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CS107, Lecture 10 Extras
Stack and Heap

Reading: K&R 5.6-5.9 or Essential C section 6 on the heap
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5477907

https://edstem.org/us/courses/65949/discussion/5477907
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The Stack with Recursion
Memory

0x0

main
argc:

argv: 

Each function call has its own stack frame for its own copy of 
variables.

int factorial(int n) {
    if (n == 1) {
        return 1;
    } else {
        return n * factorial(n – 1);
    }
}

int main(int argc, char *argv[]) {
    printf("%d", factorial(4));
    return 0;
}
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Extra Practice
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strdup means string duplicate
How can we implement strdup using functions we’ve already seen?

[Note] Use library functions:
<stdlib.h>: malloc
<assert.h>: assert
<string.h>: strcpy, strlen

1
2
3
4
5
6

char *mystrdup(const char *str) {
    char *heapstr = _____(A)_____;
    _____(B)_____;
    _____(C)_____;
    return heapstr;
}
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strdup means string duplicate
How can we implement strdup using functions we’ve already seen?

1
2
3
4
5
6

char *mystrdup(const char *str) {
    char *heapstr = malloc(strlen(str) + 1);
    assert(heapstr != NULL);
    strcpy(heapstr, str);
    return heapstr;
}

char arrays differ from other arrays in that valid 
strings must be null-terminated (i.e., have an extra 
ending char).
(Note: library strdup doesn’t have an assert—it 
leaves the assert to the callee)
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char *str = strdup("Hello");
assert(str != NULL);
char *ptr = str + 1;
for (int i = 0; i < 5; i++) {
 int *num = malloc(sizeof(int));
 *num = i;
 printf("%s %d\n", ptr, *num);

}
printf("%s\n", str);

Goodbye, Free Memory
Where/how should we free memory below so that all memory is freed properly?

Answer in chat:
“After line N: free(…);”

What if we didn’t free?

1
2
3
4
5
6
7
8
9

valgrind --leak-check=full --show-leak-kinds=all …

Recommendation: Don’t 
worry about putting in frees 
until after you’re finished 
with functionality. 
Memory leaks will rarely 
crash your CS107 programs.
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char *str = strdup("Hello");
assert(str != NULL);
char *ptr = str + 1;
for (int i = 0; i < 5; i++) {
 int *num = malloc(sizeof(int));
 *num = i;
 printf("%s %d\n", ptr, *num);
 free(num);

}
printf("%s\n", str);
free(str);

Goodbye, Free Memory
Where/how should we free memory below so that all memory is freed properly?

1
2
3
4
5
6
7
8
9

10
11

valgrind --leak-check=full --show-leak-kinds=all …

Recommendation: Don’t 
worry about putting in frees 
until after you’re finished 
with functionality. 
Memory leaks will rarely 
crash your CS107 programs.
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strcat_extend
Write a function that takes in a heap-allocated str1, enlarges it, and concatenates 
str2 onto it.

char *strcat_extend(char *heap_str, const char *concat_str) {
    (_________________(1)__________________);
    heap_str = realloc(___(2A)___,___(2B)___);
    (_________________(3)__________________);
    strcat(___(4A)___, ___(4B)___);
    return heapstr;
}

1
2
3
4
5
6
7 char *str = strdup("Hello ");

str = strcat_extend(str, "world!");
printf("%s\n", str);
free(str);

Example usage:
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char *strcat_extend(char *heap_str, const char *concat_str) {
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    heap_str = realloc(heap_str, new_length);
    assert(heap_str != NULL);
    strcat(heap_str, concat_str);
    return heapstr;
}

1
2
3
4
5
6
7 char *str = strdup("Hello ");

str = strcat_extend(str, "world!");
printf("%s\n", str);
free(str);

Example usage:


