
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Nick Troccoli, Lisa Yan, Jerry Cain and others.

CS107, Lecture 9
Arrays and Pointers

Reading: K&R (5.2-5.5) or Essential C section 6
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5457677

https://edstem.org/us/courses/65949/discussion/5457677

2

Pointers Summary
• If you are performing an operation with some input and do not care about any

changes to the input, pass the data type itself.
• If you are modifying a specific instance of some value, pass the location of

what you would like to modify.
• If a function takes an address (pointer) as a parameter, it can go to that

address if it needs the actual value.

• If a function accepts an int *, it can modify the int at the supplied address.
• If a function accepts a char *, it can modify the char at the supplied address.
• If a function accepts an char **, it can modify the char * at the supplied

address.

3

Demo: Swap

fun_with_swap.c

4

Exercise 1
We want to write a function that flips the case of a letter. What should go in
each of the blanks?

void flipCase(__?__) {
 if (isupper(__?__)) {
 __?__ = __?__;
 } else if (islower(__?__)) {
 __?__ = __?__;
 }
}

int main(int argc, char *argv[]) {
 char ch = 'g';
 flipCase(__?__);
 printf("%c", ch); // want this to print 'G'
}

5

Exercise 1
We want to write a function that flips the case of a letter. What should go in
each of the blanks?

void flipCase(char *letter) {
 if (isupper(*letter)) {
 *letter = tolower(*letter);
 } else if (islower(*letter)) {
 *letter = toupper(*letter);
 }
}

int main(int argc, char *argv[]) {
 char ch = 'g';
 flipCase(&ch);
 printf("%c", ch); // want this to print 'G'

}

We are modifying a specific
instance of the letter, so we pass

the location of the letter we would
like to modify.

6

Exercise 2
Sometimes, we would like to modify a string’s pointer itself, rather than just the
characters it points to, e.g., we want to write a function skipSpaces that
modifies a string pointer to skip past any initial spaces. What should go in each
of the blanks?

void skipSpaces(__?__) {
 ...
}

int main(int argc, char *argv[]) {
 char *str = " hello";
 skipSpaces(__?__);
 printf("%s", str); // should print "hello"
}

7

Exercise 2
Sometimes, we would like to modify a string’s pointer itself, rather than just the
characters it points to, e.g., we want to write a function skipSpaces that
modifies a string pointer to skip past any initial spaces. What should go in each
of the blanks?

void skipSpaces(char **strPtr) {
 // code that advances *strPtr
}

int main(int argc, char *argv[]) {
 char *str = " hello";
 skipSpaces(&str);
 printf("%s", str); // should print "hello"
}

We are modifying a specific
instance of the string pointer, so

we pass the location of the string
pointer we would like to modify.

8

Exercise 2
Sometimes, we would like to modify a string’s pointer itself, rather than just the
characters it points to, e.g., we want to write a function skipSpaces that
modifies a string pointer to skip past any initial spaces. What should go in each
of the blanks?

void skipSpaces(char *strPtr) {
 // code incapable of modifying str of main
}

int main(int argc, char *argv[]) {
 char *str = " hello";
 skipSpaces(str);
 printf("%s", str); // should print "hello”, but won’t
}

This can only advance skipSpace’s
own copy of the string pointer, not

the instance in main.

9

Pointers to Strings
void skipSpaces(char **strPtr) {
 int numSpaces = strspn(*strPtr, " ");
 *strPtr += numSpaces;
}

int main(int argc, char *argv[]) {
 char *myStr = " hi";
 skipSpaces(&myStr);
 printf("%s\n", myStr); // hi
 return 0;
}

Address Value
…
…

main()STACK

10

Pointers to Strings
Address Value

…
0x105 0xf

…
…

0x13 '\0'
0x12 'i'
0x11 'h'
0x10 ' '
0xf ' '

…

myStr

DATA SEGMENT

void skipSpaces(char **strPtr) {
 int numSpaces = strspn(*strPtr, " ");
 *strPtr += numSpaces;
}

int main(int argc, char *argv[]) {
 char *myStr = " hi";
 skipSpaces(&myStr);
 printf("%s\n", myStr); // hi
 return 0;
}

main()STACK

11

Pointers to Strings
Address Value

…
0x105 0xf

…
…

0x13 '\0'
0x12 'i'
0x11 'h'
0x10 ' '
0xf ' '

…

myStr

DATA SEGMENT

void skipSpaces(char **strPtr) {
 int numSpaces = strspn(*strPtr, " ");
 *strPtr += numSpaces;
}

int main(int argc, char *argv[]) {
 char *myStr = " hi";
 skipSpaces(&myStr);
 printf("%s\n", myStr); // hi
 return 0;
}

main()STACK

12

Pointers to Strings
Address Value

…
0x105 0xf

…
…

0xf0 0x105
…
…

0x13 '\0'
0x12 'i'
0x11 'h'
0x10 ' '
0xf ' '

…

DATA SEGMENT

void skipSpaces(char **strPtr) {
 int numSpaces = strspn(*strPtr, " ");
 *strPtr += numSpaces;
}

int main(int argc, char *argv[]) {
 char *myStr = " hi";
 skipSpaces(&myStr);
 printf("%s\n", myStr); // hi
 return 0;
}

myStr

strPtr

main()

skipSpaces()

STACK

13

Pointers to Strings
Address Value

…
0x105 0xf

…
…

0xf0 0x105
0xe8 2

…
…

0x13 '\0'
0x12 'i'
0x11 'h'
0x10 ' '
0xf ' '

…

DATA SEGMENT

void skipSpaces(char **strPtr) {
 int numSpaces = strspn(*strPtr, " ");
 *strPtr += numSpaces;
}

int main(int argc, char *argv[]) {
 char *myStr = " hi";
 skipSpaces(&myStr);
 printf("%s\n", myStr); // hi
 return 0;
}

myStr

strPtr
numSpaces

main()

skipSpaces()

STACK

14

Pointers to Strings
Address Value

…
0x105 0xf

…
…

0xf0 0x105
0xe8 2

…
…

0x13 '\0'
0x12 'i'
0x11 'h'
0x10 ' '
0xf ' '

…

DATA SEGMENT

void skipSpaces(char **strPtr) {
 int numSpaces = strspn(*strPtr, " ");
 *strPtr += numSpaces;
}

int main(int argc, char *argv[]) {
 char *myStr = " hi";
 skipSpaces(&myStr);
 printf("%s\n", myStr); // hi
 return 0;
}

myStr

strPtr
numSpaces

main()

skipSpaces()

STACK

15

Pointers to Strings
Address Value

…
0x105 0x11

…
…

0xf0 0x105
0xe8 2

…
…

0x13 '\0'
0x12 'i'
0x11 'h'
0x10 ' '
0xf ' '

…

DATA SEGMENT

void skipSpaces(char **strPtr) {
 int numSpaces = strspn(*strPtr, " ");
 *strPtr += numSpaces;
}

int main(int argc, char *argv[]) {
 char *myStr = " hi";
 skipSpaces(&myStr);
 printf("%s\n", myStr); // hi
 return 0;
}

myStr

strPtr
numSpaces

main()

STACK

skipSpaces()

16

Pointers to Strings
Address Value

…
0x105 0x11

…
…

0x13 '\0'
0x12 'i'
0x11 'h'
0x10 ' '
0xf ' '

…

DATA SEGMENT

void skipSpaces(char **strPtr) {
 int numSpaces = strspn(*strPtr, " ");
 *strPtr += numSpaces;
}

int main(int argc, char *argv[]) {
 char *myStr = " hi";
 skipSpaces(&myStr);
 printf("%s\n", myStr); // hi
 return 0;
}

myStrSTACK main()

17

Pointers to Strings
Address Value

…
0x105 0x11

…
…

0x13 '\0'
0x12 'i'
0x11 'h'
0x10 ' '
0xf ' '

…

DATA SEGMENT

void skipSpaces(char **strPtr) {
 int numSpaces = strspn(*strPtr, " ");
 *strPtr += numSpaces;
}

int main(int argc, char *argv[]) {
 char *myStr = " hi";
 skipSpaces(&myStr);
 printf("%s\n", myStr); // hi
 return 0;
}

myStrmain()STACK

Weird thought – 0x11 is a string.

18

Strings In Memory
1. If we create a string as a char[], we can modify its characters because its memory

lives in our stack space.
2. We cannot set a char[] equal to another value, because it is not a pointer, as it

refers to the block of memory reserved for the original array.
3. If we pass a char[] as a parameter, set something equal to it, or perform arithmetic

with it, it's automatically converted to a char *.
4. If we create a new string with new characters as a char *, we cannot modify its

characters because its memory lives in the data segment.
5. We can set a char * equal to another value, because it is an assignable pointer.
6. Adding an offset to a C string gives us a substring that’s many places past the first

character.
7. If we change characters in a string parameter, these changes will persist outside of the

function.

19

String Behavior #1: If we create a string as
a char[], we can modify its characters

because its memory lives in our stack space.

20

Character Arrays
Address Value

…

0x105 '\0'

0x104 'e'

0x103 'l'

0x102 'p'

0x101 'p'

0x100 'a'

…

When we declare an array of characters, contiguous
memory is allocated on the stack to store the contents of
the entire array. We can modify what is on the stack.

char str[6];
strcpy(str, "apple");

str

STACK

21

String Behavior #2: We cannot set a
char[] equal to another value, because it is

not a pointer; it refers to the block of
memory reserved for the original array.

22

Character Arrays
An array variable refers to an entire block of memory. We cannot reassign an
existing array to be equal to a new array.
char str[6];
strcpy(str, "apple");
char str2[8];
strcpy(str2, "apple 2");

str = str2; // not allowed!

An array’s size cannot be changed once we create it; we must create another
new array instead.

23

String Behavior #3: If we pass a char[]
as a parameter, set something equal to it, or
perform arithmetic with it, it’s automatically

converted to a char *.

24

String Parameters
How do you think the parameter str is being represented?

void fun_times(char *str) {
 ...
}

int main(int argc, char *argv[]) {
 char local_str[5];
 strcpy(local_str, "rice");
 fun_times(local_str);
 return 0;
}

str ?

A. A copy of the array local_str
B. A pointer containing an address to

the first element in local_str

local_str

0xa0 0xa1 0xa2 0xa3 0xa4

'r' 'i' 'c' 'e' '\0'

25

A. A copy of the array local_str
B. A pointer containing an address to

the first element in local_str

String Parameters
How do you think the parameter str is being represented?

void fun_times(char *str) {
 ...
}

int main(int argc, char *argv[]) {
 char local_str[5];
 strcpy(local_str, "rice");
 fun_times(local_str);
 return 0;
}

local_str

0xa0 0xa1 0xa2 0xa3 0xa4

'r' 'i' 'c' 'e' '\0'

str 0xa0

26

char * Variables
How do you think the local variable str is being represented?

int main(int argc, char *argv[]) {
 char local_str[5];
 strcpy(local_str, "rice");
 char *str = local_str;
 ...
 return 0;
}

str ?

local_str

0xa0 0xa1 0xa2 0xa3 0xa4

'r' 'i' 'c' 'e' '\0'

A. A copy of the array local_str
B. A pointer containing an address to

the first element in local_str

27

char * Variables
How do you think the local variable str is being represented?

int main(int argc, char *argv[]) {
 char local_str[5];
 strcpy(local_str, "rice");
 char *str = local_str;
 ...
 return 0;
}

str

local_str

0xa0 0xa1 0xa2 0xa3 0xa4

'r' 'i' 'c' 'e' '\0'

A. A copy of the array local_str
B. A pointer containing an address to

the first element in local_str

0xa0

28

char * Variables
How do you think the local variable str is being represented?

int main(int argc, char *argv[]) {
 char local_str[5];
 strcpy(local_str, "rice");
 char *str = local_str + 2;
 ...
 return 0;
}

str ?

local_str

0xa0 0xa1 0xa2 0xa3 0xa4

'r' 'i' 'c' 'e' '\0'

A. A copy of part of the array local_str
B. A pointer containing an address to

the third element in local_str

29

char * Variables
How do you think the local variable str is being represented?

int main(int argc, char *argv[]) {
 char local_str[5];
 strcpy(local_str, "rice");
 char *str = local_str + 2;
 ...
 return 0;
}

str

local_str

0xa0 0xa1 0xa2 0xa3 0xa4

'r' 'i' 'c' 'e' '\0'

A. A copy of part of the array local_str
B. A pointer containing an address to

the third element in local_str

0xa2

30

String Parameters
All string functions take char * parameters – they accept char[], but they are
implicitly converted to char * before being passed.

• strlen(char *str)
• strcmp(char *str1, char *str2)
• …

• char * is still a string in all the core ways a char[] is
• Access/modify characters using bracket notation
• Print it out
• Use string functions
• But under the hood they are represented differently!

• Takeaway: We create strings as char[], pass them around as char *

31

String Behavior #4: If we create a new
string with new characters as a char *, we

cannot modify its characters because its
memory lives in the data segment.

32

char *

There is another convenient way to create a string if we do not need to modify it
later. We can create a char * and set it directly equal to a string literal.

char *myString = "Hello, world!";
char *empty = "";

myString[0] = 'h'; // crashes!
printf("%s", myString); // Hello, world!

33

char *

Address Value
…

0xff0 0x10
…
…

0x12 '\0'
0x11 'i'
0x10 'h'

…

When we declare a char pointer equal to a string
literal, the characters are not stored on the stack.
Instead, they are stored in a special area of
memory called the “data segment”. We cannot
modify memory in this segment.

char *str = "hi";
The pointer variable (e.g. str) refers to the address
of the first character of the string in the data
segment.

strSTACK

DATA SEGMENT

This applies only to creating new
strings with char *. This does not

apply for making a char * that
points to an existing stack string.

34

Memory Locations
For each code snippet below, can we modify the characters in myStr?

char myStr[6];

Key Question: where do its
characters live? Do they live in
memory we own? Or the read-

only data segment?

35

Memory Locations
For each code snippet below, can we modify the characters in myStr?

char *myStr = "Hi";

Key Question: where do its
characters live? Do they live in
memory we own? Or the read-

only data segment?

36

Memory Locations
For each code snippet below, can we modify the characters in myStr?

char buf[6];
strcpy(buf, "Hi");
char *myStr = buf;

Key Question: where do its
characters live? Do they live in
memory we own? Or the read-

only data segment?

37

Memory Locations
For each code snippet below, can we modify the characters in myStr?

char *otherStr = "Hi";
char *myStr = otherStr;

Key Question: where do its
characters live? Do they live in
memory we own? Or the read-

only data segment?

38

Memory Locations
For each code snippet below, can we modify the characters in myStr?

void myFunc(char *myStr) {
 ...
}

int main(int argc, char *argv[]) {
 char buf[6];
 strcpy(buf, "Hi");
 myFunc(buf);
 return 0;
}

Key Question: where do its
characters live? Do they live in
memory we own? Or the read-

only data segment?

39

Memory Locations
Q: Is there a way to check in code whether a string’s characters are modifiable?
A: No. This is something you can only tell by looking at the code itself and how
the string was created.

Q: So then if I am writing a string function that modifies a string, how can I tell if
the string passed in is modifiable?
A: You can’t! This is something you instead state as an assumption in your
function documentation. If someone calls your function with a read-only string,
it will crash, but that’s not your function’s fault :-)

40

String Behavior #5: We can set a
char * equal to another value, because it

is an assignable pointer.

41

char *

A char * variable refers to a single character. We can reassign an existing char *
pointer to be equal to another char * pointer.

char *str = "apple"; // e.g. 0xfff0
char *str2 = "apple 2"; // e.g. 0xfe0
str = str2; // ok! Both store address 0xfe0

42

Arrays and Pointers
We can also make a pointer equal to an array;
it will point to the first element in that array.

int main(int argc, char *argv[]) {
 char str[6];
 strcpy(str, "apple");
 char *ptr = str;
 ...
}

Address Value
…

0x105 '\0'
0x104 'e'
0x103 'l'
0x102 'p'
0x101 'p'
0x100 'a'
0xf8 0x100

…

str
ptr

main()

STACK

43

Arrays and Pointers
We can also make a pointer equal to an array;
it will point to the first element in that array.

int main(int argc, char *argv[]) {
 char str[6];
 strcpy(str, "apple");
 char *ptr = str;

 // equivalent
 char *ptr = &str[0];

 // confusingly equivalent, avoid
 char *ptr = &str;
 ...
}

STACK
Address Value

…

0x105 '\0'
0x104 'e'
0x103 'l'
0x102 'p'
0x101 'p'
0x100 'a'
0xf8 0x100

…

str
ptr

main()

44

String Behavior #6: Adding an offset to a
C string gives us a substring that’s many

places past the first character.

45

Pointer Arithmetic
When we do pointer arithmetic, we are adjusting
the pointer by a certain number of places (e.g.
characters).

char *str = "apple"; // e.g. 0xff0
char *str2 = str + 1; // e.g. 0xff1
char *str3 = str + 3; // e.g. 0xff3

printf("%s", str); // apple
printf("%s", str2); // pple
printf("%s", str3); // le

Address Value

…

0xff5 '\0'

0xff4 'e'

0xff3 'l'

0xff2 'p'

0xff1 'p'

0xff0 'a'

…

TEXT SEGMENT

46

char *

When we use bracket notation with a pointer, we are
performing pointer arithmetic and dereferencing:

char *str = "apple"; // e.g. 0xff0

// both of these add three places to str,
// and then dereference to get the char there.
// E.g. get memory at 0xff3.
char thirdLetter = str[3]; // 'l'
char thirdLetter = *(str + 3); // 'l'

Address Value

…

0xff5 '\0'

0xff4 'e'

0xff3 'l'

0xff2 'p'

0xff1 'p'

0xff0 'a'

…

TEXT SEGMENT

47

String Behavior #7: If we change
characters in a string parameter, these

changes will persist outside of the function.

48

Strings as Parameters
When we pass a char * string as a parameter,
C makes a copy of the address stored in the
char * and passes it to the function. This
means they both refer to the same memory
location.

void myFunc(char *myStr) {
 ...
}

int main(int argc, char *argv[]) {
 char *str = "apple";
 myFunc(str);
 ...
}

Address Value

…

0xfff0 0x10

…

…

0xff0 0x10

…

str

myStr

main()

myFunc()

STACK

49

Strings as Parameters
When we pass a char array as a parameter, C
makes a copy of the address of the first array
element and passes it (as a char *) to the function.

void myFunc(char *myStr) {
 ...
}

int main(int argc, char *argv[]) {
 char str[6];
 strcpy(str, "apple");
 myFunc(str);
 ...
}

Address Value
…

0x105 '\0'
0x104 'e'
0x103 'l'
0x102 'p'
0x101 'p'
0x100 'a'

…
…

0xf 0x100
…

str

myStr

main()

myFunc()

STACK

50

Strings as Parameters
When we pass a char array as a parameter, C
makes a copy of the address of the first array
element and passes it (as a char *) to the function.

void myFunc(char *myStr) {
 ...
}

int main(int argc, char *argv[]) {
 char str[6];
 strcpy(str, "apple");
 // equivalent
 char *strAlt = str;
 myFunc(strAlt);
 ...

Address Value
…

0x105 '\0'
0x104 'e'
0x103 'l'
0x102 'p'
0x101 'p'
0x100 'a'

…
…

0xf 0x100
…

str

myStr

main()

myFunc()

STACK

51

Strings as Parameters
This means if we modify characters in myFunc,
the changes will persist back in main!

void myFunc(char *myStr) {
 myStr[4] = 'y';
}

int main(int argc, char *argv[]) {
 char str[6];
 strcpy(str, "apple");
 myFunc(str);
 printf("%s", str); // apply
 ...
}

Address Value
…

0x105 '\0'
0x104 'e'
0x103 'l'
0x102 'p'
0x101 'p'
0x100 'a'

…
…

0xf 0x100
…

str

myStr

main()

myFunc()

STACK

52

Strings as Parameters
This means if we modify characters in myFunc,
the changes will persist back in main!

void myFunc(char *myStr) {
 myStr[4] = 'y';
}

int main(int argc, char *argv[]) {
 char str[6];
 strcpy(str, "apple");
 myFunc(str);
 printf("%s", str); // apply
 ...
}

Address Value
…

0x105 '\0'
0x104 'y'
0x103 'l'
0x102 'p'
0x101 'p'
0x100 'a'

…
…

0xf 0x100
…

str

myStr

main()

myFunc()

STACK

53

Strings In Memory
1. If we create a string as a char[], we can modify its characters because its memory

lives in our stack space.
2. We cannot set a char[] equal to another value, because it is not a pointer; it refers

to the block of memory reserved for the original array.
3. If we pass a char[] as a parameter, set something equal to it, or perform arithmetic

with it, it’s automatically converted to a char *.
4. If we create a new string with new characters as a char *, we cannot modify its

characters because its memory lives in the data segment.
5. We can set a char * equal to another value, because it is a reassign-able pointer.
6. Adding an offset to a C string gives us a substring that many places past the first

character.
7. If we change characters in a string parameter, these changes will persist outside of the

function.

54

Arrays vs. Pointers
• When you create an array, you are making space for each element in the array.
• When you create a pointer, you are making space for a 64-bit address.
• Arrays "decay to pointers" when passed as parameters.
• &arr does nothing on arrays, but &ptr on pointers gets its address
• sizeof(arr) gets the size of an array in bytes, but sizeof(ptr) is always 8

