CS107, Lecture 10
Stack and Heap

Reading: K&R 5.6-5.9 or Essential C section 6 on the heap
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5477907

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Nick Troccoli, Lisa Yan, Jerry Cain and others.

https://edstem.org/us/courses/65949/discussion/5477907

When you declare an array, contiguous memory is allocated
on the stack to store the contents of the entire array.

char str[6];
strcpy(str, "apple");

The array variable (e.g. str) is not a pointer; it refers to the
entire array contents. In fact, sizeof returns the size of the
entire array!

size_t num _bytes = sizeof(str); // 6

STACK

Address Value
[ox105| '\@’
ox104| '€’
ox103| '1°
ox102| P’
ox101| P’
str— oxlee| 'a’

An array variable refers to an entire block of memory. You cannot reassign an
existing array to be equal to a new array.

int nums[] = {1, 2, 3};
int nums2[] = {4, 5, 6, 7};
nums = nums2; // not allowed!

An array’s size cannot be changed once you create it. You must create another
array instead.

Arrays as Parameters

STACK
When you pass an array as a parameter, C makes a Address Value
copy of the address of the first array element, and [ox1f2 | '\@'
passes it (a pointer) to the function. ox1€1 | i
main() | str oxife | 'h"
void myfunc(char *mystr) { -
Oxff
} Oxfe
. . . oxfd
int main(int argc, char *argv[]) { oxfe
char str[3]; myfunc() OxEh
strcpy(str, "hi"); .
myfunc(str); oxtfa
Oxf9
} mystr oxfsg

Arrays as Parameters

STACK

This also means we can no longer get the full size of Address Value
the array using sizeof, because now it is just a [ox1f2 | '\@'
pointer. oxiel |l i
main() | str oxife | 'h"
void myfunc(char *myStr) { -
size t size = sizeof(myStr); // 8 oxff
} oxfe
oxfd
int main(int argc, char *argv[]) { .
char str[3]; myfunc()
strcpy(str, "hi"); oxth
size t size = sizeof(str); // 3 oxtfa
myfunc(str); Oxf9
mystr oxfs

sizeof returns the size of an array, or 8
for a pointer. Therefore, when we pass an

array as a parameter, we can no longer
use sizeof to get its full size.

Arrays and Pointers

STACK

You can also make a pointer equal to an array; it will Address Value
point to the first element in that array. ~ ox1f2| "\o"
int main(int argc, char *argv[]) { Ox1fl) "1
char str[3]; str_ox1fo| 'h'y
strcpy(str, "hi"); Oxlef
char *ptr = str; main() Oxlee
} o Oxled /
Oxlec
0x1fo
Oxleb
Oxlea
Ox1le9
3 ptr Ox1e8

Arrays and Pointers

You can also make a pointer equal to an array; it will Add res%TAC\}/(alue
point to the first element in that array. B ox1f2| "\o"
int main(int argc, char *argv[]) { 280y
char str[3]; str—_0x1fe| 'h' y
strcpy(str, "hi"); ox1ef
* — . .
char *ptr = str; main() Oxlee
// equivalent Oxled /
* = ; ox1
char *ptr = &str[0]; xlec {0 1 ra
. . Oxleb
// equivalent, but avoid at all costs
Oxlea
char *ptr = &str;
.. Ox1le9
} B ptr Ox1e8

Pointer Arithmetic

When you do pointer arithmetic, you are adjusting the

' ' GMENT
pointer by a certain number of places (e.g., characters). DATASE

Address Value

char *str = "apple"; // e.g. Oxffo
oxffs5| "\O'

char *strl = str + 1; // e.g. Oxffl —
har *str3 = str + 3; // e Oxftf3 oxtial e
‘ B ’ 5 oxff3| '1'

(MY) - /7 1 oxff2| 'p'
pr%n 1C(";s", str); api e oxif1| b
printf("%s", stril); // pple oxifol al
printf("%s", str3); // le

Pointer Arithmetic

Pointer arithmetic does not work in bytes. Instead, it
works in the size of the type it points to.

int numbers[] = {52, 23, 12, 34, 16, 1};

int *nums = numbers;
int *numsl = nums + 1;
int *nums3 = nums + 3;

printf("%d", *nums);
printf("%d", *numsl);
printf("%d", *nums3);

// e.g., oxffo
// e.g., oxffa
// e.g., Oxffc

// 52
// 23
// 34

STACK

Address

Value

0x1004,

16

34

12

23

52

10

Pointer Arithmetic

Pointer arithmetic does not work in bytes. Instead, it
works in the size of the type it points to.

int numbers[] = {52, 23, 12, 34, 16, 1};
int *nums = numbers; // e.g., oxffo
int *nums3 = nums + 3; // e.g., Oxffc
int *nums2 = nums3 - 1; // e.g., Oxff8

printf("%d", *nums); // 52
printf("%d", *nums2); // 12
printf("%d", *nums3); // 34

STACK

Address

Value

0x1004,

16

34

12

23

52

11

Pointer Arithmetic

When you use bracket notation with a pointer, you are

: : :) : DATA SEGMENT
actually performing pointer arithmetic and dereferencing:

Address Value

char *str = "apple"; // e.g. Oxffo
PP 5 oxff5| "\0'

oxff4| 'e’

// both of these add four places to str, oxffal 1
X

// and then dereference to get the char there. oxifa | p!
X

// E.g. get memory at Oxff4. —
Oxffl p

char fifthLetter = str[4]; // 'e’ T
Oxffo a

char fifthLetter = *(str + 4); // '€’

12

Pointer Arithmetic

Pointer arithmetic with two pointers does not give the byte
difference. Instead, it counts the number of quantum
elements in between the two addresses.

STACK
Address Value

int numbers[] = {52, 23, 12, 34, 16, 1}; oxions] 1
int *nums = numbers; // e.g., Oxffo ox1600 16
int *nums3 = nums + 3; // e.g., Oxffc oxfrg 34
size t diff = nums3 - nums; // 3 oxFre] 12

oxefal 23

oxffel D2

13

CS107 Topic 3: How can we
effectively manage all types
of memory in our
programs?

CS107 Topic 3

How can we effectively manage all types of memory in our programs?

Why is answering this question important?
* Shows us how we can pass around data efficiently using pointers (last time)

* Introduces us to the heap and the allocation of memory that we manage
ourselves (this time)

assign3: implement a function using resizable arrays to read lines of any length from
a file and write 2 programs using that function to print the last N lines of a file and print
just the unique lines of a file. These programs emulate the tail and uniq Unix builtins.

15

Learning Goals

e Learn about the differences between the stack and the heap and when to use
each one

 Become familiar with the malloc, calloc, realloc and free functions for
managing memory on the heap

16

Memory Layout

* We are going to dive deeper into different areas of
memory used by our programs.

* The stack is the place where all local variables and

parameters live for each function. A function’s "stack
frame" goes away when the function returns.

* The stack grows downwards when a new function is
called and shrinks upwards when the function exits.

Ox7ffffffff000
* Stack 8MB
* reserved

0x7ffff7ffe000 | Shared library | Sized for
text/data library

1 Grows on

Heap demand
0x602010

0x600000 Global data Sized for

executable

Text
0x400000 (machine code)

Low addresses
deliberately unmapped

17

The Stack

void func2() { Memory
} main
void funcl() { Stack =y arge: | |
int ¢ = 99;
func2(); _ argv: Oxfff0
}
int main(int argc, char *argv[]) {
int a = 42;
int b = 17;
funcl();
func2();
printf("Done.");
return 0;
}
0x0 -

The Stack

void func2() { Memory
} main
void funcl() { Stack =9 a: | %] arge:|]
int ¢ = 99;
func2(); _ argv: Oxfff0
}
int main(int argc, char *argv[]) {
int a = 42;
int b = 17;
funcl();
func2();
printf("Done.");
return 0;
}
0x0 o

The Stack

void func2() { Memory
} main
void funcl() { Stack =y a: | 42 argc: 1
int ¢ = 99;
func2(); _ | b 17 argv: Oxfff0
}
int main(int argc, char *argv[]) {
int a = 42;
int b = 17;
funcl();
func2();
printf("Done.");
return 0;
}
0x0 PO

The Stack

void func2() { Memory
int d = 0;

} main

void funcl() { Stack =9 a: | %] arge:|]
int ¢ = 99;
func2(); b | 17 e OxfffO

} \ 4
int main(int argc, char *argv[]) {
int a = 42;
int b = 17;
funcl();
func2();
printf("Done.");
return 0;

0x0 Pl

The Stack

void func2() { Memory
} main
void funcl() { Stack = a: | %2 arge:|]
int ¢ = 99;
func2(); o: | 17 argv: Oxff0
} funcl
int main(int argc, char *argv[]) {
int a = 42;
int b = 17; ~
funcl();
func2();
printf("Done.");
return 0;
}
0x0 P2

The Stack

void func2() { Memory
} main
void funcl() { Stack =3 a: | 42 argc: 1
int ¢ = 99;
func2(); o: | 17 argv: Oxff0
} funcl
int main(int argc, char *argv[]) { c: | 99
int a = 42;
int b = 17; ~
funcl();
func2();
printf("Done.");
return 0;
}
0x0 3

The Stack

void func2() { Memory
} main
void funcl() { Stack = a: | %] arge:|]
int ¢ = 99;
func2(); ’ b | 17 e OxfffO
} funcl
int main(int argc, char *argv[]) { c: | 99
int a = 42;
int b = 17; -

funcl(); ‘
func2();

printf("Done.");
return 0;

P4

0x0

The Stack

void func2() {

}

int d = 0;

void funcl() {

int

int ¢ = 99;
func2();

main(int argc, char *argv[]) {
int a = 42;

int b = 17;

funcl();

func2();

printf("Done.");

return 0;

Stack ==

0x0

Memory
main
a: 42 argc: 1
b: 17 argv: OxfffQ
funcl
c: | 99
func2

P5

The Stack

void func2() {

}

int d = 9;

void funcl() {

int

int ¢ = 99;
func2();

main(int argc, char *argv[]) {
int a = 42;

int b = 17;

funcl();

func2();

printf("Done.");

return 0;

Stack ==

0x0

Memory
main
a: 42 argc: 1
b: 17 argv: Oxfff0
funcl
c: | 99
func2
d:| O

L6

The Stack

void func2() {

¥

int d = 0;

void funcl() {

int

int ¢ = 99;
func2();

main(int argc, char *argv[]) {
int a = 42;

int b = 17;

funcl();

func2();

printf("Done.");

return 0;

Stack ==

0x0

Memory
main
a: 42 argc: 1
b: 17 argv: Oxfff0
funcl
c: | 99
func2
d:| O

7

The Stack

void func2() { Memory
} main
void funcl() { Stack =3 a: | 42 argc: 1
int ¢ = 99;
func2(); o: | 17 argv: Oxff0
} funcl
int main(int argc, char *argv[]) { e | 99
int a = 42;
int b = 17; ~—
funcl();
func2();
printf("Done.");
return 0;
}
0x0 S

The Stack

void func2() { Memory
} main
void funcl() { Stack = a: | %] arge:|]
int ¢ = 99;
func2(); o: | 17 argv: Oxff0
} funcl
int main(int argc, char *argv[]) { c: | 99
int a = 42;
int b = 17; — f
funcl();
func2();
printf("Done.");
return 0;
}
0x0 P2

The Stack

void func2() { Memory
} main
void funcl() { Stack =9 a: | %] arge:|]
int ¢ = 99;
func2(); _ | b 7 argv: Oxff0
}
int main(int argc, char *argv[]) {
int a = 42;
int b = 17;
funcl();
func2();
printf("Done.");
return 0;
}
0x0 PO

The Stack

void func2() { Memory

} main

void funcl() { Stack =9 a: | %] arge:|]
int ¢ = 99;
func2(); _ | b 7 argv: Oxff0

int main(int argc, char *argv[]) {
int a = 42;
int b = 17;
funcl();
func2();
printf("Done.");
return 0;

0x0 pl

The Stack

void func2() { Memory
} main
void funcl() { Stack - a: | %] arge:|]
int ¢ = 99;
func2(); o: | 17 argv: Oxff0
} func2
int main(int argc, char *argv[]) {
int a = 42;
int b = 17; ~
funcl();
func2();
printf("Done.");
return 0;
}
0x0 2

The Stack

void func2() { Memory
} main
void funcl() { Stack = a: | 42 argc: 1
int ¢ = 99;
func2(); o: | 17 argv: Oxff0
} func2
int main(int argc, char *argv[]) { d:| 0
int a = 42;
funcl();
func2();
printf("Done.");
return 0;
}
0x0 p3

The Stack

void func2() { Memory
} main
void funcl() { Stack = a: | 42 argc: 1
int ¢ = 99;
func2(); o: | 17 argv: Oxff0
} func2
int main(int argc, char *argv[]) { d:| 0
int a = 42;
int b = 17; - t
funcl();
func2();
printf("Done.");
return 0;
}
0x0 a

The Stack

void func2() { Memory
} main
void funcl() { Stack =y a: | 42 argc: 1
int ¢ = 99;
func2(); _ | b 7 argv: Oxff0
}
int main(int argc, char *argv[]) {
int a = 42;
int b = 17;
funcl();
func2();
printf("Done.");
return 0;
}
0x0 &

The Stack

void func2() { Memory
} main
void funcl() { Stack =y a: | 42 argc: 1
int ¢ = 99;
func2(); _ | b 17 argv: Oxfff0
}
int main(int argc, char *argv[]) {
int a = 42;
int b = 17;
funcl();
func2();
printf("Done.");
return 0;
}
0x0 po

The Stack

void func2() { Memory
} main
void funcl() { Stack =9 a: | %] arge:|]
int ¢ = 99;
func2(); ’ _ | b 17 [argy:| OXf0
}
int main(int argc, char *argv[]) {
int a = 42;
int b = 17;
funcl();
func2();
printf("Done.");
return 0;
}
0x0 7

The Stack

void func2() {

int d = 9;

}

void funcl() {
int ¢ = 99;
func2();

}

int main(int argc, char *argv[]) {
int a = 42;
int b = 17;
funcl();
func2();
printf("Done.");
return 0;

}

0x0

Memory

38

The Stack Failing Us

char *create_string(char ch, int num) { Memory
char new _str[num + 1]; - :
for (int 1 = @; i < num; i++) { main
new str[i] = ch; Stack — argc:| 1
) : | OxfffO
new_str[num] = '\0@'; | argv:[Ox

return new_str;

}

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa"
return 0;

0x0 po

The Stack Failing Us

. . Memor
char *create_string(char ch, int num) { viemory

char new _str[num + 1]; - :
for (int 1 = 0; i < num; i++) { =T '

new_str[i] = ch; stack = oL St
}

argv: | OxfffO

new_str[num] = '\@'; -~ 2

return new_str; '
}

int main(int argc, char *argv[]) {
char *str = create string('a', 4);
printf("%s", str); // want "aaaa"
return 0;

0x0 0

The Stack Failing Us

char *create_string(char ch, int num) { Memory
char new _str[num + 1]; -
for (int i = @; i < num; i++) { main
) new_str[i] = ch; Stack arge:[4 | str:
new_str[num] = '\0'; argv: | OxfffO .
return new_str; cr.eate strlgr
} ch:| g num: | 4

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa"
return 0;

0x0 H

The Stack Failing Us

char *create_string(char ch, int num) { Memory
char new_str[num + 1]; —
for (int i = @; i < num; i++) { main
} new str[i] = ch; Stack — arge:| q | str:
new_str[num] = '\0'; argv: | OxfffO .
return new_str; cr.eate strlgr
} ch:| g num: | 4

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa"
return 0;

new_str:

0x0 F2

The Stack Failing Us

. . Memor
char *create_string(char ch, int num) { viemory
char new _str[num + 1]; - :
for (int i = @; i < num; i++) { main |
new str[i] = ch; Stack — arge:| q | str:
}
argv: | OxfffO
new_str[num] = '\0'; S :
return new_str; create string
} ch:| g num: | 4
int main(int argc, char *argv[]) { \o'
char *str = create_string('a', 4); 'a’
printf("%s", str); // want "aaaa" 'a’
return 0; 9"
}]]
new_str: a
0x0 -

The Stack Failing Us

. . Memor
char *create_string(char ch, int num) { viemory
char new _str[num + 1]; - :
for (int i = @; i < num; i++) { main |
new _str[i] = ch; Stack arge:| q | str:
}
argv: | OxfffO
new_str[num] = '\0'; S :
return new_str; create string
a ch:| g num: | 4
}
int main(int argc, char *argv[]) { Returns e.g. 0xff50 \o'
char *str = create_string('a', 4); 'a’
printf("%s", str); // want "aaaa" 'a’
return 0; 9"
} [y)
new_str: a
0x0 44

The Stack Failing Us

. . Memor
char *create_string(char ch, int num) { viemory
char new _str[num + 1]; - :
for (int i = @; i < num; i++) { main |
new str[i] = ch; Stack — argc:| q | St oxff50
}
argv: | OxfffO
new_str[num] = '\0'; S :
return new_str; ﬁfeate strin
cn: | 'y’ num:
} a 4
int main(int argc, char *argv[]) { \o'
char *str = create_string('a', 4); 'a’
printf("%s", str); // want "aaaa" 'a’
return 0; 9"
}]]
new_str: a
0x0 >

The Stack Failing Us

char *create_string(char ch, int num) { Memory
char new _str[num + 1]; - :
for (int i = @; i < num; i++) { main
new _str[i] = ch; Stack = argc:| 1 | Str) oxff50
}
argv: | OxfffO
new_str[num] = '\@'; - <

return new_str;

}

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa"
return 0;

0x0 to

The Stack Failing Us

. . Memor
char *create_string(char ch, int num) { viemory

char new _str[num + 1]; - :
for (int 1 = 0; i < num; i++) { =T '

new_str[i] = ch; stack = oL S| 0xff50
}

argv: | OxfffO

new_str[num] = '\@'; -~ 2

return new_str;

}

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa"
return 0;

Ack! Local variables go away when the function declaring
them exits. These 'a"s were embedded in a variable that
no longer exists, so str is not our address to deference.

47

0x0

The Stack Failing Us

char *create_string(char ch, int num) { Memory
char new _str[num + 1]; - :
for (int i = @; i < num; i++) { main |
new str[i] = ch; Stack = argc:| 1 | Str) oxff50
}
argv: | OxfffO
new_str[num] = '\@'; - <

return new_str;

}

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa"
return 0;

Sometimes, we can make the array in the caller and pass
it as a parameter. But this isn’t always possible if the size
isn’t known in advance.

48

0x0

The Stack Failing Us

This is a problem! We need a way to
allocate memory that persists even after
the allocating function exits.

char *create_string(char ch, int num) {
char new _str[num + 1];
for (int 1 = 0; i < num; i++) {
new_str[i] = ch;
}

new_str[num] = '\0';
return new_str,;

}

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa"
return 0;

Stack =

} Us: Hey C, is there a way to allocate this
variable so it persists beyond the lifetime | ~

of the function that allocates it?

0x0

Memory

main
arge: | 4 str:
argv: | OxfffO
create strin
ch:| g num:
l\Ol
lal
lal
lal
new_str: a

50

char *create_string(char ch, int num) {
char new _str[num + 1];
for (int 1 = 0; i < num; i++) {
new_str[i] = ch;
}

new_str[num] = '\0';
return new_str,;

}

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa"
return 0;

C: sure, but since | don’t know
when to deallocate it, it's your
responsibility to do that

Stack =

0x0

Memory

main
arge: | 4 str:
argv: | OxfffO
create strin
ch:| g num:
l\Ol
lal
lal
lal
new_str: a

b1

* The heap is a part of memory below the stack
that you manage yourself. Unlike the stack, the

memory only goes away when you deallocate it.

* Unlike the stack, the heap grows upwards as
more memory is allocated.

The heap is dynamic memory — memory that can
be allocated, resized, and freed during program
execution.

Ox7ffffffff000
X Stack .
* reserved

Ox7ffff7ffe000 | Shared library Sized for
text/data library

f Grows on

Heap demand
0x602010

0x600000 Global data Sized for

executable

Text
(machine code)

Low addresses
deliberately unmapped

0x400000

52

Working with the heap

Working with the heap consists of 3 core steps:
1. Allocate memory withmalloc/realloc/strdup/calloc
2. Assert heap pointer is not NULL

3. Free memory when done using free.

The heap provides dynamic memory that you programmatically introduce—
sometimes incorrectly—to the program. That means you may encounter
runtime errors, even if your code compiles! It’s your responsibility to allocate
properly and debug when there are problems.

53

malloc

void *malloc(size t size);

To allocate memory on the heap, use the malloc function and specify the
number of bytes you need.

* This function returns a pointer to the leading address of the new memory
block. It doesn’t know or care if it's to be used for an array, a struct, or
anything else.

* void * denotes a pointer to generic memory. You can set another pointer
equal to it without any casting.

* The memory is not zeroed out!

* fmalloc returns NULL, the heap couldn’t service the allocation request.

54

char *create_string(char ch, int num) {

}

char *new_str = malloc(num + 1);

for (int 1 = 0; 1 < num; i++) {
new_str[i] = ch;

}

new_str[num] = '\@';
return new_str,;

int main(int argc, char *argv[]) {

char *str = create_string('a', 4);
printf("%s", str); // want "aaaa"
return 0;

Stack ==

Memory

main

argc:

1 str:

argv:

OxfffO

create string

Ch: 'a

' num: | 4

new_str: | Oxed0

b5

char *create_string(char ch, int num) {
char *new_str = malloc(num + 1);
for (int 1 = 0; i < num; i++) {
new_str[i] = ch;
}

new_str[num] = '\0';
return new_str,;

}

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa"
return 0;

Stack

Returns OxedO

Memory

main

argc:

1 str:

argv:

OxfffO

create string

Ch: 'a

' num: | 4

new_str: | Oxed0

b6

char *create_string(char ch, int num) {
char *new_str = malloc(num + 1);
for (int 1 = 0; i < num; i++) {
new_str[i] = ch;
}

new_str[num] = '\0';
return new_str,;

}

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa"
return 0;

Stack

Returns OxedO

Heap =<

0x0

Memory

main

argc:

1 | St| oxed0,

argv:

OxfffO

create string

Ch: 'a

' num: | 4

new_str: | Oxed0

b7

char *create_string(char ch, int num) {

}

char *new_str = malloc(num + 1);

for (int 1 = 0; 1 < num; i++) {
new_str[i] = ch;

}

new_str[num] = '\@';
return new_str;

int main(int argc, char *argv[]) {

char *str = create_string('a', 4);
printf("%s", str); // want "aaaa"
return 0;

Heap =<

0x0

Memory

main

argc:

1 str:

Oxed0O4

argv:

OxfffO

SN

b8

char *create_string(char ch, int num) {

}

char *new_str = malloc(num + 1);

for (int 1 = 0; 1 < num; i++) {
new_str[i] = ch;

}

new_str[num] = '\@';
return new_str;

int main(int argc, char *argv[]) {

char *str = create_string('a', 4);
printf("%s", str); // want "aaaa"
return 0;

Heap =<

0x0

Memory

main

argc:

1 str:

Oxed0O4

argv:

OxfffO

SN

b9

char *create_string(char ch, int num) {

char *new_str = malloc(sizeof(char) * (num +

for (int i = 0; i < num; i++) {
new_str[i] = ch;
}

new_str[num] = '\0';
return new_str;

}

int main(int argc, char *argv[]) {
char *str = create_string('a', 4);
printf("%s", str); // want "aaaa"
return 9; // should free str, we will

soon

1));

Stack ==

Heap =<

0x0

Memory

main

argc:

1 str:

Oxed0O4

argv:

OxfffO

SN

50

Exercise: malloc multiples

Let’s write a function that returns an array of the first len multiples of mult.
1 int *array_of multiples(int mult, int len) {

2 /* TODO: arr declaration here */
3

4 for (int 1 = 0; 1 < len; i++) {
5 arr[i] = mult * (i + 1);

6 }

7 return arr;

8 }

Line 2: How should we declare arr?

A. int arr[len];

B. int arr[] = malloc(sizeof(int));

C. int *arr = malloc(sizeof(int) * len);

D. int *arr = malloc(sizeof(int) * (len + 1));

Exercise: malloc multiples

Let’s write a function that returns an array of the first len multiples of mult.

1 int *array_of multiples(int mult, int len) {
/* TODO: arr declaration here */

for (int 1 = @; 1 < len; i++) {

NOuUuh WN

arr[i] mult * (i + 1);
} * Use a pointer to store the address
return arr; returned by malloc.
8 } * malloc’s argument is the number of
Line 2: How should we declare arr? bytes to allocate.
int arr[len]; ' This code is missing an assertion.

int arr[] = malloc(sizeof(int));
int *arr malloc(sizeof(int) * 1len);
int *arr malloc(sizeof(int) * (len + 1));

62

Always assert with the heap

Let’s write a function that returns an array of the first len multiples of mult.
1 int *array_of multiples(int mult, int len) {

2 int *arr = malloc(sizeof(int) * 1len);
[> 3 assert(arr != NULL);

4 for (int 1 = 0; i < len; i++) {

5 arr[i] = mult * (i + 1);

6 }

7 return arr;

8 }

e If an allocation error occurs (e.g., out of heap memory), malloc will return
NULL. This is an important case to check for robustness.

e assert will intentionally end the program if the provided condition is false. A

memory allocation error is significant, and we should terminate the program

when we see them. s

Other heap allocations: calloc

void *calloc(size t nmemb, size t size);

calloc is like malloc that zeros out the memory for you—thanks, calloc!

* You might notice its interface is also a little different—it takes two parameters,

which are multiplied to calculate the number of bytes (nmemb * size).
// allocate and zero 20 ints

int *scores = calloc(20, sizeof(int));

// alternate (but slower)
int *scores = malloc(20 * sizeof(int));
for (int 1 = @; 1 < 20; i++) scores[i] = 0;

* calloc is more expensive than malloc because it zeroes out all memory. Use

only when absolutely necessary!
64

Other heap allocations: strdup

char *strdup(char *s);

strdup is a convenience function that returns a null-terminated, heap-
allocated string with the provided text, instead of requiring you to malloc and
copy in the string yourself.

char *str = strdup("Hello, world!"); // on heap
str[@] = 'h';

You could imagine strdup might be implemented in
terms of malloc + strcpy. (In fact, it pretty much is.)

65

Cleaning Up with free

void free(void *ptr);
* If we allocated memory on the heap and no longer need it, it is our
responsibility to deallocate it.

* To do this, use the free command and pass in the starting address on the
heap for the memory you no longer need.

* Example:
char *bytes = malloc(4);

free(bytes);

66

void free(void *ptr);

When you free an allocation, you are freeing up what it points to. You are not

deallocating the pointer itself. You can still use the pointer to point to
something else.

char *str = strdup("hello");

free(str);
str = strdup("hi");

free details

Even if you have multiple pointers to the You must free the address you
same block of memory, each memory received in the previous allocation
block should only be freed once. call. You cannot free just part of a

previous allocation.

char *bytes = malloc(4); char *bytes = malloc(4);
char *ptr = bytes; char *ptr = malloc(10);
free(bytes); <3 free(bytes); <3
free(ptr); <3 X Memory at this free(ptr + 1); <:| X

address was already
freed!

68

Cleaning Up

You may need to free memory allocated by other functions if that function
expects the caller to handle memory cleanup.

char *str = strdup("Hello!");

free(str); // our responsibility to free!

69

Memory Leaks

A memory leak is when you do not free memory you previously allocated.

char *str = strdup("hello");

str = strdup("hi"); // memory leak! Lost previous str

70

Memory Leaks

* A memory leak occurs when you dynamically allocate a block of memory on
the heap but fail to free it.

* Your program should be responsible for cleaning up any memory it allocates
but no longer needs.

* If you never free any memory and allocate a large amount, you may run out of
heap memory! (Running out of memory is rare, but it can happen if the
program is designed to run for a very, long time—e.g., a web server.)

e However, memory leaks rarely cause crashes.

 We recommend not to worry about freeing memory until your program is
written. Then, go back and free memory as appropriate.

e valgrind is a very helpful tool for finding memory leaks so they can be plugged.

71

realloc

void *realloc(void *ptr, size t size);
* The realloc function takes an existing allocation pointer and enlarges to a new
requested size. It returns the new pointer.

* If there is enough space after the existing memory block on the heap for the
new size, realloc simply adds that space to the allocation.

* If there is not enough space, realloc moves the memory to a larger location,
frees the old memory for you, and returns a pointer to the new location.

72

char *str = strdup("Hello");
assert(str != NULL);

// want to make str longer to hold "Hello world!"

char *addition = " world!";

str = realloc(str, strlen(str) + strlen(addition) + 1);
assert(str != NULL);

strcat(str, addition);
printf("%s", str);
free(str);

73

* realloc only accepts pointers that were previously returned by malloc/etc.

* Make sure to not pass pointers to the middle of heap-allocated memory.
* Make sure to not pass pointers to stack memory.

74

Cleaning Up with free and realloc

You only need to free the new memory coming out of realloc—the previous
(smaller) one was already reclaimed by realloc.

char *str = strdup("Hello");
assert(str != NULL);

// want to make str longer to hold "Hello world!"

char *addition = " world!";

str = realloc(str, strlen(str) + strlen(addition) + 1);
assert(str != NULL);

strcat(str, addition);

printf("%s", str);

free(str);

75

Heap allocation interface: A summary

void *malloc(size t size);

void *calloc(size_ t nmemb, size t size);
void *realloc(void *ptr, size t size);
char *strdup(char *s);

void free(void *ptr);

Heap memory allocation guarantee: Undefined behavior occurs:

 NULL on failure, so check with assert * If you overflow (i.e., you access

« Memory is contiguous; it is not recycled beyond bytes allocated)

unless you call free * If you use after free, or if free

* realloc preserves existing data is called twice on a location.

e calloc zero-initializes bytes, malloc * If you realloc/free non-heap
and realloc do not address

76

Engineering principles: stack vs heap

Stack (for local variables)

* Fast
Fast to allocate/deallocate; okay to oversize

* Convenient.
Automatic allocation/ deallocation;
declare/initialize in one step

* Reasonable type safety
Thanks to the compiler

Not especially plentiful
Total stack size fixed, default 8MB

' Somewhat inflexible

Cannot add/resize at runtime, scope

dictated by control flow in/out of functions .

Engineering principles: stack vs heap

Heap (dynamic memory)

* Plentiful.
Can provide more memory on demand!

* Very flexible.
Runtime decisions about how much/when to
allocate, can resize easily with realloc

e Scope under programmer control
Can precisely determine lifetime

! L. Lots of opportunity for error

Low type safety, forget to allocate/free
| before done, allocate wrong size, etc.,
Memory leaks (much less critical)

78

Stack and Heap

* Generally, unless a situation requires dynamic allocation, stack allocation is
preferred. Often both techniques are used together in a program.

* Heap allocation is a necessity when:
* you have a very large allocation that could blow out the stack

* you need to control the memory’s lifetime and/or memory must persist beyond a
function call

79

Example: Pig Latin

Let’s write a program that can convert text to Pig Latin! Simplified Pig Latin
rules:

* If the word starts with a vowel, append "way": apple -> appleway

* Otherwise, move all starting consonants to the end and append "ay": bridge ->
idgebray

We want to write a function char *pig_latin(const char *in) that returns the Pig
Latin version of the given string.

e Good use case for heap allocation — array size is technically unknown until we
convert it to Pig Latin! We’ll create and return a heap-allocated string.

* The caller must free the string when it is no longer needed.

80

Example: Pig Latin

We will also see an example of how to uncover memory leaks using valgrind.

valgrind --leak-check=full --show-leak-kinds=all [program info here]

81

Demo: Pig Latin + Valgrind

pig latin.c

