
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Nick Troccoli, Lisa Yan, Jerry Cain and others.

CS107, Lecture 10
Stack and Heap

Reading: K&R 5.6-5.9 or Essential C section 6 on the heap
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5477907

https://edstem.org/us/courses/65949/discussion/5477907

2

Arrays
Address Value

…

0x105 '\0'

0x104 'e'

0x103 'l'

0x102 'p'

0x101 'p'

0x100 'a'

…

When you declare an array, contiguous memory is allocated
on the stack to store the contents of the entire array.

char str[6];
strcpy(str, "apple");

The array variable (e.g. str) is not a pointer; it refers to the
entire array contents. In fact, sizeof returns the size of the
entire array!

size_t num_bytes = sizeof(str); // 6
str

STACK

3

Arrays
An array variable refers to an entire block of memory. You cannot reassign an
existing array to be equal to a new array.

int nums[] = {1, 2, 3};
int nums2[] = {4, 5, 6, 7};
nums = nums2; // not allowed!

An array’s size cannot be changed once you create it. You must create another
array instead.

4

Arrays as Parameters
When you pass an array as a parameter, C makes a
copy of the address of the first array element, and
passes it (a pointer) to the function.

void myfunc(char *mystr) {
 ...
}

int main(int argc, char *argv[]) {
 char str[3];
 strcpy(str, "hi");
 myfunc(str);
 ...
}

Address Value
0x1f2 '\0'

0x1f1 'i'

0x1f0 'h'
...

0xff

0xfe

0xfd

0xfc

0xfb

0xfa

0xf9

0xf8
...

str

mystr

main()

STACK

0x1f0myfunc()

5

Arrays as Parameters
This also means we can no longer get the full size of
the array using sizeof, because now it is just a
pointer.

void myfunc(char *myStr) {
 size_t size = sizeof(myStr); // 8
}

int main(int argc, char *argv[]) {
 char str[3];
 strcpy(str, "hi");
 size_t size = sizeof(str); // 3
 myfunc(str);
 ...
}

Address Value
0x1f2 '\0'

0x1f1 'i'

0x1f0 'h'
...

0xff

0xfe

0xfd

0xfc

0xfb

0xfa

0xf9

0xf8

str

mystr

main()

STACK

myfunc() 0x1f0

6

sizeof returns the size of an array, or 8
for a pointer. Therefore, when we pass an
array as a parameter, we can no longer

use sizeof to get its full size.

7

Arrays and Pointers
You can also make a pointer equal to an array; it will
point to the first element in that array.

int main(int argc, char *argv[]) {
 char str[3];
 strcpy(str, "hi");
 char *ptr = str;
 ...
}

Address Value
0x1f2 '\0'
0x1f1 'i'
0x1f0 'h'
0x1ef
0x1ee
0x1ed
0x1ec
0x1eb
0x1ea
0x1e9
0x1e8

str

ptr

main()

STACK

0x1f0

8

Arrays and Pointers
You can also make a pointer equal to an array; it will
point to the first element in that array.

int main(int argc, char *argv[]) {
 char str[3];
 strcpy(str, "hi");
 char *ptr = str;

 // equivalent
 char *ptr = &str[0];

 // equivalent, but avoid at all costs
 char *ptr = &str;
 ...
}

Address Value
0x1f2 '\0'
0x1f1 'i'
0x1f0 'h'
0x1ef
0x1ee
0x1ed
0x1ec
0x1eb
0x1ea
0x1e9
0x1e8

str

ptr

main()

STACK

0x1f0

9

Pointer Arithmetic
When you do pointer arithmetic, you are adjusting the
pointer by a certain number of places (e.g., characters).

char *str = "apple"; // e.g. 0xff0
char *str1 = str + 1; // e.g. 0xff1
char *str3 = str + 3; // e.g. 0xff3

printf("%s", str); // apple
printf("%s", str1); // pple
printf("%s", str3); // le

Address Value

…

0xff5 '\0'

0xff4 'e'

0xff3 'l'

0xff2 'p'

0xff1 'p'

0xff0 'a'

…

DATA SEGMENT

10

Pointer Arithmetic
Pointer arithmetic does not work in bytes. Instead, it
works in the size of the type it points to.

int numbers[] = {52, 23, 12, 34, 16, 1};
int *nums = numbers; // e.g., 0xff0
int *nums1 = nums + 1; // e.g., 0xff4
int *nums3 = nums + 3; // e.g., 0xffc

printf("%d", *nums); // 52
printf("%d", *nums1); // 23
printf("%d", *nums3); // 34

Address Value

…

0x1004 1

0x1000 16

0xffc 34

0xff8 12

0xff4 23

0xff0 52

…

STACK

11

Pointer Arithmetic
Pointer arithmetic does not work in bytes. Instead, it
works in the size of the type it points to.

int numbers[] = {52, 23, 12, 34, 16, 1};
int *nums = numbers; // e.g., 0xff0
int *nums3 = nums + 3; // e.g., 0xffc
int *nums2 = nums3 - 1; // e.g., 0xff8

printf("%d", *nums); // 52
printf("%d", *nums2); // 12
printf("%d", *nums3); // 34

Address Value

…

0x1004 1

0x1000 16

0xffc 34

0xff8 12

0xff4 23

0xff0 52

…

STACK

12

Pointer Arithmetic
When you use bracket notation with a pointer, you are
actually performing pointer arithmetic and dereferencing:

char *str = "apple"; // e.g. 0xff0

// both of these add four places to str,
// and then dereference to get the char there.
// E.g. get memory at 0xff4.
char fifthLetter = str[4]; // 'e'
char fifthLetter = *(str + 4); // 'e'

Address Value

…

0xff5 '\0'

0xff4 'e'

0xff3 'l'

0xff2 'p'

0xff1 'p'

0xff0 'a'

…

DATA SEGMENT

13

Pointer Arithmetic
Pointer arithmetic with two pointers does not give the byte
difference. Instead, it counts the number of quantum
elements in between the two addresses.

int numbers[] = {52, 23, 12, 34, 16, 1};
int *nums = numbers; // e.g., 0xff0
int *nums3 = nums + 3; // e.g., 0xffc
size_t diff = nums3 - nums; // 3

Address Value

…

0x1004 1

0x1000 16

0xffc 34

0xff8 12

0xff4 23

0xff0 52

…

STACK

14

CS107 Topic 3: How can we
effectively manage all types

of memory in our
programs?

15

CS107 Topic 3
How can we effectively manage all types of memory in our programs?

Why is answering this question important?
• Shows us how we can pass around data efficiently using pointers (last time)
• Introduces us to the heap and the allocation of memory that we manage

ourselves (this time)

assign3: implement a function using resizable arrays to read lines of any length from
a file and write 2 programs using that function to print the last N lines of a file and print
just the unique lines of a file. These programs emulate the tail and uniq Unix builtins.

16

Learning Goals
• Learn about the differences between the stack and the heap and when to use

each one
• Become familiar with the malloc, calloc, realloc and free functions for

managing memory on the heap

17

Memory Layout
• We are going to dive deeper into different areas of

memory used by our programs.
• The stack is the place where all local variables and

parameters live for each function. A function’s "stack
frame" goes away when the function returns.
• The stack grows downwards when a new function is

called and shrinks upwards when the function exits.

18

The Stack
Memory

0x0

main

 argc:

 argv:

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 printf("Done.");
 return 0;
}

1

0xfff0

Stack

19

The Stack
Memory

0x0

main

a: argc:

 argv:

42

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 printf("Done.");
 return 0;
}

1

0xfff0

Stack

20

The Stack
Memory

0x0

main

a: argc:

b: argv:

42

17

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 printf("Done.");
 return 0;
}

1

0xfff0

Stack

21

The Stack
Memory

0x0

main

a: argc:

b: argv:

42

17

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 printf("Done.");
 return 0;
}

1

0xfff0

Stack

22

The Stack
Memory

0x0

main

a: argc:

b: argv:

42

17

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 printf("Done.");
 return 0;
}

func1

1

0xfff0

Stack

23

The Stack
Memory

0x0

main

a: argc:

b: argv:

42

17

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 printf("Done.");
 return 0;
}

func1

c:

99

1

0xfff0

Stack

24

The Stack
Memory

0x0

main

a: argc:

b: argv:

42

17

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 printf("Done.");
 return 0;
}

func1

c:

99

1

0xfff0

Stack

25

The Stack
Memory

0x0

main

a: argc:

b: argv:

42

17

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 printf("Done.");
 return 0;
}

func1

c:

99

func2

1

0xfff0

Stack

26

The Stack
Memory

0x0

main

a: argc:

b: argv:

42

17

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 printf("Done.");
 return 0;
}

func1

c:

99

func2

d:

0

1

0xfff0

Stack

27

The Stack
Memory

0x0

main

a: argc:

b: argv:

42

17

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 printf("Done.");
 return 0;
}

func1

c:

99

func2

d:

0

1

0xfff0

Stack

28

The Stack
Memory

0x0

main

a: argc:

b: argv:

42

17

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 printf("Done.");
 return 0;
}

func1

c:

99

1

0xfff0

Stack

29

The Stack
Memory

0x0

main

a: argc:

b: argv:

42

17

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 printf("Done.");
 return 0;
}

func1

c:

99

1

0xfff0

Stack

30

The Stack
Memory

0x0

main

a: argc:

b: argv:

42

17

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 printf("Done.");
 return 0;
}

1

0xfff0

Stack

31

The Stack
Memory

0x0

main

a: argc:

b: argv:

42

17

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 printf("Done.");
 return 0;
}

1

0xfff0

Stack

32

The Stack
Memory

0x0

main

a: argc:

b: argv:

42

17

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 printf("Done.");
 return 0;
}

1

0xfff0

Stack

func2

33

The Stack
Memory

0x0

main

a: argc:

b: argv:

42

17

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 printf("Done.");
 return 0;
}

1

0xfff0

Stack

func2

d:

0

34

The Stack
Memory

0x0

main

a: argc:

b: argv:

42

17

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 printf("Done.");
 return 0;
}

1

0xfff0

Stack

func2

d:

0

35

The Stack
Memory

0x0

main

a: argc:

b: argv:

42

17

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 printf("Done.");
 return 0;
}

1

0xfff0

Stack

36

The Stack
Memory

0x0

main

a: argc:

b: argv:

42

17

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 printf("Done.");
 return 0;
}

1

0xfff0

Stack

37

The Stack
Memory

0x0

main

a: argc:

b: argv:

42

17

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 printf("Done.");
 return 0;
}

1

0xfff0

Stack

38

The Stack
Memory

0x0

void func2() {
 int d = 0;
}

void func1() {
 int c = 99;
 func2();
}

int main(int argc, char *argv[]) {
 int a = 42;
 int b = 17;
 func1();
 func2();
 printf("Done.");
 return 0;
}

39

The Stack Failing Us
Memory

0x0

main
argc:

argv:

char *create_string(char ch, int num) {
 char new_str[num + 1];
 for (int i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str;
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s", str); // want "aaaa"
 return 0;
}

1

0xfff0
Stack

40

The Stack Failing Us
Memory

0x0

main
argc: str:

argv:

char *create_string(char ch, int num) {
 char new_str[num + 1];
 for (int i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str;
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s", str); // want "aaaa"
 return 0;
}

1

0xfff0
Stack

41

The Stack Failing Us
Memory

0x0

main
argc: str:

argv:

char *create_string(char ch, int num) {
 char new_str[num + 1];
 for (int i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str;
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s", str); // want "aaaa"
 return 0;
}

create_string
ch: num:

1

0xfff0
Stack

'a' 4

42

The Stack Failing Us
Memory

0x0

main
argc: str:

argv:

char *create_string(char ch, int num) {
 char new_str[num + 1];
 for (int i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str;
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s", str); // want "aaaa"
 return 0;
}

create_string
ch: num:

new_str:

1

0xfff0
Stack

'a' 4

43

The Stack Failing Us
Memory

0x0

main
argc: str:

argv:

char *create_string(char ch, int num) {
 char new_str[num + 1];
 for (int i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str;
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s", str); // want "aaaa"
 return 0;
}

create_string
ch: num:

new_str:

1

0xfff0
Stack

'a' 4

'\0'
'a'
'a'
'a'
'a'

44

The Stack Failing Us
Memory

0x0

main
argc: str:

argv:

char *create_string(char ch, int num) {
 char new_str[num + 1];
 for (int i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str;
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s", str); // want "aaaa"
 return 0;
}

create_string
ch: num:

new_str:

1

0xfff0
Stack

'a' 4

'\0'
'a'
'a'
'a'
'a'

Returns e.g. 0xff50

45

The Stack Failing Us
Memory

0x0

main
argc: str:

argv:

char *create_string(char ch, int num) {
 char new_str[num + 1];
 for (int i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str;
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s", str); // want "aaaa"
 return 0;
}

create_string
ch: num:

new_str:

1

0xfff0
Stack

'a' 4

'\0'
'a'
'a'
'a'
'a'

0xff50

46

The Stack Failing Us
Memory

0x0

main
argc: str:

argv:

char *create_string(char ch, int num) {
 char new_str[num + 1];
 for (int i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str;
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s", str); // want "aaaa"
 return 0;
}

1

0xfff0
Stack

0xff50

47

The Stack Failing Us
Memory

0x0

main
argc: str:

argv:

char *create_string(char ch, int num) {
 char new_str[num + 1];
 for (int i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str;
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s", str); // want "aaaa"
 return 0;
}

1

0xfff0
Stack

0xff50

Ack! Local variables go away when the function declaring
them exits. These 'a'’s were embedded in a variable that
no longer exists, so str is not our address to deference.

48

The Stack Failing Us
Memory

0x0

main
argc: str:

argv:

char *create_string(char ch, int num) {
 char new_str[num + 1];
 for (int i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str;
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s", str); // want "aaaa"
 return 0;
}

1

0xfff0
Stack

0xff50

Sometimes, we can make the array in the caller and pass
it as a parameter. But this isn’t always possible if the size

isn’t known in advance.

49

The Stack Failing Us

This is a problem! We need a way to
allocate memory that persists even after

the allocating function exits.

50

The Heap
Memory

0x0

main
argc: str:

argv:

char *create_string(char ch, int num) {
 char new_str[num + 1];
 for (int i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str;
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s", str); // want "aaaa"
 return 0;
}

create_string
ch: num:

new_str:

1

0xfff0
Stack

'a' 4

'\0'
'a'
'a'
'a'
'a'Us: Hey C, is there a way to allocate this

variable so it persists beyond the lifetime
of the function that allocates it?

51

The Heap
Memory

0x0

main
argc: str:

argv:

char *create_string(char ch, int num) {
 char new_str[num + 1];
 for (int i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str;
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s", str); // want "aaaa"
 return 0;
}

create_string
ch: num:

new_str:

1

0xfff0
Stack

'a' 4

'\0'
'a'
'a'
'a'
'a'C: sure, but since I don’t know

when to deallocate it, it’s your
responsibility to do that

52

The Heap
• The heap is a part of memory below the stack

that you manage yourself. Unlike the stack, the
memory only goes away when you deallocate it.
• Unlike the stack, the heap grows upwards as

more memory is allocated.

The heap is dynamic memory – memory that can
be allocated, resized, and freed during program
execution.

53

Working with the heap
Working with the heap consists of 3 core steps:
1. Allocate memory with malloc/realloc/strdup/calloc
2. Assert heap pointer is not NULL
3. Free memory when done using free.

The heap provides dynamic memory that you programmatically introduce—
sometimes incorrectly—to the program. That means you may encounter
runtime errors, even if your code compiles! It’s your responsibility to allocate
properly and debug when there are problems.

54

malloc

void *malloc(size_t size);
To allocate memory on the heap, use the malloc function and specify the
number of bytes you need.

• This function returns a pointer to the leading address of the new memory
block. It doesn’t know or care if it's to be used for an array, a struct, or
anything else.
• void * denotes a pointer to generic memory. You can set another pointer

equal to it without any casting.
• The memory is not zeroed out!
• If malloc returns NULL, the heap couldn’t service the allocation request.

55

The Heap
Memory

0x0

main
argc: str:

argv:

char *create_string(char ch, int num) {
 char *new_str = malloc(num + 1);
 for (int i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str;
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s", str); // want "aaaa"
 return 0;
}

create_string
ch: num:

new_str:

1

0xfff0
Stack

'a' 4

'\0'
'a'
'a'
'a'
'a'

0xed0

Heap

56

The Heap
Memory

0x0

main
argc: str:

argv:

char *create_string(char ch, int num) {
 char *new_str = malloc(num + 1);
 for (int i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str;
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s", str); // want "aaaa"
 return 0;
}

create_string
ch: num:

new_str:

1

0xfff0
Stack

'a' 4

'\0'
'a'
'a'
'a'
'a'

0xed0

Heap

Returns 0xed0

57

The Heap
Memory

0x0

main
argc: str:

argv:

char *create_string(char ch, int num) {
 char *new_str = malloc(num + 1);
 for (int i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str;
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s", str); // want "aaaa"
 return 0;
}

create_string
ch: num:

new_str:

1

0xfff0
Stack

'a' 4

0xed0

'\0'
'a'
'a'
'a'
'a'

0xed0

Heap

Returns 0xed0

58

The Heap
Memory

0x0

main
argc: str:

argv:

char *create_string(char ch, int num) {
 char *new_str = malloc(num + 1);
 for (int i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str;
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s", str); // want "aaaa"
 return 0;
}

1

0xfff0
Stack

0xed0

'\0'
'a'
'a'
'a'
'a'

Heap

59

The Heap
Memory

0x0

main
argc: str:

argv:

char *create_string(char ch, int num) {
 char *new_str = malloc(num + 1);
 for (int i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str;
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s", str); // want "aaaa"
 return 0;
}

1

0xfff0
Stack

0xed0

'\0'
'a'
'a'
'a'
'a'

Heap

60

The Heap
Memory

0x0

main
argc: str:

argv:

char *create_string(char ch, int num) {
 char *new_str = malloc(sizeof(char) * (num + 1));
 for (int i = 0; i < num; i++) {
 new_str[i] = ch;
 }
 new_str[num] = '\0';
 return new_str;
}

int main(int argc, char *argv[]) {
 char *str = create_string('a', 4);
 printf("%s", str); // want "aaaa"
 return 0; // should free str, we will soon
}

1

0xfff0
Stack

0xed0

'\0'
'a'
'a'
'a'
'a'

Heap

61

Exercise: malloc multiples
Let’s write a function that returns an array of the first len multiples of mult.

int *array_of_multiples(int mult, int len) {
 /* TODO: arr declaration here */

 for (int i = 0; i < len; i++) {
 arr[i] = mult * (i + 1);
 }
 return arr;
}

Line 2: How should we declare arr?

1
2
3
4
5
6
7
8

A. int arr[len];
B. int arr[] = malloc(sizeof(int));
C. int *arr = malloc(sizeof(int) * len);
D. int *arr = malloc(sizeof(int) * (len + 1));

62

Exercise: malloc multiples
Let’s write a function that returns an array of the first len multiples of mult.

int *array_of_multiples(int mult, int len) {
 /* TODO: arr declaration here */

 for (int i = 0; i < len; i++) {
 arr[i] = mult * (i + 1);
 }
 return arr;
}

Line 2: How should we declare arr?

1
2
3
4
5
6
7
8

A. int arr[len];
B. int arr[] = malloc(sizeof(int));
C. int *arr = malloc(sizeof(int) * len);
D. int *arr = malloc(sizeof(int) * (len + 1));

• Use a pointer to store the address
returned by malloc.

• malloc’s argument is the number of
bytes to allocate.
⚠This code is missing an assertion.

63

Always assert with the heap
Let’s write a function that returns an array of the first len multiples of mult.

int *array_of_multiples(int mult, int len) {
 int *arr = malloc(sizeof(int) * len);
 assert(arr != NULL);
 for (int i = 0; i < len; i++) {
 arr[i] = mult * (i + 1);
 }
 return arr;
}

• If an allocation error occurs (e.g., out of heap memory), malloc will return
NULL. This is an important case to check for robustness.
• assert will intentionally end the program if the provided condition is false. A

memory allocation error is significant, and we should terminate the program
when we see them.

1
2
3
4
5
6
7
8

64

Other heap allocations: calloc
void *calloc(size_t nmemb, size_t size);

calloc is like malloc that zeros out the memory for you—thanks, calloc!

• You might notice its interface is also a little different—it takes two parameters,
which are multiplied to calculate the number of bytes (nmemb * size).

• calloc is more expensive than malloc because it zeroes out all memory. Use
only when absolutely necessary!

// allocate and zero 20 ints
int *scores = calloc(20, sizeof(int));

// alternate (but slower)
int *scores = malloc(20 * sizeof(int));
for (int i = 0; i < 20; i++) scores[i] = 0;

65

Other heap allocations: strdup
char *strdup(char *s);

strdup is a convenience function that returns a null-terminated, heap-
allocated string with the provided text, instead of requiring you to malloc and
copy in the string yourself.

char *str = strdup("Hello, world!"); // on heap
str[0] = 'h';

You could imagine strdup might be implemented in
terms of malloc + strcpy. (In fact, it pretty much is.)

66

Cleaning Up with free
void free(void *ptr);

• If we allocated memory on the heap and no longer need it, it is our
responsibility to deallocate it.
• To do this, use the free command and pass in the starting address on the

heap for the memory you no longer need.
• Example:
 char *bytes = malloc(4);
 …
 free(bytes);

67

Free
void free(void *ptr);

When you free an allocation, you are freeing up what it points to. You are not
deallocating the pointer itself. You can still use the pointer to point to
something else.

char *str = strdup("hello");
...
free(str);
str = strdup("hi");

68

free details
Even if you have multiple pointers to the
same block of memory, each memory
block should only be freed once.

You must free the address you
received in the previous allocation
call. You cannot free just part of a
previous allocation.

char *bytes = malloc(4);
char *ptr = bytes;
…
free(bytes);
…
free(ptr); ❌ Memory at this

address was already
freed!

char *bytes = malloc(4);
char *ptr = malloc(10);
…
free(bytes);
…
free(ptr + 1);

✅

❌

✅

69

Cleaning Up
You may need to free memory allocated by other functions if that function
expects the caller to handle memory cleanup.

 char *str = strdup("Hello!");
 …
 free(str); // our responsibility to free!

70

Memory Leaks
A memory leak is when you do not free memory you previously allocated.

char *str = strdup("hello");
...
str = strdup("hi"); // memory leak! Lost previous str

71

Memory Leaks
• A memory leak occurs when you dynamically allocate a block of memory on

the heap but fail to free it.
• Your program should be responsible for cleaning up any memory it allocates

but no longer needs.
• If you never free any memory and allocate a large amount, you may run out of

heap memory! (Running out of memory is rare, but it can happen if the
program is designed to run for a very, long time—e.g., a web server.)
• However, memory leaks rarely cause crashes.
• We recommend not to worry about freeing memory until your program is

written. Then, go back and free memory as appropriate.
• valgrind is a very helpful tool for finding memory leaks so they can be plugged.

72

realloc

void *realloc(void *ptr, size_t size);

• The realloc function takes an existing allocation pointer and enlarges to a new
requested size. It returns the new pointer.
• If there is enough space after the existing memory block on the heap for the

new size, realloc simply adds that space to the allocation.
• If there is not enough space, realloc moves the memory to a larger location,

frees the old memory for you, and returns a pointer to the new location.

73

realloc
char *str = strdup("Hello");
assert(str != NULL);
…

// want to make str longer to hold "Hello world!"
char *addition = " world!";
str = realloc(str, strlen(str) + strlen(addition) + 1);
assert(str != NULL);

strcat(str, addition);
printf("%s", str);
free(str);

74

realloc
• realloc only accepts pointers that were previously returned by malloc/etc.
• Make sure to not pass pointers to the middle of heap-allocated memory.
• Make sure to not pass pointers to stack memory.

75

Cleaning Up with free and realloc

You only need to free the new memory coming out of realloc—the previous
(smaller) one was already reclaimed by realloc.

char *str = strdup("Hello");
assert(str != NULL);
…
// want to make str longer to hold "Hello world!"
char *addition = " world!";
str = realloc(str, strlen(str) + strlen(addition) + 1);
assert(str != NULL);
strcat(str, addition);
printf("%s", str);
free(str);

76

Heap allocation interface: A summary

Heap memory allocation guarantee:
• NULL on failure, so check with assert
• Memory is contiguous; it is not recycled

unless you call free
• realloc preserves existing data
• calloc zero-initializes bytes, malloc

and realloc do not

Undefined behavior occurs:
• If you overflow (i.e., you access

beyond bytes allocated)
• If you use after free, or if free

is called twice on a location.
• If you realloc/free non-heap

address

void *malloc(size_t size);
void *calloc(size_t nmemb, size_t size);
void *realloc(void *ptr, size_t size);
char *strdup(char *s);
void free(void *ptr);

77

Engineering principles: stack vs heap
Stack (for local variables)

• Fast
Fast to allocate/deallocate; okay to oversize

• Convenient.
Automatic allocation/ deallocation;
declare/initialize in one step

• Reasonable type safety
Thanks to the compiler

⚠ Not especially plentiful
Total stack size fixed, default 8MB

⚠ Somewhat inflexible
Cannot add/resize at runtime, scope
dictated by control flow in/out of functions

Heap (dynamic memory)

78

Engineering principles: stack vs heap
Stack (for local variables)

• Fast
Fast to allocate/deallocate; okay to oversize

• Convenient.
Automatic allocation/ deallocation;
declare/initialize in one step

• Reasonable type safety
Thanks to the compiler

⚠ Not especially plentiful
Total stack size fixed, default 8MB

⚠ Somewhat inflexible
Cannot add/resize at runtime, scope
dictated by control flow in/out of functions

Heap (dynamic memory)
• Plentiful.

Can provide more memory on demand!

• Very flexible.
Runtime decisions about how much/when to
allocate, can resize easily with realloc

• Scope under programmer control
Can precisely determine lifetime

⚠ Lots of opportunity for error
Low type safety, forget to allocate/free
before done, allocate wrong size, etc.,
Memory leaks (much less critical)

79

Stack and Heap
• Generally, unless a situation requires dynamic allocation, stack allocation is

preferred. Often both techniques are used together in a program.
• Heap allocation is a necessity when:

• you have a very large allocation that could blow out the stack
• you need to control the memory’s lifetime and/or memory must persist beyond a

function call

80

Example: Pig Latin
Let’s write a program that can convert text to Pig Latin! Simplified Pig Latin
rules:
• If the word starts with a vowel, append "way": apple -> appleway
• Otherwise, move all starting consonants to the end and append "ay": bridge ->

idgebray

We want to write a function char *pig_latin(const char *in) that returns the Pig
Latin version of the given string.
• Good use case for heap allocation – array size is technically unknown until we

convert it to Pig Latin! We’ll create and return a heap-allocated string.
• The caller must free the string when it is no longer needed.

81

Example: Pig Latin
We will also see an example of how to uncover memory leaks using valgrind.

valgrind --leak-check=full --show-leak-kinds=all [program info here]

82

Demo: Pig Latin + Valgrind

pig_latin.c

