CS107, Lecture 12

C Generics and Function Pointers

Reading: K&R 5.11
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5510269

This document is copyright (C) Stanford Computer Science, Lisa Yan, Nick Troccoli and Katie Creel, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan and others.

https://edstem.org/us/courses/65949/discussion/5510269

You’re asked to write a function that swaps the first and last elements in an

array of numbers.

void swap_ends_int(int arr[], size_t nelems) {
int tmp = arr[0];

arr[@] = arr[nelems - 1]; Wait — we wrote a generic
arr[nelems - 1] = tmp; swap function on Wednesday.
Let’s use that!

}

int main(int argc, char *argv[]) {
int nums[] = {5, 2, 3, 4, 1};
size t nelems = sizeof(nums) / sizeof(nums[0@]);
swap_ends_int(nums, nelems);
// want nums[@] = 1, nums[4] = 5
printf("nums[@] = %d, nums[4] = %d\n", nums[@], nums[4]);
return 0;

You’re asked to write a function that swaps the first and last elements in an

array of numbers.

void swap_ends_int(int arr[], size_t nelems) {

swap(arr, arr + nelems - 1, sizeof(*arr));
}

Wait — we just wrote a generic
swap function. Let’s use that!

int main(int argc, char *argv[]) {
int nums[] = {5, 2, 3, 4, 1};

size_t nelems = sizeof(nums) / sizeof(nums[@]);

swap_ends_int(nums, nelems);

// want nums[0] 1, nums[4] = 5
printf("nums[0]
return 0;

%d, nums[4] = %d\n", nums[@], nums[4]);

Let’s write out what some other versions would look like (just in case).

void swap_ends_int(int arr[], size_t nelems) {

swap(arr, arr + nelems

}

void swap_ends_short(short
swap(arr, arr + nelems
}

void swap_ends_string(char *arr[], size t nelems) {

swap(arr, arr + nelems

}

void swap_ends_float(float
swap(arr, arr + nelems
}

- 1, sizeof(*arr));

arr[], size t nelems) {
- 1, sizeof(*arr));

- 1, sizeof(*arr));

arr[], size_t nelems) {
- 1, sizeof(*arr));

The code looks to be the
same regardless of the type!

4

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size t nelems) {
swap(arr, arr + nelems - 1, sizeof(*arr));
}

Is this generic? Does this work?

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size t nelems) {
swap(arr, arr + nelems - 1, sizeof(*arr));
}

Is this generic? Does this work?

Unfortunately not. First, we no longer know the
element size. Second, pointer arithmetic depends
on the type of data being pointed to. With a void *,
we lose that information!

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size t nelems) {
swap(arr, arr + nelems - 1, sizeof(*arr));
}

We need to know the element size, so
let’s add a parameter.

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size t nelems, size t elem _bytes) {
swap(arr, arr + nelems - 1, elem_bytes);
}

We need to know the element size, so
let’s add a parameter.

Pointer Arithmetic

arr + nelems - 1

Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of...
Int?

Pointer Arithmetic

arr + nelems - 1

Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of...
Int: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes

10

Pointer Arithmetic

arr + nelems - 1

Let’s say nelems = 4. How many bytes beyond arr is this?
If it’s an array of...

Int: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes
Short?

11

Pointer Arithmetic

arr + nelems - 1

Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of...
Int: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes
Short: adds 3 places to arr, and 3 * sizeof(short) = 6 bytes

12

Pointer Arithmetic

arr + nelems - 1
Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of...

Int: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes

Short: adds 3 places to arr, and 3 * sizeof(short) = 6 bytes
Char *: adds 3 places to arr, and 3 * sizeof(char *) = 24 bytes

In each case, we need to know the element size to do the arithmetic.
13

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, arr + nelems - 1, elem bytes);
}

How many bytes past arr should we go to
get to the last element?

(nelems — 1) * elem_bytes

14

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, arr + (nelems - 1) * elem bytes, elem bytes);
}

How many bytes past arr should we go to
get to the last element?

(nelems — 1) * elem_bytes

15

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, arr + (nelems - 1) * elem bytes, elem bytes);
}

But C still can’t do arithmetic with a
void*. We need to tell it to not worry
about it, and just add bytes. How can we
do this?

16

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, (char *)arr + (nelems - 1) * elem bytes, elem bytes);
}

But C still can’t do arithmetic with a
void*. We need to tell it to not worry
about it, and just add bytes. How can we
do this?

char * pointers already add bytes!

17

You’re asked to write a function that swaps the first and last elements in an
array of numbers. Well, now it can swap for an array of anything!

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, (char *)arr + (nelems - 1) * elem bytes, elem bytes);
}

18

You’re asked to write a function that swaps the first and last elements in an
array of numbers. Well, now it can swap for an array of anything!

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, (char *)arr + (nelems - 1) * elem bytes, elem bytes);
}

int nums[] = {5, 2, 3, 4, 1};
size_t nelems = sizeof(nums) / sizeof(nums[@]);
swap_ends(nums, nelems, sizeof(nums[0]));

19

You’re asked to write a function that swaps the first and last elements in an
array of numbers. Well, now it can swap for an array of anything!

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, (char *)arr + (nelems - 1) * elem bytes, elem bytes);
}

short nums[] = {5, 2, 3, 4, 1};
size_t nelems = sizeof(nums) / sizeof(nums[@]);
swap_ends(nums, nelems, sizeof(nums[0]));

20

You’re asked to write a function that swaps the first and last elements in an
array of numbers. Well, now it can swap for an array of anything!

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, (char *)arr + (nelems - 1) * elem bytes, elem bytes);
}

Char‘ *Str‘S[] — {IIHiII, llHelloll, "HOWdy"};
size_t nelems = sizeof(strs) / sizeof(strs[0Q]);
swap_ends(strs, nelems, sizeof(strs[0]));

21

You’re asked to write a function that swaps the first and last elements in an
array of numbers. Well, now it can swap for an array of anything!

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, (char *)arr + (nelems - 1) * elem bytes, elem bytes);
}

mystruct structs[] = ..;
size t nelems = .;

swap_ends(structs, nelems, sizeof(structs[0]));

22

Generics So Far

e void * isavariable type that represents a generic pointer "to something".

* We can’t use pointer arithmetic on or dereference (without first casting) a
void *.

* We can use memcpy or memmove to copy data from one memory location to
another.

* To do manual pointer arithmetic with a void *, we must first cast it to a
char *.

e void * and generics are powerful, but error-prone. They’re error-prone

because the compiler can’t do type checking. That means we need to be extra
careful when working with generic memory.

23

void * Pitfalls

 void *s are powerful, but error-prone — C cannot do as much checking!

e e.g., with int, C would never let you swap half of an int. With void *s, it
absolutely will!

int x = Oxffffffff;
int y = Oxeeeeeeee;
swap(&x, &y, sizeof(short));

// now X = Oxffffeeee, y = Oxeeeeffff!
printf("x = Ox%x, y = Ox%x\n", X, y);

24

memset is a function that sets a specified number of bytes at some address to a
certain value.

void *memset(void *s, int c, size t n);

It fills n bytes starting at memory location s with the byte c. (It also returns s).

int counts[5];
memset(counts, @, 3); // zero out first 3 bytes at counts
memset(counts + 3, Oxff, 4) // set 3rd entry to all 1s

25

Exercise: Array Rotation

int array[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
rotate(array, array + 3, array + 10);

front separator end
Before: 3| 4 / 10
After: 6 7/ 10 3 N

Exercise: Array Rotation

Exercise: Implement rotate to generate the provided output.

int main(int argc, char *argv[]) {
int array[l1l0] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
print_int_array(array, 10); // intuit implementation ©
rotate(array, array + 5, array + 10);
print_int _array(array, 10);
rotate(array, array + 1, array + 10);
print_int_array(array, 10);
rotate(array + 4, array + 5, array + 6);
print_int_array(array, 10);

Output:
return 0; myth52:~/lectl2$./rotate
} Array: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Array: 6, 7, 8, 9, 10, 1, 2, 3, 4, 5
Array: 7, 8, 9, 10, 1, 2, 3, 4, 5, 6
Array: 7, 8, 9, 10, 2, 1, 3, 4, 5, 6
myth52:~/lectl2$

The inner workings of rotate

front separator end
Before l l
rotate: 1,2 |34 |5 |6 |7 10
temp| 1
front separator
Before l l
last step: 4 5 6 7/ 8) 10 10

Exercise: Array Rotation

Exercise: A properly implemented rotate will prompt the following program to
generate the provided output.

And here’s that properly implemented function!

void rotate(void *front, void *separator, void *end) {
size_t width = (char *)end - (char *)front;
size_t prefix_width (char *)separator - (char *)front;
size_t suffix_width = width - prefix_width;

char temp[prefix_width];

memcpy (temp, front, prefix_width);

memmove(front, separator, suffix_width);

memcpy((char *)end - prefix_width, temp, prefix_width);

29

Bubble Sort

Let’s write a function bubble sort_int to sort a list of integers using the
bubble sort algorithm.

4 2 12 | -5 | 56 | 14

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

30

Bubble Sort

Let’s write a function bubble sort_int to sort a list of integers using the
bubble sort algorithm.

!
- 12 | -5 | 56 | 14

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

31

Bubble Sort

Let’s write a function bubble sort_int to sort a list of integers using the
bubble sort algorithm.

!
- 12 | -5 | 56 | 14

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

32

Bubble Sort

Let’s write a function bubble sort_int to sort a list of integers using the
bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

33

Bubble Sort

Let’s write a function bubble sort_int to sort a list of integers using the
bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

34

Bubble Sort

Let’s write a function bubble sort_int to sort a list of integers using the
bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

35

Bubble Sort

Let’s write a function bubble sort_int to sort a list of integers using the
bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

36

Bubble Sort

Let’s write a function bubble sort_int to sort a list of integers using the
bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

37

Bubble Sort

Let’s write a function bubble sort_int to sort a list of integers using the
bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

38

Bubble Sort

Let’s write a function bubble sort_int to sort a list of integers using the
bubble sort algorithm.

.
W s 2 e s

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

39

Bubble Sort

Let’s write a function bubble sort_int to sort a list of integers using the
bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

40

Bubble Sort

Let’s write a function bubble sort_int to sort a list of integers using the
bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

41

Bubble Sort

Let’s write a function bubble sort_int to sort a list of integers using the
bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

42

Bubble Sort

Let’s write a function bubble sort_int to sort a list of integers using the
bubble sort algorithm.

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

43

Bubble Sort

Let’s write a function bubble sort_int to sort a list of integers using the
bubble sort algorithm.

2 -5 4 12 | 14 | 56

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is

sorted! || seneral, bubble sort requires up to n - 1 passes to sort an array of

length n, though it may end sooner if a pass doesn’t swap anything.

44

Bubble Sort

Let’s write a function bubble sort_int to sort a list of integers using the
bubble sort algorithm.

-5 2 4 12 | 14 | 56

Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

Only two more passes are needed to arrive at the above. The first
exchanges the 2 and the -5, and the second leaves everything as is.

45

Integer Bubble Sort

void bubble sort _int(int *arr, size_t n) {
while (true) {
bool swapped = false;
for (size_ t i = 1; i < n; i++) {
if (arr[i - 1] > arr[i]) {
swap(&arr[i - 1], &arr[i], sizeof(int));
swapped = true;

}
}
if (!swapped) {
return;
}
} How can we make this function more generic?

To start, this function always sorts in ascending
order. What about other orders?

46

Integer Bubble Sort

void bubble sort _int(int *arr, size_t n, bool ascending) {
while (true) {
bool swapped = false;
for (size_ t i = 1; i < n; i++) {
if ((ascending && arr[i - 1] > arr[i]) ||
(lascending && arr[i] > arr[i - 1])) {

swap(&arr[i - 1], &arr[i], sizeof(int));
swapped = true;

}
}
if (!swapped) {
return;
} We can add parameters, but they only help
} ! so much. What about other orders we
can’t anticipate? (odd-before-even, etc.)

47

Integer Bubble Sort

void bubble sort _int(int *arr, size_t n) {
while (true) {
bool swapped = false;
for (size_ t i = 1; i < n; i++) {
if (should swap(arr[i - 1], arr[i])) {
swap(&arr[i - 1], &arr[i], sizeof(int));
swapped = true;

}
}
if (!swapped) {
return;
} What we really want is this — but we don’t
) } know how to implement this function...the
person calling this function does, though!

48

Key Idea: have the caller
pass a function as a

parameter that takes two
ints and tells us whether

we should swap them.

Integer Bubble Sort

void bubble sort int(int *arr, size_t n, type?? should swap) {
while (true) {
bool swapped = false;
for (size t i = 1; 1 < n; i++) {
if (should swap(arr[i - 1], arr[i])) {
swap(&arr[i - 1], &arr[i], sizeof(int));
swapped = true;

}

}

if (!swapped) {
return;

}

50

Function Pointers

A function pointer is the variable type for passing a function as a parameter.
Here is how the parameter’s type is declared in this case.

bool (*should swap)(int, int)

51

Function Pointers

A function pointer is the variable type for passing a function as a parameter.
Here is how the parameter’s type is declared in this case.

bool (*should swap)(int, int)

|

Return type
(bool)

52

Function Pointers

A function pointer is the variable type for passing a function as a parameter.
Here is how the parameter’s type is declared in this case.

bool (*should swap)(int, int)

|

Function pointer name
(should_swap)

53

Function Pointers

A function pointer is the variable type for passing a function as a parameter.
Here is how the parameter’s type is declared in this case.

bool (*should swap)(int, int)

I

Function parameters
(two ints)

54

Function Pointers

Here’s the general variable type syntax:

[return type] (*[name])([parameters])

55

Integer Bubble Sort

void bubble sort int(int *arr, size_t n, bool (*should swap)(int, int)) {
while (true) {
bool swapped = false;
for (size_t i =1; i < n; i++) {
if (should swap(arr[i - 1], arr[i])) {
swap(&arr[i - 1], &arr[i], sizeof(int));
swapped = true;

}

if (!swapped) {
return;
}

56

Function Pointers

bool sort_ascending(int first _num, int second_num) {
return first_num > second_num;
}

int main(int argc, char *argv[]) {
int nums[] = {4, 2, -5, 1, 12, 56};
int nums_count = sizeof(nums) / sizeof(nums[@]);
bubble sort_int(nums, nums_count, sort _ascending);

bubble_sort_int is written generically. When
someone imports our function into their
program, they will call it specifying the sort
ordering they want that time.

S

Function Pointers

bool sort_descending(int first _num, int second num) {
return first_num < second_num;
}

int main(int argc, char *argv[]) {
int nums[] = {4, 2, -5, 1, 12, 56};
int nums_count = sizeof(nums) / sizeof(nums[@]);
bubble sort_int(nums, nums_count, sort_descending);

bubble_sort_int is written generically. When
someone imports our function into their
program, they will call it specifying the sort
ordering they want that time.

58

Function Pointers

bool sort_abs(int first num, int second num) {
return abs(first_num) < abs(second num);
}

int main(int argc, char *argv[]) {
int nums[] = {4, 2, -5, 1, 12, 56};
int nums_count = sizeof(nums) / sizeof(nums[@]);
bubble sort_int(nums, nums_count, sort_abs);

bubble_sort_int is written generically. When
someone imports our function into their
program, they will call it specifying the sort
ordering they want that time.

59

Function Pointers

e Passing a non-function as a parameter allows us to pass data around our
program.

 When writing a generic function, if we don’t know how to do something and
the decision about what to do should be left to the client, we can ask them to
pass in a function parameter that can do it for us.

 Also called a "callback" function — function "calls back to" into caller code.
* Function writer: writes generic algorithmic functions, relies on caller-provided data
* Function caller: knows the data, doesn’t care how the algorithm is implemented

60

Generic C Standard Library Functions

* scandir — | can create a directory listing with any order and contents! To do
that, | need you to provide me a function that tells me whether you want me
to include a given directory entry in the listing. | also need you to provide me a
function that tells me the correct ordering of two given directory entries.

int scandir(const char *dirp, struct dirent ***namelist,
int (*filter)(const struct dirent *),
int (*compar)(const struct dirent **, const struct dirent **));

e gsort — | can sort an array of any type! To do that, | need you to provide me a
function that can compare two elements of the kind you are asking me to sort.

void gsort(void *base, size t nmemb, size t size,
int (*compar)(const void *, const void *));

61

Comparison Functions

* Function pointers are used often in cases like this to compare two values of the
same type. These are called comparison functions.

e The standard comparison function in many C functions provides even more
information. It should return:
e <0 if first value should come before second value
e >0 if first value should come after second value
e 0 if first value and second value are equivalent

* This is the same return value format as strcmp!

int (*compare_fn)(int, int)

62

Integer Bubble Sort

void bubble sort _int(int *arr, size_t n, int (*cmp fn)(int, int)) {
while (true) {
bool swapped = false;
for (size t i = 1; 1 < n; i++) {
if (cmp_fn(arr[i - 1], arr[i]) > 0) {
swap(&arr[i - 1], &arr[i], sizeof(int));
swapped = true;

}

}

if (!swapped) {
return;

}

63

Function Pointers

// © if equal, neg if first before second, pos if second before first
int sort_descending(int first _num, int second_num) {
return second_num - first_num;

}

int main(int argc, char *argv[]) {
int nums[] = {4, 2, -5, 1, 12, 56};
int nums_count = sizeof(nums) / sizeof(nums[@]);
bubble sort_int(nums, nums_count, sort_descending);

64

