
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

CS107, Lecture 17
Assembly: Arithmetic and Logic, Take II

Reading: B&O 3.5-3.6
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5594988

https://edstem.org/us/courses/65949/discussion/5594988

2

Assembly Exploration
• Let’s pull these commands together and see how some C code might be

translated to assembly.
• Compiler Explorer is a handy website that lets you quickly write C code and see

its assembly translation. Let’s check it out!

https://godbolt.org/z/Ecbde99e3

https://godbolt.org/z/Ecbde99e3

3

Code Reference: calculate
int calculate(int x, int arr[]) {
 int sum = x;
 sum += arr[0];
 sum <<= x;
 sum &= 512;
 return sum;
}

calculate:
 movl %edi, %ecx
 movl %edi, %eax
 addl (%rsi), %eax
 sall %cl, %eax
 andl $512, %eax
 ret

4

Large Multiplication
• Multiplying 64-bit numbers can produce a 128-bit result. How does x86-64

support this with only 64-bit registers?
• If you specify two operands to imul, it multiplies them together and truncates

it to fit in the second of the two 64-bit register operands.
imul S, D D ← D * S

• If you specify one operand, it multiplies that by %rax, and splits the product
across 2 registers. It puts the high-order 64 bits in %rdx and the low-order 64
bits in %rax.

Instruction Effect Description

imulq S R[%rdx]:R[%rax] ← S x R[%rax] Signed full multiply

mulq S R[%rdx]:R[%rax] ← S x R[%rax] Unsigned full multiply

5

Division and Remainder

• Terminology: dividend / divisor = quotient with remainder
• x86-64 supports dividing up to a 128-bit value by a 64-bit value.
• The high-order 64 bits of the dividend need to be prepared and stored in %rdx,

the low-order 64 bits in %rax. The divisor is the only listed operand.
• The quotient is stored in %rax, and the remainder in %rdx.

Instruction Effect Description

idivq S R[%rdx] ← R[%rdx]:R[%rax] mod S;
R[%rax] ← R[%rdx]:R[%rax] ➗ S

Signed divide

divq S R[%rdx] ← R[%rdx]:R[%rax] mod S;
R[%rax] ← R[%rdx]:R[%rax] ➗ S

Unsigned divide

6

Division and Remainder

• Terminology: dividend / divisor = quotient with remainder
• The high-order 64 bits of the dividend need to be prepared and stored in %rdx,

the low-order 64 bits in %rax. The divisor is the only listed operand.
• Most division uses only 64-bit dividends. The cqto instruction sign-extends the

64-bit value in %rax into %rdx to fill both registers with the dividend, as the
division instruction expects.

Instruction Effect Description

idivq S R[%rdx] ← R[%rdx]:R[%rax] mod S;
R[%rax] ← R[%rdx]:R[%rax] ➗ S

Signed divide

divq S R[%rdx] ← R[%rdx]:R[%rax] mod S;
R[%rax] ← R[%rdx]:R[%rax] ➗ S

Unsigned divide

cqto R[%rdx]:R[%rax] ← SignExtend(R[%rax]) Convert to oct word

7

Compiler Explorer Demo

https://godbolt.org/z/4cT75M4nd

https://godbolt.org/z/4cT75M4nd

8

Code Reference: full_divide
// Returns x/y, stores remainder in location stored in remainder_ptr
long full_divide(long x, long y, long *remainder_ptr) {
 long quotient = x / y;
 long remainder = x % y;
 *remainder_ptr = remainder;
 return quotient;
}

full_divide:
 movq %rdi, %rax
 movq %rdx, %rcx
 cqto
 idivq %rsi
 movq %rdx, (%rcx)
 ret

9

Assembly Exercise 1
000000000040116e <sum_example1>:
 40116e: 8d 04 37 lea (%rdi,%rsi,1),%eax
 401171: c3 retq

Which of the following is most likely to have generated the above assembly?

// A)
void sum_example1() {
 int x;
 int y;
 int sum = x + y;
}

// B)
int sum_example1(int x, int y) {
 return x + y;
}

// C)
void sum_example1(int x, int y) {
 int sum = x + y;
}

10

Assembly Exercise 2
0000000000401172 <sum_example2>:
 401172: 8b 47 0c mov 0xc(%rdi),%eax
 401175: 03 07 add (%rdi),%eax
 401177: 2b 47 18 sub 0x18(%rdi),%eax
 40117a: c3 retq

int sum_example2(int arr[]) {
 int sum = 0;
 sum += arr[0];
 sum += arr[3];
 sum -= arr[6];
 return sum;
}

What location or value in the assembly above represents the
C code’s sum variable?

%eax

11

Assembly Exercise 3
0000000000401172 <sum_example2>:
 401172: 8b 47 0c mov 0xc(%rdi),%eax
 401175: 03 07 add (%rdi),%eax
 401177: 2b 47 18 sub 0x18(%rdi),%eax
 40117a: c3 retq

int sum_example2(int arr[]) {
 int sum = 0;
 sum += arr[0];
 sum += arr[3];
 sum -= arr[6];
 return sum;
}

What location or value in the assembly code above
represents the C code’s 6 (as in arr[6])?

0x18

12

Reverse Engineering 1
int add_to(int x, int arr[], int i) {
 int sum = ___?___;
 sum += arr[___?___];
 return ___?___;
}

// x in %edi, arr in %rsi, i in %edx
add_to:
 movslq %edx, %rdx
 movl %edi, %eax
 addl (%rsi,%rdx,4), %eax
 ret

13

Reverse Engineering 1
int add_to(int x, int arr[], int i) {
 int sum = ___?___;
 sum += arr[___?___];
 return ___?___;
}

// x in %edi, arr in %rsi, i in %edx
add_to:
 movslq %edx, %rdx // sign-extend i into full register
 movl %edi, %eax // copy x into %eax
 addl (%rsi,%rdx,4), %eax // add arr[i] to %eax
 ret

14

Reverse Engineering 1
int add_to(int x, int arr[], int i) {
 int sum = x;
 sum += arr[i];
 return sum;
}

// x in %edi, arr in %rsi, i in %edx
add_to:
 movslq %edx, %rdx // sign-extend i into full register
 movl %edi, %eax // copy x into %eax
 addl (%rsi,%rdx,4), %eax // add arr[i] to %eax
 ret

15

Reverse Engineering 2
int elem_arithmetic(int nums[], int y) {
 int z = nums[___?___] * ___?___;
 z -= ___?___;
 z >>= ___?___;
 return ___?___;
}

// nums in %rdi, y in %esi
elem_arithmetic:
 movl %esi, %eax
 imull (%rdi), %eax
 subl 4(%rdi), %eax
 sarl $2, %eax
 addl $2, %eax
 ret

16

Reverse Engineering 2
int elem_arithmetic(int nums[], int y) {
 int z = nums[___?___] * ___?___;
 z -= ___?___;
 z >>= ___?___;
 return ___?___;
}

// nums in %rdi, y in %esi
elem_arithmetic:
 movl %esi, %eax // copy y into %eax
 imull (%rdi), %eax // multiply %eax by nums[0]
 subl 4(%rdi), %eax // subtract nums[1] from %eax
 sarl $2, %eax // shift %eax right by 2
 addl $2, %eax // add 2 to %eax
 ret

17

Reverse Engineering 2
int elem_arithmetic(int nums[], int y) {
 int z = nums[0] * y;
 z -= nums[1];
 z >>= 2;
 return z + 2;
}

// nums in %rdi, y in %esi
elem_arithmetic:
 movl %esi, %eax // copy y into %eax
 imull (%rdi), %eax // multiply %eax by nums[0]
 subl 4(%rdi), %eax // subtract nums[1] from %eax
 sarl $2, %eax // shift %eax right by 2
 addl $2, %eax // add 2 to %eax
 ret

18

Our First Assembly
int sum_array(int arr[], int nelems) {
 int sum = 0;
 for (int i = 0; i < nelems; i++) {
 sum += arr[i];
 }
 return sum;
}

0000000000401136 <sum_array>:
 401136: b8 00 00 00 00 mov $0x0,%eax
 40113b: ba 00 00 00 00 mov $0x0,%edx
 401140: 39 f0 cmp %esi,%eax
 401142: 7d 0b jge 40114f <sum_array+0x19>
 401144: 48 63 c8 movslq %eax,%rcx
 401147: 03 14 8f add (%rdi,%rcx,4),%edx
 40114a: 83 c0 01 add $0x1,%eax
 40114d: eb f1 jmp 401140 <sum_array+0xa>
 40114f: 89 d0 mov %edx,%eax
 401151: c3 retq

We’re 1/2 of the way to understanding assembly!
What looks understandable right now?

