CS107, Lecture 10 Extras
Stack and Heap

Reading: K&R 5.6-5.9 or Essential C section 6 on the heap
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5477907

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Nick Troccoli, Lisa Yan, Jerry Cain and others.

https://edstem.org/us/courses/65949/discussion/5477907

The Stack with Recursion

Each function call has its own stack frame for its own copy of Memory
variables. -
main
int factorial(int n) { arge: [4
if (n == 1) { Stack =—
return 1; argv: | OxfffO
} else { -

return n * factorial(n - 1);

}
}

int main(int argc, char *argv[]) {
printf("%d", factorial(4));
return 0;

0x0

The Stack with Recursion

Each function call has its own stack frame for its own copy of Memory
variables. -
main
int factorial(int n) { arge: [4
if (n == 1) { Stack =—
return 1; argv: | OxfffO
} else { -
return n * factorial(n - 1); ‘
}
}

int main(int argc, char *argv[]) {
printf("%d", factorial(4));
return 0;

0x0

The Stack with Recursion

Each function call has its own stack frame for its own copy of Memory
variables. -
main
int factorial(int n) { arge: [4
if (n == 1) { Stack =
return 1; argv: | OxfffO
} else { . factorial
return n * factorial(n - 1); n:| 4
} _
}

int main(int argc, char *argv[]) {
printf("%d", factorial(4));
return 0;

0x0 4

The Stack with Recursion

: : : Memory
Each function call has its own stack frame for its own copy of ——
variables. -
main
int factorial(int n) { arge: [4
if (n == 1) { Stack =
return 1; argv: | OxfffO
} else { . factorial
return n * factorial(n - 1); n:
H 4
} -
} $
int main(int argc, char *argv[]) {
printf("%d", factorial(4));
return 0;
}
0x0 >

The Stack with Recursion

Each function call has its own stack frame for its own copy of Memory
variables. -
main
int factorial(int n) { arge: [4
if (n == 1) { Stack =
return 1; argv: | OxfffO
} else { . factorial
return n * factorial(n - 1); n:| 4
}
} factorial
int main(int argc, char *argv[]) { _ E

printf("%d", factorial(4));
return 0;

0x0 ©

The Stack with Recursion

Each function call has its own stack frame for its own copy of Memory
variables. —
main
int factorial(int n) { arge: [4
if (n == 1) { Stack =
return 1; argv: | OxfffO
} else { factorial
return n * factorial(n - 1); n:
H 4
}
} factorial
n
int main(int argc, char *argv[]) { _ 3
printf("%d", factorial(4));
return 0; ‘

0x0

The Stack with Recursion

Each function call has its own stack frame for its own copy of Memory
variables. -
main
int factorial(int n) { arge: [4
if (n == 1) { Stack =
return 1; argv: | OxfffO
} else { factorial
return n * factorial(n - 1); n:| 4
}
} factorial
n:
int main(int argc, char *argv[]) { &
printf("%d", factorial(4)); factorial
return 9; n:| o
} -

0x0 8

The Stack with Recursion

Each function call has its own stack frame for its own copy of Memory
variables. -
main
int factorial(int n) { arge: [4
if (n == 1) { Stack =
return 1; argv: | OxfffO
} else { factorial
return n * factorial(n - 1); n:| 4
}
} factorial
n:
int main(int argc, char *argv[]) { &
printf("%d", factorial(4)); factorial
return 9; n:| o
} -

0x0 ?

The Stack with Recursion

Each function call has its own stack frame for its own copy of Memory
variables. -
main
int factorial(int n) { arge: [4
if (n == 1) { Stack =
return 1; argv: | OxfffO
} else { factorial
return n * factorial(n - 1); n:| 4
}
} factorial
n:
int main(int argc, char *argv[]) { &
printf("%d", factorial(4)); factorial
return 9; n:| o
}

0x0 0

The Stack with Recursion

: : . Memory
Each function call has its own stack frame for its own copy of €
variables. —
main
int factorial(int n) { arge: [4
if (n == 1) { Stack =
return 1; argv: | OxfffO
} else { . factorial
return n * factorial(n - 1); n:| 4
}
} factorial
n:
int main(int argc, char *argv[]) { 5
printf("%d", factorial(4));
return 0;
}
Returns 1

0x0 Hl

The Stack with Recursion

Each function call has its own stack frame for its own copy of Memory
variables. -
main
int factorial(int n) { arge: [4
if (n == 1) { Stack =
return 1; argv: | OxfffO
} else { factorial
return n * factorial(n - 1); 0
1 4
}
} factorial
n:
int main(int argc, char *argv[]) { &
printf("%d", factorial(4)); Returns 2 factorial
return 9; n:| o
}

0x0 2

The Stack with Recursion

Each function call has its own stack frame for its own copy of Memory
variables. -
main
int factorial(int n) { arge: [4
if (n == 1) { Stack =
return 1; argv: | OxfffO
} else { . factorial
return n * factorial(n - 1); n:| 4
}
} Returns 6 factorial
n:13

int main(int argc, char *argv[]) {
printf("%d", factorial(4));
return 0;

0x0 3

The Stack with Recursion

Each function call has its own stack frame for its own copy of Memory
variables. -
main
int factorial(int n) { arge: [4

if (n == 1) { Stack
return 1; argv: | OxfffO

} else { :
return n * factorial(n - 1); Returns 24 Zactoria

} n:| 4

}

int main(int argc, char *argv[]) {
printf("%d", factorial(4));
return 0;

0x0 4

The Stack with Recursion

Each function call has its own stack frame for its own copy of Memory
variables. -
main
int factorial(int n) { arge: [4
if (n == 1) { Stack =—
return 1; argv: | OxfffO
} else { -

return n * factorial(n - 1);

}
}

int main(int argc, char *argv[]) {
printf("%d", factorial(4));
return 0;

15

0x0

The Stack with Recursion

Each function call has its own stack frame for its own copy of Memory
variables. -
main
int factorial(int n) { arge: [4
if (n == 1) { Stack =—
return 1; argv: | OxfffO
} else { -

return n * factorial(n - 1);

}
}

int main(int argc, char *argv[]) {
printf("%d", factorial(4));
return 0;

16

0x0

Extra Practice

strdup means string duplicate

How can we implement strdup using functions we’ve already seen?

1 char *mystrdup(const char *str) {
2 char *heapstr = (A) ;
3 (B) ;

4 (C) ;

5 return heapstr;

6 }

[Note] Use library functions:
<stdlib.h>: malloc
<assert.h>: assert
<string.h>: strcpy, strlen

strdup means string duplicate

How can we implement strdup using functions we’ve already seen?

1 char *mystrdup(const char *str) {

2 char *heapstr = malloc(strlen(str) + 1);
3 assert(heapstr != NULL);

4 strcpy(heapstr, str);

5 return heapstr;

6

}

char arrays differ from other arrays in that valid
strings must be null-terminated (i.e., have an extra
ending char).

(Note: library strdup doesn’t have an assert—it
leaves the assert to the callee)

19

Goodbye, Free Memory

Where/how should we free memory below so that all memory is freed properly?

. . Recommendation: Don’t
1 char *str = strdup("Hello"); worry about putting in frees
2 assert(str != NULL); until after you’re finished
3 char *ptr = str + 1; with functionality.
4 for (int 1 =0; 1 < 5; i++) { Memory leaks will rarely
5 int *num = malloc(sizeof(int)); |crashyourCS107 programs.
6 *num = 1;
7 printf("%s %d\n", ptr, *num);
8 } Answer in chat:
9 printf("%s\n", str); “After line N: free(...);”
What if we didn’t free? D@Q
O

valgrind --leak-check=full --show-leak-kinds=all .. 2o

Goodbye, Free Memory

Where/how should we free memory below so that all memory is freed properly?

AR

RO VoOONOOCUVIPD WN R

char *str = strdup("Hello");
assert(str != NULL);
char *ptr = str + 1;
for (int i = 0; 1 < 5; i++) {
int *num = malloc(sizeof(int));
*num = 1i;
printf("%s %d\n", ptr, *num);
free(num);
}
printf("%s\n", str);
free(str);
valgrind --leak-check=full

Recommendation: Don’t
worry about putting in frees
until after you're finished
with functionality.

Memory leaks will rarely
crash your CS107 programs.

--show-leak-kinds=all ..

21

strcat_extend

Write a function that takes in a heap-allocated strl, enlarges it, and concatenates
str2 onto it.

1 char *strcat_extend(char *heap str, const char *concat str) {

N Oy vl b WiN

((1))s
heap str = realloc(__ (2A) (2B));

((3) E

strcat((4A) , (4B)); N

return heapstr;

@4
Example usage: <
char *str = strdup("Hello ");

str = strcat_extend(str, "world!");
printf("%s\n", str);

free(str);

22

strcat_extend

Write a function that takes in a heap-allocated strl, enlarges it, and concatenates
str2 onto it.

1 char *strcat_extend(char *heap str, const char *concat str) {
int new_length = strlen(heap_str) + strlen(concat_str) + 1;
heap _str = realloc(heap_str, new _length);

assert(heap_str != NULL);
strcat(heap_str, concat_str);

return heapstr;
Example usage:

} char *str = strdup("Hello ");

str = strcat_extend(str, "world!");
printf("%s\n", str);

free(str);

N Oy vl b WiN

23

