
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

CS107, Lecture 13
C Generics and Function Pointers, Take II

Reading: K&R 5.11
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5528617

https://edstem.org/us/courses/65949/discussion/5528617

2

Integer Bubble Sort
void bubble_sort_int(int *arr, size_t n, int (*cmp_fn)(int, int)) {
 while (true) {
 bool swapped = false;
 for (size_t i = 1; i < n; i++) {
 if (cmp_fn(arr[i – 1], arr[i]) > 0) {
 swap(&arr[i - 1], &arr[i], sizeof(int));
 swapped = true;
 }
 }

 if (!swapped) {
 return;
 }
 }
}

bubble_sort_int now supports any
possible sort ordering. But it’s not fully
generic - it still only supports arrays of

ints. What about other types of arrays?

3

Generic Bubble Sort

bubblesort.h/c

file_that_sorts_ints.c
#include <bubblesort.h>

int main(int argc, char *argv[]) {
 ...
}

file_that_sorts_strings.c
#include <bubblesort.h>

int main(int argc, char *argv[]) {
 ...
}

file_that_sorts_structs.c
#include <bubblesort.h>

int main(int argc, char *argv[]) {
 ...
}

Goal: write 1 implementation of
bubblesort that any program

can use to sort data of any type.

4

Generic Bubble Sort
To write one generic bubblesort function, we must create one function
signature that works for any scenario.

void bubble_sort(int *arr, size_t n, int (*cmp_fn)(int, int));

5

Generic Bubble Sort
To write one generic bubblesort function, we must create one function
signature that works for any scenario.

void bubble_sort(void *arr, size_t n,
 size_t elem_size_bytes,
 int (*cmp_fn)(int, int));

Problem: we need one comparison function
signature that works with any type.

6

Generic Bubble Sort
To write one generic bubblesort function, we must create one function pointer
signature that works for any data type.

void bubble_sort_int(void *arr, size_t n,
 size_t elem_size_bytes, int (*cmp_fn)(int, int));
void bubble_sort_long(void *arr, size_t n,
 size_t elem_size_bytes, int (*cmp_fn)(long, long));
void bubble_sort_str(void *arr, size_t n,
 size_t elem_size_bytes, int (*cmp_fn)(char *, char *));
...

7

How can we write a
function that can take in
parameters of any type?

8

Generic Parameters
• Let’s say I want to write a function generic_func that takes in one parameter,

but it could be any type. What should we specify as the parameter type?

 generic_func(type param1) { …

• Problem: C needs the parameter to be a single specified size. But in theory it
could be infinitely big (e.g., a large struct).
• Key Idea: require the caller to pass in a pointer to the data. Pointers are

always 8 bytes, regardless of what they address.
• Problem: which pointer type should I pick? e.g., int *, char *? If it doesn’t

match the actual type, the caller will have to cast (yuck).
• Key Idea #2: make the parameter type a void *, which means "any pointer".

9

Generic Bubble Sort
• We will use the same idea for bubblesort’s comparison function. Make its

parameters void *s. Then we must call them by specifying pointers to what we
want to compare, not the elements themselves.

Let’s write a generic version of bubblesort:
1. Make the parameters and swap functionality generic
2. Make the comparison function generic

10

Generic Bubble Sort
void bubble_sort(int *arr, size_t n, int (*cmp_fn)(int, int)) {
 while (true) {
 bool swapped = false;
 for (size_t i = 1; i < n; i++) {
 if (cmp_fn(arr[i - 1], arr[i]) > 0) {
 swap(&arr[i - 1], &arr[i], sizeof(int));
 swapped = true;
 }
 }

 if (!swapped) {
 return;
 }
 }
}

Let’s start by making the parameters
generic.

11

Generic Bubble Sort
void bubble_sort(void *arr, size_t n,
 size_t elem_size_bytes, int (*cmp_fn)(int, int)) {
 while (true) {
 bool swapped = false;
 for (size_t i = 1; i < n; i++) {
 if (cmp_fn(arr[i - 1], arr[i]) > 0) {
 swap(&arr[i – 1], &arr[i], elem_size_bytes);
 swapped = true;
 } // args passed to cmp_fn and swap won’t compile! must fix!
 }

 if (!swapped) {
 return;
 }
 }
}

Let’s start by making the parameters
generic.

12

Generic Bubble Sort
void bubble_sort(void *arr, size_t n,
 size_t elem_size_bytes, int (*cmp_fn)(int, int)) {
 while (true) {
 bool swapped = false;
 for (size_t i = 1; i < n; i++) {
 void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
 void *p_curr_elem = (char *)arr + i * elem_size_bytes;
 if (cmp_fn(arr[i - 1], arr[i]) > 0) {
 swap(p_prev_elem, p_curr_elem, elem_size_bytes);
 swapped = true;
 }
 }
 if (!swapped) {
 return;
 }
 }
}

Let’s start by making the parameters
generic.

13

Generic Bubble Sort
void bubble_sort(void *arr, size_t n,
 size_t elem_size_bytes, int (*cmp_fn)(void *, void *)) {
 while (true) {
 bool swapped = false;
 for (size_t i = 1; i < n; i++) {
 void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
 void *p_curr_elem = (char *)arr + i * elem_size_bytes;
 if (cmp_fn(p_prev_elem, p_curr_elem) > 0) {
 swap(p_prev_elem, p_curr_elem, elem_size_bytes);
 swapped = true;
 }
 }
 if (!swapped) {
 return;
 }
 }
}

Let’s start by making the parameters
generic.

14

Generic Bubble Sort
void bubble_sort(void *arr, size_t n, size_t elem_size_bytes,
 int (*cmp_fn)(void *, void *)) {
 while (true) {
 bool swapped = false;

 for (size_t i = 1; i < n; i++) {
 void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
 void *p_curr_elem = (char *)arr + i * elem_size_bytes;
 if (cmp_fn(p_prev_elem, p_curr_elem) > 0) {
 swap(p_prev_elem, p_curr_elem, elem_size_bytes);
 swapped = true;
 }
 }

 if (!swapped) {
 return;
 }
 }
}

 . . .

Caller’s stack frame

? ? ? ?

 . . .

bubble_sort i arr p_prev_elem p_curr_elem

2

15

Calling Generic Bubble Sort
// 0 if equal, neg if first before second, pos if second before first
int sort_descending(void *ptr1, void *ptr2) {
 ???
}

int main(int argc, char *argv[]) {
 int nums[] = {4, 2, -5, 1, 12, 56};
 int nums_count = sizeof(nums) / sizeof(nums[0]);
 bubble_sort(nums, nums_count, sizeof(nums[0]), sort_descending);
 ...
}

Key idea: now the comparison function is passed
pointers to the elements being compared.

16

Function Pointers
How does the caller implement a comparison function that bubble sort can use?
The key idea is now the comparison function is passed pointers to the
elements that are being compared.

We can use the following pattern:
1) Cast the void *argument(s) and set typed pointers equal to them.
2) Dereference the typed pointer(s) to access the values.
3) Perform the necessary operation.

(steps 1 and 2 can often be combined into a single step)

17

Function Pointers

int sort_descending(void *ptr1, void *ptr2) {
 // 1) cast arguments to int *s
 int *num1ptr = (int *)ptr1;
 int *num2ptr = (int *)ptr2;

 // 2) dereference typed points to access values
 int num1 = *num1ptr;
 int num2 = *num2ptr;

 // 3) perform operation
 return num2 – num1;
}

This function is created by the caller
specifically to compare integers,

knowing their addresses are necessarily
disguised as void *so that bubble_sort

can work for any array type.

18

Function Pointers

int sort_descending(void *ptr1, void *ptr2) {
 return *(int *)ptr2 - *(int *)ptr1;
}

 . . .

Caller’s stack frame

? ? ? ?

 . . .

bubble_sort i arr p_prev_elem p_curr_elem

2

 . . .

cmp_fn stack frame ptr1 ptr2

19

String Comparison Function

int string_compare(void *ptr1, void *ptr2) {
 // cast arguments and dereference
 char *str1 = *(char **)ptr1;
 char *str2 = *(char **)ptr2;

 // perform operation
 return strcmp(str1, str2);
}

 . . .

Caller’s stack frame

? ? ? ?

 . . .

bubble_sort i arr p_prev_elem p_curr_elem

2

 . . .

Cmp fn stack frame ptr1 ptr2

20

Function Pointer Pitfalls
• If a function takes a function pointer as a parameter, any function with the

expected prototype can be passed in, even if it’s the wrong function.
• Think about what happens if you pass in a string comparison function when

sorting an integer array?

21

Practice: Count Matches
• Let’s write a generic function count_matches that can count the number of a

certain type of element in a generic array.
• It should take in as parameters information about the generic array, and a

function parameter that can take in a pointer to a single array element and tell
us if it's a match.

int count_matches(void *base, size_t nelems,
 size_t elem_size_bytes,
 bool (*match_fn)(void *));

22

Demo: Count Matches

count_matches.c

23

Practice Solution: count_matches
int count_matches(void *base, size_t nelems, size_t elem_size_bytes,
 bool (*match_fn)(void *)) {

 int match_count = 0;

 for (size_t i = 0; i < nelems; i++) {
 void *curr_p = (char *)base + i * elem_size_bytes;
 if (match_fn(curr_p)) {
 match_count++;
 }
 }

 return match_count;
}

24

Generic C Standard Library Functions
• qsort – I can sort an array of any type! To do that, I need you to provide me a

function that can compare two elements of the kind you are asking me to sort.
• bsearch – I can use binary search to search for a key in an array of any type! To

do that, I need you to provide me a function that can compare two elements
of the kind you are asking me to search.
• lfind – I can use linear search to search for a key in an array of any type! To do

that, I need you to provide me a function that can compare two elements of
the kind you are asking me to search.
• lsearch - I can use linear search to search for a key in an array of any type! I

will also add the key for you if I can’t find it. In order to do that, I need you to
provide me a function that can compare two elements of the kind you are
asking me to search.

