CS107, Lecture 16
Assembly: Arithmetic and Logic

Reading: B&O 3.5-3.6
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5588410

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

https://edstem.org/us/courses/65949/discussion/5588410

Data Sizes

Data types in assembly are managed via a slightly different set of names:
* A byte is 1 byte.

 Aword is 2 bytes.

* A double word is 4 bytes.

* A quad word is 8 bytes.

Assembly instructions can include suffixes to refer to these types:
* b means byte

* W means word

* 1 means double word

* d means quad word 2

Register Sizes

Bit: 63 31 15 7 0
%rax %eax %ax %al
%rbx %ebx %bx %bl
%rcx %ecx %CX
%rdx %edx %dx %d1
%rsi %esi %si
%rdi %edi %di

Register Sizes

Bit: 63 31 15 7
%rbp %ebp %bp %bpl
%rsp %esp %Sp %spl
%r8 %r8d %r8w %r8b
%r9 %rod %row %r9b
%rl10 %»rlod %rlow %rl10b
%rll %rlld %rllw %rllb

Bit:

Register Sizes

63 31 15 7

%rl2 %rl2d %rl2w %rl2b
%rl3 %rl3d %rl3w %rl3b
%rld %rlad %rldw %rlab
%rl5 %rl5d %r15w %rl15b

Register Responsibilities

Some registers take on special responsibilities during program execution.
* %rax stores the return value

* %rdi stores the first parameter to a function

* %rsi stores the second parameter to a function

» %rdx stores the third parameter to a function

* %rip stores the address of the next instruction to be executed

* %rsp stores the address of the stack frame of the currently executing function

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website! 6

mov Variants

* mov can take an optional suffix (b/w/l/q) that specifies the size of data to
move: movb, movw, movl, movg

* mov only updates the specific register bytes or memory locations indicated.
* Exception: movl writing to a register will also set high order 4 bytes to O.

Practice: mov And Data Sizes

For each of the following mov instructions, determine the appropriate suffix
based on the operands (e.g., movb, movw, movl or movq).

. mov__ %eax, (%rsp)
. mov___ (%rax), %dx

. mov__ $oxff, %bl

. mov (%rsp,%rdx,4),%dl

. mov__ (%rdx), %rax

OO U1 A W N B

. mov__ %dx, (%rax)

Practice: mov And Data Sizes

For each of the following mov instructions, determine the appropriate suffix
based on the operands (e.g., movb, movw, movl or movq).

. movl %eax, (%rsp)

. movw (%rax), %»dx

. movb $Oxff, %bl

. movb (%rsp,%rdx,4),%dl
. movq (%rdx), %rax

OO U1 A W N B

. movw %dx, (%rax)

 The movabsq instruction is used to write a 64-bit immediate (constant) value.

* The regular movq instruction can only take 32-bit immediates.
* 64-bit immediate as source, only register as destination.

movabsq $0x0011223344556677, %rax

10

movz and movs

* There are two mov instructions that can be used to copy a smaller source to a
larger destination: movz and mouvs.

* movz fills the remaining bytes with zeros

* movs fills the remaining bytes by sign-extending the most significant bit of the
source.

* The source must be from memory or a register, and the destination must be a
register.

11

movz and movs

MOVZ S,R R « ZeroExtend(S)

Instruction Description

movzbw Move zero-extended byte to word
movzbl Move zero-extended byte to double word
movzwl Move zero-extended word to double word
movzbq Move zero-extended byte to quad word
movzwq Move zero-extended word to quad word

12

movz and movs

MOVS S,R R « SignExtend(S)

Instruction Description

movsbw Move sign-extended byte to word

movsbl Move sign-extended byte to double word

movswl Move sign-extended word to double word

movsbq Move sign-extended byte to quad word

MOV SW(Move sign-extended word to quad word

movslq Move sign-extended double word to quad word

cltq Sign-extend %eax in place to fill all of %rax
%rax <- SignExtend(%eax)

13

Register Sizes

* The operand forms with parentheses (e.g., mov (%rax), %rdi) require that
registers in parentheses be the 64-bit registers.

* For that reason, you may see smaller registers extended with e.g., movs into
the larger registers before these kinds of instructions.

14

Our First Assembly

int sum _array(int arr[], int nelems) {
int sum = ©;
for (int 1 = ©; i < nelems; i++) {
sum += arr[i];

}
return sum;
}
0000000000401136 <sum_array>:
401136: b8 00 00 00 00 mov $0x0, %eax
40113b: ba 00 00 00 00 mov $0x0, %edx
401140: 39 fo cmp %esi,%eax
401142: 7d ©b jge 40114f <sum_array+0x19>
401144 48 63 c8 movslq %eax,%rcx
401147 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 c0 01 add $0x1, %eax
40114d: eb f1 jmp 401140 <sum_array+0xa>
40114 89 do mov %edx, seax

401151: c3 retq 15

The lea instruction copies an "effective address" from one place to another.

lea src,dst

Unlike mov, which copies data at the address src to the destination, lea copies
the value of src itself to the destination.

The syntax for the destinations is the same as
mov. The difference is how it handles the src.

16

P T

6(%r-ax) , srdx Go to the address (6 + what’s in %rax), = Copy 6 + what’s in %rax into %rdx.
and copy data there into %rdx

17

e lea Interpretation

6(%rax), %rdx

(%rax, %rcx), %rdx

Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Go to the address (what’s in %rax +
what’s in %rcx) and copy data there into
%rdx

Copy 6 + what’s in %rax into %rdx.

Copy (what’s in %rax + what’s in %rcx)
into %rdx.

18

6(%rax), %rdx

(%rax, %rcx), %rdx

(%rax, %rcx, 4), %rdx

mov Interpretation lea Interpretation

Go to the address (6 + what’s in %rax), Copy 6 + what’s in %rax into %rdx.
and copy data there into %rdx

Go to the address (what’s in %rax + Copy (what’s in %rax + what’s in %rcx)
what’s in %rcx) and copy data there into into %rdx.
%rdx

Go to the address (%rax + 4 * %rcx) and Copy (%rax + 4 * %rcx) into %rdx.
copy data there into %rdx.

19

6 (%r'ax) , srdx Go to the address (6 + what’s in %rax), = Copy 6 + what’s in %rax into %rdx.
and copy data there into %rdx

(%r\ax, %r\cx) , srdx Go to the address (what’s in %rax + Copy (what’s in %rax + what’s in %rcx)
what’s in %rcx) and copy data there into into %rdx.
%rdx

(%rlax, %rcx, 4) , %rdx Gototheaddress (%rax+4* %rcx)and Copy (%rax +4 * %rcx) into %rdx.
copy data there into %rdx.

7 (%r\ax, %rax, 8) , srdx Goto the address (7 + %rax + 8 * %rax) Copy (7 + %rax + 8 * %rax) into %rdx.
and copy data there into %rdx.

Unlike mov, which copies data at the address
src to the destination, lea copies the value of
src itself to the destination.

20

Reverse Engineering Practice

void calculate(int x, int y, int *ptr) {

} Note: assume x is in %rdi, y
IS in %rsi and ptr is in %rdx.

calculate:
leal (%rdi,%rsi,2), %eax
movl %eax, (%rdx)
ret

21

Reverse Engineering Practice

void calculate(int x, int y, int *ptr) {
*ptr = x + 2 * y;

calculate:
leal (%rdi,%rsi,2), %eax
movl %eax, (%rdx)
ret

22

A Note About Operand Forms

* Many instructions share the same address operand forms that mov uses.
e e.g., 7(%rax, %rcx, 2).

* These forms work the same way for other instructions (exception, lea):
* It interprets this form as just the calculation, not the dereferencing
* lea 8(%rax,%rdx),%rcx -> Calculate 8 + %rax + %rdx, put it in %rcx

23

Unary Instructions

The following instructions operate on a single operand (register or memory):

Instruction Effect Description
inc D D«D+1 Increment
dec D D«<D-1 Decrement
neg D D « -D Negate

not D D « ~D Complement

Examples:
incqg 16(%rax)
dec %rdx

not %rcx

24

Binary Instructions

The following instructions operate on two operands (both can be register or
memory, source can also be immediate). Both cannot be memory locations.
Read it as, e.g., 'subtract S from D":

Instruction Effect Description
add S, D D«<D+S5S Add

sub S, D De«<D-S Subtract
imul S, D D«<D*S Multiply
xor S, D De«<D”™S Exclusive-or
or S, D DeD]| S Or

and S, D D«<D&S And

Examples:

addqg %rcx, (%rax)
xorq $16, (%rax, %rdx, 8)

suba %rdx.8(%rax) *

The following instructions have two operands: the shift amount k and the

destination to shift, D. k can be either an immediate value, or the byte register
%cl (and only that register!)

Instruction Effect Description

sal k, D D «D << Kk Left shift

shl k, D D «D << k Left shift (same as sal)
sar k, D D «D >, k Arithmetic right shift
shr k, D D «D > k Logical right shift

Examples:
shll $3, (%rax)
shrl %cl, (%rax,%rdx,8)
sarl $4,8(%rax)

26

Instruction Effect Description

sal k, D D «D << k Left shift

shl k, D D «D << k Left shift (same as sal)
sar k, D D «D >, k Arithmetic right shift
shr k, D D«D > k Logical right shift

 When using %cl, the width of what you are shifting determines what portion
of %cl is used.

* For w bits of data, it looks at the low-order log2(w) bits of %cl to know how
much to shift.

* If %cl = 0xff, then: shlb shifts by 7 because it considers only the low-order log2(8) = 3
bits, which represent 7. shlw shifts by 15 because it considers only the low-order
log2(16) = 4 bits, which represent 15.

27

