
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Nick Troccoli, Lisa Yan, Jerry Cain and others.

CS107, Lecture 10 Extras
Stack and Heap

Reading: K&R 5.6-5.9 or Essential C section 6 on the heap
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5477907

https://edstem.org/us/courses/65949/discussion/5477907

2

The Stack with Recursion
Memory

0x0

main
argc:

argv:

Each function call has its own stack frame for its own copy of
variables.

int factorial(int n) {
 if (n == 1) {
 return 1;
 } else {
 return n * factorial(n – 1);
 }
}

int main(int argc, char *argv[]) {
 printf("%d", factorial(4));
 return 0;
}

1

0xfff0
Stack

3

The Stack with Recursion
Memory

0x0

main
argc:

argv:

Each function call has its own stack frame for its own copy of
variables.

int factorial(int n) {
 if (n == 1) {
 return 1;
 } else {
 return n * factorial(n – 1);
 }
}

int main(int argc, char *argv[]) {
 printf("%d", factorial(4));
 return 0;
}

1

0xfff0
Stack

4

The Stack with Recursion
Memory

0x0

main
argc:

argv:

Each function call has its own stack frame for its own copy of
variables.

int factorial(int n) {
 if (n == 1) {
 return 1;
 } else {
 return n * factorial(n – 1);
 }
}

int main(int argc, char *argv[]) {
 printf("%d", factorial(4));
 return 0;
}

factorial
n:

1

0xfff0
Stack

4

5

The Stack with Recursion
Memory

0x0

main
argc:

argv:

Each function call has its own stack frame for its own copy of
variables.

int factorial(int n) {
 if (n == 1) {
 return 1;
 } else {
 return n * factorial(n – 1);
 }
}

int main(int argc, char *argv[]) {
 printf("%d", factorial(4));
 return 0;
}

factorial
n:

1

0xfff0
Stack

4

6

The Stack with Recursion
Memory

0x0

main
argc:

argv:

Each function call has its own stack frame for its own copy of
variables.

int factorial(int n) {
 if (n == 1) {
 return 1;
 } else {
 return n * factorial(n – 1);
 }
}

int main(int argc, char *argv[]) {
 printf("%d", factorial(4));
 return 0;
}

factorial
n:

1

0xfff0
Stack

4

factorial
n: 3

7

The Stack with Recursion
Memory

0x0

main
argc:

argv:

Each function call has its own stack frame for its own copy of
variables.

int factorial(int n) {
 if (n == 1) {
 return 1;
 } else {
 return n * factorial(n – 1);
 }
}

int main(int argc, char *argv[]) {
 printf("%d", factorial(4));
 return 0;
}

factorial
n:

1

0xfff0
Stack

4

factorial
n: 3

8

The Stack with Recursion
Memory

0x0

main
argc:

argv:

Each function call has its own stack frame for its own copy of
variables.

int factorial(int n) {
 if (n == 1) {
 return 1;
 } else {
 return n * factorial(n – 1);
 }
}

int main(int argc, char *argv[]) {
 printf("%d", factorial(4));
 return 0;
}

factorial
n:

1

0xfff0
Stack

4

factorial
n: 3

factorial
n: 2

9

The Stack with Recursion
Memory

0x0

main
argc:

argv:

Each function call has its own stack frame for its own copy of
variables.

int factorial(int n) {
 if (n == 1) {
 return 1;
 } else {
 return n * factorial(n – 1);
 }
}

int main(int argc, char *argv[]) {
 printf("%d", factorial(4));
 return 0;
}

factorial
n:

1

0xfff0
Stack

4

factorial
n: 3

factorial
n: 2

10

The Stack with Recursion
Memory

0x0

main
argc:

argv:

Each function call has its own stack frame for its own copy of
variables.

int factorial(int n) {
 if (n == 1) {
 return 1;
 } else {
 return n * factorial(n – 1);
 }
}

int main(int argc, char *argv[]) {
 printf("%d", factorial(4));
 return 0;
}

factorial
n:

1

0xfff0
Stack

4

factorial
n: 3

factorial
n: 2

factorial
n: 1

11

The Stack with Recursion
Memory

0x0

main
argc:

argv:

Each function call has its own stack frame for its own copy of
variables.

int factorial(int n) {
 if (n == 1) {
 return 1;
 } else {
 return n * factorial(n – 1);
 }
}

int main(int argc, char *argv[]) {
 printf("%d", factorial(4));
 return 0;
}

factorial
n:

1

0xfff0
Stack

4

factorial
n: 3

factorial
n: 2

factorial
n: 1

Returns 1

12

The Stack with Recursion
Memory

0x0

main
argc:

argv:

Each function call has its own stack frame for its own copy of
variables.

int factorial(int n) {
 if (n == 1) {
 return 1;
 } else {
 return n * factorial(n – 1);
 }
}

int main(int argc, char *argv[]) {
 printf("%d", factorial(4));
 return 0;
}

factorial
n:

1

0xfff0
Stack

4

factorial
n: 3

factorial
n: 2

Returns 2

13

The Stack with Recursion
Memory

0x0

main
argc:

argv:

Each function call has its own stack frame for its own copy of
variables.

int factorial(int n) {
 if (n == 1) {
 return 1;
 } else {
 return n * factorial(n – 1);
 }
}

int main(int argc, char *argv[]) {
 printf("%d", factorial(4));
 return 0;
}

factorial
n:

1

0xfff0
Stack

4

factorial
n: 3

Returns 6

14

The Stack with Recursion
Memory

0x0

main
argc:

argv:

Each function call has its own stack frame for its own copy of
variables.

int factorial(int n) {
 if (n == 1) {
 return 1;
 } else {
 return n * factorial(n – 1);
 }
}

int main(int argc, char *argv[]) {
 printf("%d", factorial(4));
 return 0;
}

factorial
n:

1

0xfff0
Stack

4
Returns 24

15

The Stack with Recursion
Memory

0x0

main
argc:

argv:

Each function call has its own stack frame for its own copy of
variables.

int factorial(int n) {
 if (n == 1) {
 return 1;
 } else {
 return n * factorial(n – 1);
 }
}

int main(int argc, char *argv[]) {
 printf("%d", factorial(4));
 return 0;
}

1

0xfff0
Stack

16

The Stack with Recursion
Memory

0x0

main
argc:

argv:

Each function call has its own stack frame for its own copy of
variables.

int factorial(int n) {
 if (n == 1) {
 return 1;
 } else {
 return n * factorial(n – 1);
 }
}

int main(int argc, char *argv[]) {
 printf("%d", factorial(4));
 return 0;
}

1

0xfff0
Stack

17

Extra Practice

18

strdup means string duplicate
How can we implement strdup using functions we’ve already seen?

[Note] Use library functions:
<stdlib.h>: malloc
<assert.h>: assert
<string.h>: strcpy, strlen

1
2
3
4
5
6

char *mystrdup(const char *str) {
 char *heapstr = _____(A)_____;
 _____(B)_____;
 _____(C)_____;
 return heapstr;
}

19

strdup means string duplicate
How can we implement strdup using functions we’ve already seen?

1
2
3
4
5
6

char *mystrdup(const char *str) {
 char *heapstr = malloc(strlen(str) + 1);
 assert(heapstr != NULL);
 strcpy(heapstr, str);
 return heapstr;
}

char arrays differ from other arrays in that valid
strings must be null-terminated (i.e., have an extra
ending char).
(Note: library strdup doesn’t have an assert—it
leaves the assert to the callee)

20

char *str = strdup("Hello");
assert(str != NULL);
char *ptr = str + 1;
for (int i = 0; i < 5; i++) {
 int *num = malloc(sizeof(int));
 *num = i;
 printf("%s %d\n", ptr, *num);

}
printf("%s\n", str);

Goodbye, Free Memory
Where/how should we free memory below so that all memory is freed properly?

Answer in chat:
“After line N: free(…);”

What if we didn’t free?

1
2
3
4
5
6
7
8
9

valgrind --leak-check=full --show-leak-kinds=all …

Recommendation: Don’t
worry about putting in frees
until after you’re finished
with functionality.
Memory leaks will rarely
crash your CS107 programs.

21

char *str = strdup("Hello");
assert(str != NULL);
char *ptr = str + 1;
for (int i = 0; i < 5; i++) {
 int *num = malloc(sizeof(int));
 *num = i;
 printf("%s %d\n", ptr, *num);
 free(num);

}
printf("%s\n", str);
free(str);

Goodbye, Free Memory
Where/how should we free memory below so that all memory is freed properly?

1
2
3
4
5
6
7
8
9

10
11

valgrind --leak-check=full --show-leak-kinds=all …

Recommendation: Don’t
worry about putting in frees
until after you’re finished
with functionality.
Memory leaks will rarely
crash your CS107 programs.

22

strcat_extend
Write a function that takes in a heap-allocated str1, enlarges it, and concatenates
str2 onto it.

char *strcat_extend(char *heap_str, const char *concat_str) {
 (_________________(1)__________________);
 heap_str = realloc(___(2A)___,___(2B)___);
 (_________________(3)__________________);
 strcat(___(4A)___, ___(4B)___);
 return heapstr;
}

1
2
3
4
5
6
7 char *str = strdup("Hello ");

str = strcat_extend(str, "world!");
printf("%s\n", str);
free(str);

Example usage:

23

strcat_extend
Write a function that takes in a heap-allocated str1, enlarges it, and concatenates
str2 onto it.

char *strcat_extend(char *heap_str, const char *concat_str) {
 int new_length = strlen(heap_str) + strlen(concat_str) + 1;
 heap_str = realloc(heap_str, new_length);
 assert(heap_str != NULL);
 strcat(heap_str, concat_str);
 return heapstr;
}

1
2
3
4
5
6
7 char *str = strdup("Hello ");

str = strcat_extend(str, "world!");
printf("%s\n", str);
free(str);

Example usage:

