instance of 2! */
 doubleNum(&num);
 printf("%d", num); // want to print 4;
}

36

Pointers
If a function takes an address (pointer) as a parameter, it can go to that address
if it needs the actual value.

void capitalize(char *ch) {
 // *ch gets the character stored at address ch.
 char newChar = toupper(*ch);

 // *ch = goes to address ch and puts newChar there.
 *ch = newChar;
}

37

Pointers Summary
• If you are performing an operation with some input and do not care about any

changes to the input, pass the data type itself.
• If you are modifying a specific instance of some value, pass the location of

what you would like to modify.
• If a function takes an address (pointer) as a parameter, it can go to that

address if it needs the actual value.

• If a function accepts an int *, it can modify the int at the supplied address.
• If a function accepts a char *, it can modify the char at the supplied address.
• If a function accepts an char **, it can modify the char * at the supplied

address.

