CS107, Lecture 17
Assembly: Arithmetic and Logic, Take Il

Reading: B&O 3.5-3.6
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5594988

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

https://edstem.org/us/courses/65949/discussion/5594988

Assembly Exploration

* Let’s pull these commands together and see how some C code might be
translated to assembly.

 Compiler Explorer is a handy website that lets you quickly write C code and see
its assembly translation. Let’s check it out!

https://godbolt.org/z/Ecbde99e3

https://godbolt.org/z/Ecbde99e3

Code Reference: calculate

int calculate(int x, int arr[]) {
int sum = Xx;
sum += arr[0];
sum <<= X;
sum &= 512;
return sum;

calculate:
movl %edi, %ecx
movl %edi, %eax
addl (%rsi), %eax
sall %cl, %eax
andl $512, %eax
ret

Large Multiplication

* Multiplying 64-bit numbers can produce a 128-bit result. How does x86-64
support this with only 64-bit registers?

* If you specify two operands to imul, it multiplies them together and truncates
it to fit in the second of the two 64-bit register operands.

imul S, D D« D *S

* If you specify one operand, it multiplies that by %rax, and splits the product

across 2 registers. It puts the high-order 64 bits in %rdx and the low-order 64
bits in %rax.

Instruction Effect Description
imulq S R[%rdx]:R[%rax] « S x R[%rax] Signed full multiply
mulq S R[%rdx]:R[%rax] « S x R[%rax] Unsigned full multiply

Division and Remainder

Instruction Effect Description

idivqg S R[%rdx] <« R[%rdx]:R[%rax] mod S; Signed divide
R[%rax] < R[%rdx]:R[%rax] = S

divqg S R[%rdx] <« R[%rdx]:R[%rax] mod S; Unsigned divide
R[%rax] < R[%rdx]:R[%rax] = S

* Terminology: dividend / divisor = quotient with remainder

* x86-64 supports dividing up to a 128-bit value by a 64-bit value.

* The high-order 64 bits of the dividend need to be prepared and stored in %rdx,
the low-order 64 bits in %rax. The divisor is the only listed operand.

* The quotient is stored in %rax, and the remainder in %rdx.

Division and Remainder

Instruction Effect Description

idivqg S R[%rdx] <« R[%rdx]:R[%rax] mod S; Signed divide
R[%rax] < R[%rdx]:R[%rax] = S

divqg S R[%rdx] <« R[%rdx]:R[%rax] mod S; Unsigned divide
R[%rax] < R[%rdx]:R[%rax] = S

cqto R[%rdx]:R[%rax] « SignExtend(R[%rax]) Convert to oct word

* Most division uses only 64-bit dividends. The cqto instruction sign-extends the
64-bit value in %rax into %rdx to fill both registers with the dividend, as the
division instruction expects.

Compiler Explorer Demo

https://godbolt.org/z/4cT75M4nd

https://godbolt.org/z/4cT75M4nd

Code Reference: full divide

// Returns x/y, stores remainder in location stored in remainder_ptr

long full divide(long x, long y, long *remainder_ptr) {
long quotient = x / y;

long remainder = xX % y;
*remainder_ptr = remainder;

return quotient;

full divide:
movq %rdi, %rax
movqg %rdx, %rcx
cqgto
idivg %rsi
movq %rdx, (%rcx)
ret

Assembly Exercise 1

000000000040116e <sum_examplel>:
40116e: 8d 04 37 lea (%rdi,%rsi,1),%eax
401171: c3 retq

Which of the following is most likely to have generated the above assembly?

/1 A) B)

void sum_examplel() { int sum_examplel(int x, int y) {
int x; return x + y;
int y; }
int sum = x + y;

}

/] C)

void sum_examplel(int x, int y) {
int sum = x + y;

}

Assembly Exercise 2

0000000000401172 <sum_example2>:

401172: 8b 47 ©Oc
401175: 03 07
401177: 2b 47 18
40117a: c3

int sum_example2(int arr[]) {
int sum = 0;
sum += arr[0];
sum += arr[3];
sum -= arr[6];
return sum;

mov Oxc(%rdi),%eax
add (%rdi),%eax

sub ©x18(%rdi),%eax
retq

What location or value in the assembly above represents the
C code’s sum variable?

%eax

10

Assembly Exercise 3

0000000000401172 <sum_example2>:

401172: 8b 47 ©Oc
401175: 03 07
401177: 2b 47 18
40117a: c3

int sum_example2(int arr[]) {
int sum = 0;
sum += arr[0];
sum += arr[3];
sum -= arr[6];
return sum;

mov Oxc(%rdi),%eax
add (%rdi),%eax

sub ©x18(%rdi),%eax
retq

What location or value in the assembly code above
represents the C code’s 6 (as in arr[6])?

0x18

11

Reverse Engineering 1

int add _to(int x, int arr[], int i) {

int sum = ? ;
sum += arr| ? 1;
return ? K

// X in %edi, arr in %rsi, i in %edx
add_to:

movslq %edx, %rdx

movl %edi, %eax

addl (%rsi,%rdx,4), %eax

ret

12

Reverse Engineering 1

int add _to(int x, int arr[], int i) {

int sum = ? 5
sum += arr| ? 15
return ? 5
}
// X in %edi, arr in %rsi, i in %edx
add_to:
movslq %edx, %rdx // sign-extend 1 into full register
movl %edi, %eax // copy X into %eax

addl (%rsi,%rdx,4), %eax // add arr[i] to %eax
ret

13

Reverse Engineering 1

int add_to(int x, int arr[], int i) {
int sum = Xx;
sum += arr[i];
return sum;

}

// X in %edi, arr in %rsi, i in %edx

add_to:
movslq %edx, %rdx // sign-extend 1 into full register
movl %edi, %eax // copy X into %eax

addl (%rsi,%rdx,4), %eax // add arr[i] to %eax
ret

14

Reverse Engineering 2

int elem_arithmetic(int nums[], int y) {

int z = nums]| ?] * ? 5
z -= ? 5

Z >>= ? ;

return ? ;

// nums in %rdi, y in %esi
elem_arithmetic:

movl %esi, %eax

imull (%rdi), %eax

subl 4(%rdi), %eax

sarl $2, %eax

addl $2, %eax

ret

15

Reverse Engineering 2

int elem_arithmetic(int nums[], int y) {

int z = nums]| ?]
z -= ? ;

// nums in %rdi, y in %esi
elem_arithmetic:

movl %esi, %eax

imull (%rdi), %eax

subl 4(%rdi), %eax

sarl $2, %eax

addl $2, %eax

ret

*

//
//
//
//
//

p L[]
* J

copy y into %eax

multiply %eax by nums[O]
subtract nums[1l] from %eax
shift %eax right by 2

add 2 to %eax

16

Reverse Engineering 2

int elem_arithmetic(int nums[], int y) {

int z = nums[@] * y;
z -= nums[1];

Z >>= 2;

return z + 2;

// nums in %rdi, y in %esi
elem_arithmetic:

movl %esi, %eax

imull (%rdi), %eax

subl 4(%rdi), %eax

sarl $2, %eax

addl $2, %eax

ret

//
//
//
//
//

copy y into %eax

multiply %eax by nums[O]
subtract nums[1l] from %eax
shift %eax right by 2

add 2 to %eax

17

Our First Assembly

int sum_array(int arr[], int nelems) { |We’re 1/2 of the way to understanding assembly!
int sum = ©; What looks understandable right now?
for (int 1 = ©; i < nelems; i++) {
sum += arr[i];

}
return sum;
}
0000000000401136 <sum_array>:
401136: b8 00 00 00 00 mov $0x0, %eax
40113b: ba 00 00 00 00 mov $0x0, %edx
401140: 39 fo cmp %esi,%eax
401142: 7d ©b jge 40114f <sum_array+0x19>
401144 : 48 63 c8 movslqg %eax,%rcx
401147 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 c@ o1l add $ox1,%eax A7
40114d: eb f1 jmp 401140 <sum_array+0xa> g
40114 89 do mov %edx, seax

401151 c3 retq 18

