CS107, Lecture 10 Extras
Stack and Heap

Reading: K&R 5.6-5.9 or Essential C section 6 on the heap
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5477907
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The Stack with Recursion

Each function call has its own stack frame for its own copy of Memory
variables. -
main
int factorial(int n) { arge: [ 4
if (n == 1) { Stack =—
return 1; argv: | OxfffO
} else { -

return n * factorial(n - 1);

}
}

int main(int argc, char *argv[]) {
printf("%d", factorial(4));
return 0;
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: : . Memory
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Extra Practice



strdup means string duplicate

How can we implement strdup using functions we’ve already seen?

1 char *mystrdup(const char *str) {
2 char *heapstr = (A) ;
3 (B) ;

4 (C) ;

5 return heapstr;

6 }

[Note] Use library functions:
<stdlib.h>: malloc
<assert.h>: assert
<string.h>: strcpy, strlen




strdup means string duplicate

How can we implement strdup using functions we’ve already seen?

1 char *mystrdup(const char *str) {

2 char *heapstr = malloc(strlen(str) + 1);
3 assert(heapstr != NULL);

4 strcpy(heapstr, str);

5 return heapstr;

6

}

char arrays differ from other arrays in that valid
strings must be null-terminated (i.e., have an extra
ending char).

(Note: library strdup doesn’t have an assert—it
leaves the assert to the callee)
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Goodbye, Free Memory

Where/how should we free memory below so that all memory is freed properly?

. . Recommendation: Don’t
1 char *str = strdup("Hello"); worry about putting in frees
2 assert(str != NULL); until after you’re finished
3 char *ptr = str + 1; with functionality.
4 for (int 1 =0; 1 < 5; i++) { Memory leaks will rarely
5 int *num = malloc(sizeof(int)); |crashyourCS107 programs.
6 *num = 1;
7 printf("%s %d\n", ptr, *num);
8 } Answer in chat:
9 printf("%s\n", str); “After line N: free(...);”
What if we didn’t free? D@Q
O

valgrind --leak-check=full --show-leak-kinds=all .. 2o



Goodbye, Free Memory

Where/how should we free memory below so that all memory is freed properly?

AR

RO VoOONOOCUVIPD WN R

char *str = strdup("Hello");
assert(str != NULL);
char *ptr = str + 1;
for (int i = 0; 1 < 5; i++) {
int *num = malloc(sizeof(int));
*num = 1i;
printf("%s %d\n", ptr, *num);
free(num);
}
printf("%s\n", str);
free(str);
valgrind --leak-check=full

Recommendation: Don’t
worry about putting in frees
until after you're finished
with functionality.

Memory leaks will rarely
crash your CS107 programs.

--show-leak-kinds=all ..
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strcat_extend

Write a function that takes in a heap-allocated strl, enlarges it, and concatenates
str2 onto it.

1 char *strcat_extend(char *heap str, const char *concat str) {

N Oy vl b WiN

( (1) )s
heap str = realloc(__ (2A) (2B) );

( (3) E

strcat( (4A) , (4B) ); N

return heapstr;

@4
Example usage: <
char *str = strdup("Hello ");

str = strcat_extend(str, "world!");
printf("%s\n", str);

free(str);
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strcat_extend

Write a function that takes in a heap-allocated strl, enlarges it, and concatenates
str2 onto it.

1 char *strcat_extend(char *heap str, const char *concat str) {
int new_length = strlen(heap_str) + strlen(concat_str) + 1;
heap _str = realloc(heap_str, new _length);

assert(heap_str != NULL);
strcat(heap_str, concat_str);

return heapstr;
Example usage:

} char *str = strdup("Hello ");

str = strcat_extend(str, "world!");
printf("%s\n", str);

free(str);

N Oy vl b WiN
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