CS107, Lecture 9

Arrays and Pointers

Reading: K&R (5.2-5.5) or Essential C section 6
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5457677

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Nick Troccoli, Lisa Yan, Jerry Cain and others.

https://edstem.org/us/courses/65949/discussion/5457677

Pointers Summary

* If you are performing an operation with some input and do not care about any
changes to the input, pass the data type itself.

* If you are modifying a specific instance of some value, pass the location of
what you would like to modify.

e If a function takes an address (pointer) as a parameter, it can go to that
address if it needs the actual value.

e If a function accepts an int *, it can modify the int at the supplied address.
* If a function accepts a char *, it can modify the char at the supplied address.

* If a function accepts an char **, it can modify the char * at the supplied
address.

Demo: Swap

fun_with_swap.c

We want to write a function that flips the case of a letter. What should go in
each of the blanks?

void flipCase(?) {

if (isupper(__?_)) {
> = P -

—_— —_—)

} else if (islower(?)) {

__?__ = __p__)
}
}
int main(int argc, char *argv[]) {
char ch = "'g’;
flipCase(?);
printf("%c", ch); // want this to print 'G'

We want to write a function that flips the case of a letter. What should go in

each of the blanks?

void flipCase(char *letter) { ~ We are modifying a specific
if (isupper(*letter)) { instance of the letter, so we pass
*letter = tolower(*letter); | the location of the letter we would
} else if (islower(*letter)) { like to modify.
*letter = toupper(*letter);
}
}
int main(int argc, char *argv[]) {
char ch = "'g’;
flipCase(&ch);

printf("%c", ch); // want this to print 'G'

Sometimes, we would like to modify a string’s pointer itself, rather than just the
characters it points to, e.g., we want to write a function skipSpaces that

modifies a string pointer to skip past any initial spaces. What should go in each
of the blanks?

void skipSpaces(?) {

}
int main(int argc, char *argv[]) {
char *str = " hello”;
skipSpaces(?);
printf("%s", str); // should print "hello"

Sometimes, we would like to modify a string’s pointer itself, rather than just the
characters it points to, e.g., we want to write a function skipSpaces that
modifies a string pointer to skip past any initial spaces. What should go in each

of the blanks?

void skipSpaces(char **strPtr) {

// code that advances *strPtr We are modifying a specific
} instance of the string pointer, so

we pass the location of the string
pointer we would like to modify.

int main(int argc, char *argv[]) {

char *str =" hello";
skipSpaces(&str);
printf("%s", str); // should print "hello"

Sometimes, we would like to modify a string’s pointer itself, rather than just the
characters it points to, e.g., we want to write a function skipSpaces that

modifies a string pointer to skip past any initial spaces. What should go in each
of the blanks?

void skipSpaces(char *strPtr) {
// code incapable of modifying str of main

h This can only advance skipSpace’s
. o own copy of the string pointer, not
int main(int argc, char *argv[]) { Cme freteEE T el

char *str =" hello";

skipSpaces(str);

printf("%s", str); // should print "hello”, but won’t

Pointers to Strings

.] Address Value
void skipSpaces(char **strPtr) {

int numSpaces = strspn(*strPtr, " "); STACK{::main({::

*strPtr += numSpaces;

}

int main(int argc, char *argv[]) {
char *myStr = " hi";
skipSpaces(&myStr);
printf("%s\n", myStr); // hi
return 0;

Pointers to Strings

.] Address Value
void skipSpaces(char **strPtr) {

int numSpaces = strspn(*strPtr, " "); -
*strPtr += numSpaces; STACK| main() myStr 0x105 | Oxfy
} \
int main(int argc, char *argv[]) { - .
char *myStr = " hi"; [-\
skipSpaces(&myStr); XL \?
printf("%s\n", myStr); // hi ox12 ["1°
, return 0; DATA SEGMENT Ox11| 'h'
oxi0| °
oxf| ' '

10

Pointers to Strings

.] Address Value
void skipSpaces(char **strPtr) {

int numSpaces = strspn(*strPtr, " "); -
*strPtr += numSpaces; STACK| main() myStr 0x105 | Oxfy
} \
int main(int argc, char *argv[]) { - . x
char *myStr = " hi"; [v\ ao
skipSpaces (&myStr); XL \?
printf("%s\n", myStr); // hi ox12 | ‘i’
, return 0; DATA SEGMENT Ox11| 'h'
oxi0| °
oxf| ' '

11

Pointers to Strings

Address Value

void skipSpaces(char **strPtr) {

int numSpaces = strspn(*strPtr, " "); [-
, *strPtr += numSpaces; main()| myStroxies o exf
int main(int argc, char *argv[]) { STACK [

k _ mn CO |

gﬂigSpgzgzz&&yStr?% > skipSpaces() strPtr 0xfo

printf("%s\n", myStr); // hi

return 0; o [»
} ox13| '\0'

ox12| ‘i

DATASEGMENT | gy11| 'n°

oxle| "

oxf| ' ' W

Pointers to Strings

Address Value

void skipSpaces(char **strPtr) {

int numSpaces = strspn(*strPtr, " "); [-
, *strPtr += numSpaces; main()| myStroxies L exf
int main(int argc, char *argv[]) { STACK [
char *myStr = " hi";
X strPtr 9xf0
skipSpaces (&myStr); . skipSpaces()
printf("%s\n", myStr); // hi numSpaces ©Oxes8
return 0;
} - - —
ox13| '\0'
ox12| ‘i

DATASEGMENT | 5 11| p:

ox1le| "

oxf| ' ' w

Pointers to Strings

Address Value

void skipSpaces(char **strPtr) {

int numSpaces = strspn(*strPtr, " "); [-
, *strPtr += numSpaces; main() myStroxios | oxf
int main(int argc, char *argv[]) { STACK [
char *myStr = " hi";
X strPtr 9xf0
skipSpaces(&myStr); . skipSpaces()
printf("%s\n", myStr); // hi numSpaces ©Oxes8
return 0;
} - - -
ox13| '\0'
ox12| ‘1

DATASEGMENT | 5 11| p:

ox1le| "

oxf| 't W

Pointers to Strings

Address Value

void skipSpaces(char **strPtr) {

int numSpaces = strspn(*strPtr, " "); [-
, *strPtr += numSpaces; main() myStroxies |_ex11
int main(int argc, char *argv[]) { STACK [
char *myStr = " hi";
X strPtr 9xf0
sk}pSpaces(&myStr); . skipSpaces()
printf("%s\n", myStr); // hi numSpaces ©Oxes
return 0;
} - - -
ox13| '\0'
ox12| ‘i

DATASEGMENT | 511 [tht o

ox1le| "
oxf| '

Pointers to Strings

void skipSpaces(char **strPtr) {

int numSpaces = strspn(*strPtr, " ");
*strPtr += numSpaces;

}

int main(int argc, char *argv[]) {
char *myStr = " hi";
skipSpaces(&myStr);
printf("%s\n", myStr); // hi
return 0;

}

Address

Value

STACK[main(&ys’cr‘ 9x105

DATA SEGMENT

N

Ox13
Ox12
Ox11
0x10

oxf

ox11

\

16

Pointers to Strings

void skipSpaces(char **strPtr) {
int numSpaces = strspn(*strPtr, " ");
*strPtr += numSpaces;

}

int main(int argc, char *argv[]) {
char *myStr = " hi";
skipSpaces(&myStr);
printf("%s\n", myStr); // hi
return 0;

}

Weird thought — 0x11 is a string.

Address

Value

STACK[main(&ys’cr‘ 9x105

DATA SEGMENT

N

Ox13
Ox12
Ox11
0x10

oxf

Ox11

\

17

Strings In Memory

If we create a string as a char[], we can modify its characters because its memory
lives in our stack space.

We cannot set a char[] equal to another value, because it is not a pointer, as it
refers to the block of memory reserved for the original array.

If we pass a char|[] as a parameter, set something equal to it, or perform arithmetic
with it, it's automatically converted to a char *.

If we create a new string with new characters as a char *, we cannot modify its
characters because its memory lives in the data segment.

We can set a char * equal to another value, because it is an assignable pointer.

Adding an offset to a C string gives us a substring that’s many places past the first
character.

If we change characters in a string parameter, these changes will persist outside of the

function.
18

String Behavior #1: If we create a string as
a char[], we can modify its characters

because its memory lives in our stack space.

Character Arrays

: STACK
When we declare an array of characters, contiguous Address Value
memory is allocated on the stack to store the contents of
the entire array. We can modify what is on the stack.
[ox105| "\@’
char str[6]; .
. . 0x104 €
strcpy(str, "apple"); —
ox1e3| 'l
ox102| P’
ox101| P’
str— oxlee| 'a’

20

String Behavior #2: \We cannot set a
char[] equal to another value, because it is
not a pointer; it refers to the block of
memory reserved for the original array.

Character Arrays

An array variable refers to an entire block of memory. We cannot reassign an
existing array to be equal to a new array.

char str[6];

strcpy(str, "apple");
char str2[8];
strcpy(str2, "apple 2");

str = str2; // not allowed!

An array’s size cannot be changed once we create it; we must create another

new array instead. N

String Behavior #3: If we pass a char[]
as a parameter, set something equal to it, or

perform arithmetic with it, it's automatically
converted to a char *.

String Parameters

How do you think the parameter str is being represented?

void fun_times(char *str) { str g;;::::ji:::i:::::;;:E%

¥

int main(int argc, char *argv[]) { local str | 'r' | "2 ["¢’ | 'e' | '\@"'
char local str[5]; -
strcpy(local str, "rice");
fun_times(local str);
return 9;
h A. A copy of the array 1local_str

B. A pointer containing an address to (g7
the first element in local_str §

24

String Parameters

How do you think the parameter str is being represented?

<

void fun_times(char *str) { str @xao
}
int main(int argc, char *argv[]) { local str | 'r' | "2 ["¢’ | 'e' | '\@"'
char local str[5]; -
strcpy(local str, "rice");
fun_times(local str);
return 9;
h A. A copy of the array 1local_str

B.) A pointer containing an address to

the first elementin local str
25

char * Variables

How do you think the local variable str is being represented?

int main(int argc, char *argv[]) {
char local str[5]; str s;;::::ji:::i:::::;;:25
strcpy(local str, "rice");
char *str = local str;

return 0; local str | 'Pr" | "1" | 'c' | "e' | "\O

A. A copy of the array 1local_str

B. A pointer containing an address to (g7
the first element in local_str §

26

char * Variables

How do you think the local variable str is being represented?

int main(int argc, char *argv[]) {
Oxao
char local str[5]; str X
strcpy(local str, "rice");
char *str = local str;
r.‘é'.tur‘n 0; local str | 'Pr" | "1" | "c" | e’ | "\@O'

A. A copy of the array 1local_str
B.) A pointer containing an address to

the first elementin local str
27

char * Variables

How do you think the local variable str is being represented?

int main(int argc, char *argv[]) {
char local str[5]; str s;;::::ji:::i:::::;;:25
strcpy(local str, "rice");
char *str = local str + 2;

return 0; local str | 'Pr" | "1" | 'c' | "e' | "\O

A. A copy of part of the array local_str
B. A pointer containing an addressto ()
the third elementin local_str tx

()

28

char * Variables

How do you think the local variable str is being represented?

int main(int argc, char *argv[]) {
Oxa2
char local str[5]; str X
strcpy(local str, "rice");
char *str = local str + 2;
;ééanw 0; local str | 'Pr" | "1" | 'c' | "e' | "\O

A. A copy of part of the array local_str
B.) A pointer containing an address to
the third elementin local str

29

String Parameters

All string functions take char * parameters — they accept char[], but they are
implicitly converted to char * before being passed.

* strlen(char *str)
e strcmp(char *str1, char *str2)

e char * is still a string in all the core ways a char][] is
» Access/modify characters using bracket notation
* Print it out
* Use string functions
* But under the hood they are represented differently!

» Takeaway: We create strings as char[], pass them around as char *

30

String Behavior #4: If we create a new
string with new characters as a char *, we
cannot modify its characters because its
memory lives in the data segment.

There is another convenient way to create a string if we do not need to modify it
later. We can create a char * and set it directly equal to a string literal.

char *myString = "Hello, world!";

char *empty = 5

= ; // crashes!
printf("%s", myString); // Hello, world!

32

When we declare a char pointer equal to a string
literal, the characters are not stored on the stack.

Address Value

Instead, they are stored in a special area of
memory called the “data segment”. We cannot STACK| stp
modify memory in this segment.

char *str = "hi";

The pointer variable (e.g. str) refers to the address
of the first character of the string in the data DATA SEGMENT
segment.

This applies only to creating new
strings with char *. This does not
apply for making a char * that
points to an existing stack string.

Oxffo

Ox12
Ox11
Ox10

@xlq

-\

\@'

1

lhl

33

Memory Locations

For each code snippet below, can we modify the characters in myStr?

char myStr[6];

Key Question: where do its
characters live? Do they live in
memory we own? Or the read-

only data segment?

34

Memory Locations

For each code snippet below, can we modify the characters in myStr?

char *myStr = "Hi";

Key Question: where do its
characters live? Do they live in
memory we own? Or the read-

only data segment?

35

Memory Locations

For each code snippet below, can we modify the characters in myStr?

char buf[6];
strcpy(buf, "Hi")
char *myStr = buf

Key Question: where do its
characters live? Do they live in
memory we own? Or the read-

only data segment?

36

Memory Locations

For each code snippet below, can we modify the characters in myStr?

char *otherStr = "Hi";
char *myStr = otherStr;

Key Question: where do its
characters live? Do they live in
memory we own? Or the read-

only data segment?

37

Memory Locations

For each code snippet below, can we modify the characters in myStr?

void myFunc(char *myStr) {

}

int main(int argc, char *argv[]) {
char buf[6];
strcpy(buf, "Hi");
myFunc(buf);
return 0;

Key Question: where do its
characters live? Do they live in
memory we own? Or the read-

only data segment?

38

Memory Locations

Q: Is there a way to check in code whether a string’s characters are modifiable?

A: No. This is something you can only tell by looking at the code itself and how
the string was created.

Q: So then if | am writing a string function that modifies a string, how can | tell if
the string passed in is modifiable?

A: You can’t! This is something you instead state as an assumption in your
function documentation. If someone calls your function with a read-only string,
it will crash, but that’s not your function’s fault :-)

39

String Behavior #5: We can set a
char * equal to another value, because it

IS an assignable pointer.

char *

A char * variable refers to a single character. We can reassign an existing char *
pointer to be equal to another char * pointer.

char *str = "apple"; // e.g. oxfffo
char *str2 = "apple 2"; // e.g. Oxfe0
str = str2; // ok! Both store address 0Oxfeo®

41

Arrays and Pointers

: STACK
We can also make a pointer equal to an array; Address Value
it will point to the first element in that array. B

[ox105] '\@'
int main(int argc, char *argv[]) { ox104 | ‘'e!
char str‘[6];") ox103 | '1°
strcpy(str, "apple");
char *ptr = str; main() 0x102 | p"
Ox101 | “p°
} str—_ox100]| 'a'
ptr @xf8!\@x1@0

42

Arrays and Pointers

STACK

We can also make a pointer equal to an array; Address Value
it will point to the first element in that array. B
[ox105] '\@'
int main(int argc, char *argv[]) { ox104 | ‘e
char str[6];") ox103 | '1°
strcpy(str, "apple"); . —
char *ptr = str; main() 0x102 P
Ox101 | “p°
// equivalent str— ox100| 'a’
X - . ‘
char *ptr = &str[0]; UU“@xfsta;Iaa_
// confusingly equivalent, avoid

char *ptr = &str;

String Behavior #6: Adding an offset to a
C string gives us a substring that's many
places past the first character.

Pointer Arithmetic

When we do pointer arithmetic, we are adjusting
the pointer by a certain number of places (e.g.

characters).

char *str = '

char *str2 =
char *str3 =

printf("%s",
printf("%s",
printf("%s",

Iapplell;

str + 1;
str + 3;

str);
str2);
str3);

// e.g. oxffo
// e.g. Oxffl
// e.g. Oxff3

// apple
// pple
// le

TEXT SEGMENT
Address Value
oxff5| "\@'
oxff4| 'e’
oxff3| '1°
oxff2| 'p’
oxff1| 'p'
oxffo| 'a’

45

char *

When we use bracket notation with a pointer, we are
performing pointer arithmetic and dereferencing:

TEXT SEGMENT
Address Value

char *str = "apple"; // e.g. Oxffo
oxff5| "\0'
oxff4| 'e’

// both of these add three places to str, oxifa| 1
X

// and then dereference to get the char there. oxifa | p!
X

// E.g. get memory at Oxff3. —
Oxffl p

char thirdLetter = str[3]; // '1° T
Oxffo a

char thirdLetter = *(str + 3); // '1'

46

String Behavior #7: If we change
characters in a string parameter, these
changes will persist outside of the function.

Strings as Parameters

When we pass a char * string as a parameter,
C makes a copy of the address stored in the
char * and passes it to the function. This
means they both refer to the same memory
location.

void myFunc(char *myStr) {

}
int main(int argc, char *argv[]) {
char *str = "apple";

myFunc(str);

main()

myFunc ()

STACK

Address

Value

str oxfffo

myStr oxffoe

0x10

48

Strings as Parameters

When we pass a char array as a parameter, C
makes a copy of the address of the first array

element and passes it (as a char *) to the function.

void myFunc(char *myStr) {

¥

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
myFunc(str);

main()

myFunc ()

Add PengAC\7alue

[ox105] '\@'
Oox104 [‘e’

ox103 | '1°

ox102| 'p'

Ox101 [“p"
str—_ox100) 'a'

myStr oxf

Strings as Parameters

When we pass a char array as a parameter, C
makes a copy of the address of the first array

element and passes it (as a char *) to the function.

void myFunc(char *myStr) {

¥

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
// equivalent
char *strAlt = str;
myFunc(strAlt);

main()

myFunc ()

STACK

Address

Value

0x105
0x104
0x103
0x102
0x101
str—_ox100

myStr oxf

Strings as Parameters

This means if we modify characters in myFunc,

the changes will persist back in main!

void myFunc(char *myStr) {
myStr[4] = "y’';
}

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
myFunc(str);
printf("%s", str); // apply

main()

myFunc ()

STACK

Address Value

str—_ox1e0]

myStr

Ox105| '\0'
ox104| ‘e’
ox103 | "1
ox102 | 'p"
p
a

©x101 '

Oxf

Strings as Parameters

This means if we modify characters in myFunc,

the changes will persist back in main!

void myFunc(char *myStr) {
myStr[4] = 'y’;
}

int main(int argc, char *argv[]) {
char str[6];
strcpy(str, "apple");
myFunc(str);
printf("%s", str); // apply

main()

myFunc ()

STACK

Address Value

str—_ox1e0]

myStr

Ox105| "\0'
Ox104 |y
0x103 [1
ox102 [‘p"
%
a

©x101 '

Oxf

Strings In Memory

If we create a string as a char[], we can modify its characters because its memory
lives in our stack space.

We cannot set a char[] equal to another value, because it is not a pointer; it refers
to the block of memory reserved for the original array.

If we pass a char[] as a parameter, set something equal to it, or perform arithmetic
with it, it’s automatically converted to a char *.

If we create a new string with new characters as a char *, we cannot modify its
characters because its memory lives in the data segment.

We can set a char * equal to another value, because it is a reassign-able pointer.

Adding an offset to a C string gives us a substring that many places past the first
character.

If we change characters in a string parameter, these changes will persist outside of the

function.
53

Arrays vs. Pointers

 When you create an array, you are making space for each element in the array.
 When you create a pointer, you are making space for a 64-bit address.

* Arrays "decay to pointers" when passed as parameters.

* &arr does nothing on arrays, but &ptr on pointers gets its address

* sizeof(arr) gets the size of an array in bytes, but sizeof(ptr) is always 8

54

