CS107, Lecture 13

C Generics and Function Pointers, Take Il

Reading: K&R 5.11
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5528617

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

https://edstem.org/us/courses/65949/discussion/5528617

Integer Bubble Sort

void bubble sort _int(int *arr, size_t n, int (*cmp_fn)(int, int)) {
while (true) {
bool swapped = false;
for (size_ t i = 1; i < n; i++) {
if (cmp_fn(arr[i - 1], arr[i]) > 0) {
swap(&arr[i - 1], &arr[i], sizeof(int));
swapped = true;

}
}
if (!swapped) {
return; bubble_sort_int now supports any
}) possible sort ordering. But it’s not fully
} generic - it still only supports arrays of
ints. What about other types of arrays? 2

Generic Bubble Sort

file that sorts _ints.c
#tinclude <bubblesort.h>

Goal: write 1 implementation of
bubblesort that any program
can use to sort data of any type.

int main(int argc, char *argv[]) {

}

file that sorts strings.c bubblesort.h/c

#tinclude <bubblesort.h>

int main(int argc, char *ar\gv[]) { /

}

file that sorts structs.c
#include <bubblesort.h>

int main(int argc, char *argv[]) {

, . ,

Generic Bubble Sort

To write one generic bubblesort function, we must create one function
signature that works for any scenario.

void bubble sort(int *arr, size t n, int (*cmp_fn)(int, int));

Generic Bubble Sort

To write one generic bubblesort function, we must create one function
signature that works for any scenario.

void bubble sort(void *arr, size t n,
size t elem _size bytes,
int (*cmp_fn)(int, int));

Problem: we need one comparison function
signature that works with any type.

Generic Bubble Sort

To write one generic bubblesort function, we must create one function pointer
signature that works for any data type.

void bubble sort int(void *arr, size t n,

size t elem _size bytes, int (*cmp fn)(int, int));
void bubble sort long(void *arr, size t n,

size t elem _size bytes, int (*cmp_fn)(long, long));
void bubble sort str(void *arr, size t n,

size_t elem _size bytes, int (*cmp_ fn)(char *, char *));

How can we write a
function that can take in
parameters of any type?

Generic Parameters

 Let’s say | want to write a function generic_func that takes in one parameter,
but it could be any type. What should we specify as the parameter type?

generic_func(type paraml) { ..

* Problem: C needs the parameter to be a single specified size. But in theory it
could be infinitely big (e.g., a large struct).

* Key Idea: require the caller to pass in a pointer to the data. Pointers are
always 8 bytes, regardless of what they address.

* Problem: which pointer type should | pick? e.g., int *, char *? If it doesn’t
match the actual type, the caller will have to cast (yuck).

* Key Idea #2: make the parameter type a void *, which means "any pointer". .

Generic Bubble Sort

* We will use the same idea for bubblesort’s comparison function. Make its

parameters void *s. Then we must call them by specifying pointers to what we
want to compare, not the elements themselves.

Let’s write a generic version of bubblesort:
1. Make the parameters and swap functionality generic

2. Make the comparison function generic

Generic Bubble Sort

void bubble sort(int *arr, size t n, int (*cmp_fn)(int, int)) {
while (true) {
bool swapped = false;
for (size t i =1; i < n; i++) {
if (cmp_fn(arr[i - 1], arr[i]) > ©) {
swap(&arr[i - 1], &arr[i], sizeof(int));

}

swapped = true;

if (!swapped) {

}

return;

Let’s start by making the parameters
generic.

10

Generic Bubble Sort

void bubble sort(void *arr, size t n,
size t elem size bytes, int (*cmp_fn)(int, int)) {
while (true) {
bool swapped = false;
for (size t i =1; 1 < n; i++) {
if (cmp_fn(arr[i - 1], arr[i]) > ©) {
swap(&arr[i - 1], &arr[i], elem_size bytes);
swapped = true;
} // args passed to cmp_fn and swap won’t compile! must fix!

}

if (!swapped) {

} return; Let’s start by making the parameters
} } generic.

11

Generic Bubble Sort

void bubble sort(void *arr, size t n,
size_t elem size bytes, int (*cmp_fn)(int, int)) {
while (true) {
bool swapped = false;
for (size t i =1; 1 < n; i++) {
void *p_prev_elem (char *¥)arr + (1 - 1) * elem_size bytes;
void *p_curr_elem (char *)arr + i * elem_size bytes;
if (cmp_fn(arr[i - 1], arr[i]) > ©) {
swap(p_prev_elem, p _curr_elem, elem size bytes);
swapped = true;

}
e o
1 ('Swapp?d) { Let’s start by making the parameters
return; _
} } generic.

12

Generic Bubble Sort

void bubble sort(void *arr, size t n,
size t elem size bytes, int (*cmp_fn)(void *, void *)) {

while (true) {
bool swapped = false;
for (size t i =1; 1 < n; i++) {
void *p prev_elem (char *)arr + (1 - 1) * elem_size bytes;
void *p curr_elem (char *)arr + i * elem_size bytes;
if (cmp_fn(p_prev_elem, p curr_elem) > 0) {
swap(p_prev_elem, p curr_elem, elem size bytes);

swapped = true;

}
e
1 (‘Swapp?d) { Let’s start by making the parameters
return; _
} } generic.
13

Generic Bubble Sort

void bubble sort(void *arr, size t n, size t elem _size bytes,
int (*cmp_fn)(void *, void *)) {
while (true) {
bool swapped = false;

for (size_t i =1; i < n; i++) {
void *p_prev_elem = (char *)arr + (i - 1) * elem_size bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (cmp_fn(p_prev_elem, p_curr_elem) > 0) {
swap(p_prev_elem, p_curr_elem, elem_size bytes);

SWAPPEA = TPUGS ettt At et ee et et en et ene ey

) : ? : ?
} g ereesesererncas Feenns
if (!swapped) { Caller’s stack fram
return;
}
} 2
}

bubble_sort i arr

p_prev_elem

p_curr_elem
14

Calling Generic Bubble Sort

// © if equal, neg if first before second, pos if second before first

int sort_descending(void *ptrl, void *ptr2) {
???
}

int main(int argc, char *argv[]) {
int nums[] = {4, 2, -5, 1, 12, 56};
int nums_count = sizeof(nums) / sizeof(nums[@]);
bubble sort(nums, nums_count, sizeof(nums[@]), sort descending);

Key idea: now the comparison function is passed
pointers to the elements being compared.

15

Function Pointers

How does the caller implement a comparison function that bubble sort can use?
The key idea is now the comparison function is passed pointers to the
elements that are being compared.

We can use the following pattern:

1) Cast the void *argument(s) and set typed pointers equal to them.
2) Dereference the typed pointer(s) to access the values.

3) Perform the necessary operation.

(steps 1 and 2 can often be combined into a single step)

16

Function Pointers

int sort descending(void *ptrl, void *ptr2) {
// 1) cast arguments to int *s
int *numlptr = (int *)ptri;
int *num2ptr = (int *)ptr2;

// 2) dereference typed points to access values

int numl = *numlptr;
int num2 = *num2ptr; This function is created by the caller

specifically to compare integers,
// 3) perform operation |[knowing their addresses are necessarily
return num2 - numl; disguised as void *so that bubble_sort

} can work for any array type.

Function Pointers

int sort descending(void *ptrl, void *ptr2) {
return *(int *)ptr2 - *(int *)ptril;
F i m————

Caller’s stack fram

2

bubble_sort i r p_prev_¥lem p_curr_elem

cmp_fn stack frame ptrl ptr2

String Comparison Function

int string compare(void *ptrl, void *ptr2) {
// cast arguments and dereference
char *strl = *(char **)ptri;
char *str2 = *(Chap **)ptpz; R R S R :

// perform operation

return strcmp(strl, str2); Caller’s stack fram

2

bubble_sort i r p_prev_ ¥lem p_curr_elem

Cmp fn stack frame ptrl ptr2

L

Function Pointer Pitfalls

* If a function takes a function pointer as a parameter, any function with the
expected prototype can be passed in, even if it’s the wrong function.

* Think about what happens if you pass in a string comparison function when
sorting an integer array?

20

Practice: Count Matches

* Let’s write a generic function count_matches that can count the number of a
certain type of element in a generic array.

* It should take in as parameters information about the generic array, and a
function parameter that can take in a pointer to a single array element and tell
us if it's a match.

int count_matches(void *base, size_ t nelems,
size t elem_size bytes,
bool (*match_fn)(void *));

Demo: Count Matches

count_matches.c

Practice Solution: count matches

int count _matches(void *base, size t nelems, size t elem _size bytes,
bool (*match_fn)(void *)) {

int match_count = 0;
for (size t i = 0; i < nelems; i++) {
void *curr_p = (char *)base + i * elem_size bytes;

if (match_fn(curr_p)) {
match_count++;
}

}

return match_count;

23

Generic C Standard Library Functions

e gsort — | can sort an array of any type! To do that, | need you to provide me a
function that can compare two elements of the kind you are asking me to sort.

* bsearch — | can use binary search to search for a key in an array of any type! To
do that, | need you to provide me a function that can compare two elements
of the kind you are asking me to search.

* Ifind — | can use linear search to search for a key in an array of any type! To do
that, | need you to provide me a function that can compare two elements of
the kind you are asking me to search.

* Isearch - | can use linear search to search for a key in an array of any type! |
will also add the key for you if | can’t find it. In order to do that, | need you to
provide me a function that can compare two elements of the kind you are
asking me to search.

24

