CS107, Lecture 8

Introduction to Pointers

Reading: K&R (1.9, 5.5, Appendix B3) or Essential C section 3
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5447944

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Nick Troccoli, Lisa Yan, Jerry Cain and others..

https://edstem.org/us/courses/65949/discussion/5447944

* A pointer is a variable that stores the address of some figure in memory.

* There is no true pass-by-reference in C like there is in C++, so we rely on
pointers to share the addresses of variables with other functions.

* A single pointer can identify a single byte or an arbitrarily large data structure.
* Pointers are essential to dynamic memory allocation (coming soon).

 Pointers allow us to generically identify memory (coming less soon, but still
soon).

* Memory is a big array of bytes.

* Each byte has a unigue numeric index that is
generally written in hexadecimal.

* A pointer stores any one of these memory
addresses.

Address Value
ox105| "\@'
ox104| '€’
ox1e3| ‘1’
ox102| P’
ox101| P’
oxle0| 'a’

Looking Back at C++

How would we write a program with a function that takes in an int and
modifies it? We might use pass by reference.

void myFunc(int& num) {
num = 3;
}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 3!

Looking Ahead to C

 All parameters in C are passed "by value". For efficiency reasons, arrays (and
strings, by extension) passed in as parameters are really caught as pointers.

 If an address is passed as a parameter, the address itself is copied as all
parameters are. But because that address is the location of data meaningful to
program execution, we have access to, and can even modify, that data.

 More generally, if we want to modify a parameter value in a function and have
any changes persist afterward the function returns, we can share the location
of the value—that is, share its address—instead of sharing the value itself. This
way we copy the address instead of the value.

int x = 2;

// Make a pointer that stores the address of x.

// (& means "address of") If declaration: "pointer"
ex: int *is "pointer to an int”

If operation: "dereference/the value at address’
ex: *num is "the value at address num"

int *xptr = &x;

/

// Dereference the pointer to go to that address.
// (* means "dereference")
printf("%d", *xptr); // prints 2

A pointer is a variable that stores a memory

address.

void myFunc(int *intPtr) {

*IntPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc (&x);

printf("%d", x); // 3!

A pointer is a variable that stores a memory

STACK

address.

void myFunc(int *intPtr) {

*IntPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc (&x) ;

printf("%d", x); // 3!

main

A pointer is a variable that stores a memory

STACK

address.

void myFunc(int *intPtr) {

*IntPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc (&x) ;

printf("%d", x); // 3!

main

A pointer is a variable that stores a memory

STACK

address.

void myFunc(int *intPtr) {

*IntPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc (&x) ;

printf("%d", x); // 3!

main

myFunc

intPtr

10

A pointer is a variable that stores a memory

STACK

address.

void myFunc(int *intPtr) {

*IntPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc (&x) ;

printf("%d", x); // 3!

main

myFunc

intPtr

11

A pointer is a variable that stores a memory

STACK

address.

void myFunc(int *intPtr) {

*IntPtr = 3;

}

int main(int argc, char *argv[]) {
int x = 2;
myFunc (&x) ;

printf("%d", x); // 3!

main

myFunc

intPtr

12

STACK

A pointer is a variable that stores a memory

main
address.
X|3
void myFunc(int *intPtr) {
*IntPtr = 3;
}
int main(int argc, char *argv[]) {
int x = 2;
myFunc (&x) ;

printf("%d", x); // 3!

13

STACK

A pointer is a variable that stores a memory

main
address.
X|3
void myFunc(int *intPtr) {
*IntPtr = 3;
}
int main(int argc, char *argv[]) {
int x = 2;
myFunc (&x) ;

printf("%d", x); // 3!

14

A pointer is a variable that stores a memory AddpeSsTéCKValue
address.
. [X Ox1fo 2

void myFunc(int *intPtr) { main() -

*IntPtr = 3;
}
int main(int argc, char *argv[]) {

int x = 2;

myFunc (&x);

printf("%d", x); // 3!

15

A pointer is a variable that stores a memory AddpeSsTéCKValue
address.
. [X Ox1fo 2

void myFunc(int *intPtr) { main() -

*IntPtr = 3;
}
int main(int argc, char *argv[]) {

int x = 2;

myFunc (&x) ;

printf("%d", x); // 3!

16

A pointer is a variable that stores a memory Addr‘eSSTSACKValue
address.
. . , . x 0x1fe 2
void myFunc(int *intPtr) { main() L
*intPtr = 3; -
} ’ myFunc() | intPtr 0x10

int main(int argc, char *argv[]) {
int x = 2;
myFunc (&x) ;
printf("%d", x); // 3!

17

A pointer is a variable that stores a memory Addr‘eSSTSACKValue
address.
. . , . x 0x1fe 2
void myFunc(int *intPtr) { main() L
*intPtr = 3; -
} ’ myFunc() | intPtr 0x10

int main(int argc, char *argv[]) {
int x = 2;
myFunc (&x) ;
printf("%d", x); // 3!

18

A pointer is a variable that stores a memory Addr‘eSSTSACKValue
address.
. . , . x 0x1fe 3
void myFunc(int *intPtr) { main() L
*intPtr = 3; -
} ’ myFunc() | intPtr 0x10

int main(int argc, char *argv[]) {
int x = 2;
myFunc (&x) ;
printf("%d", x); // 3!

19

A pointer is a variable that stores a memory AddpeSsTéCKValue
address.
. [X Ox1fo 3

void myFunc(int *intPtr) { main() -

*IntPtr = 3;
}
int main(int argc, char *argv[]) {

int x = 2;

myFunc (&x);

printf("%d", x); // 3!

20

A pointer is a variable that stores a memory AddpeSsTéCKValue
address.
. [X Ox1fo 3

void myFunc(int *intPtr) { main() -

*IntPtr = 3;
}
int main(int argc, char *argv[]) {

int x = 2;

myFunc (&x);

printf("%d", x); // 3!

21

Without pointers, we would make copies. AddpeSSTéCKValue
void myFunc(int val) { . [: « oxlfol 2
val = 3; main()

¥

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!

22

Without pointers, we would make copies. AddpeSSTéCKValue
void myFunc(int val) { . [: « oxlfol 2
val = 3; main()

¥

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!

23

Without pointers, we would make copies.

void myFunc(int val) { ,
val = 3; main()
}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!

myFunc ()

STACK
Address Value

x 0Ox1f0 2

val 6x10

24

Without pointers, we would make copies.

void myFunc(int val) { ,
val = 3; main()
}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!

myFunc ()

STACK
Address Value

x 0Ox1f0 2

val 6x10

25

Without pointers, we would make copies.

void myFunc(int val) { ,
val = 3; main()
}

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!

myFunc ()

STACK
Address Value

x 0Ox1f0 2

val 6x10

26

Without pointers, we would make copies. AddpeSSTéCKValue
void myFunc(int val) { . [: « oxlfol 2
val = 3; main()

¥

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!

27

Without pointers, we would make copies. AddpeSSTéCKValue
void myFunc(int val) { . [: « oxlfol 2
val = 3; main()

¥

int main(int argc, char *argv[]) {
int x = 2;
myFunc(x);
printf("%d", x); // 2!

28

How to draw memory diagrams?

STACK STACK
Address Value Address Value
Px1E2 A Address Value
[ox105| "\@' ox1f1 [+ o
. o = 4ER p e a r\0
ox104 | 'y main() | str ox1fe h ol oxigas— [
0x103 | 1" - = oxeo— peach\
main() oxff Ox120— L
0x102 p oxfe oo orang¢
p oxfd Ox118= o
. = W4ty b anan ¢
a arge — oxesr— = -
oxfc Ox110= TR
= 0xf881 app leX
- myFunc () oxfb _ = oxesi— |
[Ox108= Co
oxfa argv == __— sw apwc
myFunc() 0x100 — 0xf838
y 0xf9 0x100=
L mystr oxfg

Choose whatever style is convenient for you,
keeping in mind that (1) memory is contiguous,
and (2) C types are different sizes.

29

When you pass a value as a parameter, C passes a copy of that value.

void myFunction(int x) {

¥

int main(int argc, char *argv[]) {
int num = 4;
myFunction(num); // passes copy of 4

30

When you pass a value as a parameter, C passes a copy of that value.

void myFunction(int *x) {

¥

int main(int argc, char *argv[]) {
int num = 4;
myFunction(&num); // passes copy of e.g. Oxffed63

31

When you pass a value as a parameter, C passes a copy of that value.

void myFunction(char ch) {

¥

int main(int argc, char *argv[]) {
char *myStr = "Hello!";

myFunction(myStr[1]); // passes copy of

e

32

If you are modifying a specific instance of some value, pass the location of what
you would like to modify.

Do | care about modifying this instance of my
data? If so, | need to pass where that instance
lives, as a parameter, so it can be modified.

33

If you are modifying a specific instance of some value, pass the location of what
you would like to modify.

void capitalize(char *ch) {
// modifies what is at the address stored in ch
}

int main(int argc, char *argv[]) {
char letter = 'h';
/* We don’t want to capitalize any instance of 'h'.
* We want to capitalize *this* instance of 'h'! */
capitalize(&letter);
printf("%c", letter); // want to print 'H';

If you are modifying a specific instance of some value, pass the location of what
you would like to modify.

void doubleNum(int *x) {
// modifies what is at the address stored in x
}

int main(int argc, char *argv[]) {
int num = 2;
/* We don’t want to double any instance of 2.
* We want to double *this* instance of 2! */
doubleNum(&num);
printf("%d", num); // want to print 4;

If a function takes an address (pointer) as a parameter, it can go to that address
if it needs the actual value.

void capitalize(char *ch) {
// *ch gets the character stored at address ch.
char newChar = toupper(*ch);

// *ch = goes to address ch and puts newChar there.
*ch = newChar;

36

Pointers Summary

* If you are performing an operation with some input and do not care about any
changes to the input, pass the data type itself.

* If you are modifying a specific instance of some value, pass the location of
what you would like to modify.

* If a function takes an address (pointer) as a parameter, it can go to that
address if it needs the actual value.

* If a function accepts an int *, it can modify the int at the supplied address.
e If a function accepts a char *, it can modify the char at the supplied address.

e If a function accepts an char *¥*, it can modify the char * at the supplied
address.

37

