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CS107, Lecture 17
Assembly: Arithmetic and Logic, Take II

Reading: B&O 3.5-3.6
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5594988
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Assembly Exploration
• Let’s pull these commands together and see how some C code might be 

translated to assembly.
• Compiler Explorer is a handy website that lets you quickly write C code and see 

its assembly translation.  Let’s check it out!

https://godbolt.org/z/Ecbde99e3 

https://godbolt.org/z/Ecbde99e3
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Code Reference: calculate
int calculate(int x, int arr[]) {
    int sum = x;
    sum += arr[0];
    sum <<= x;
    sum &= 512;
    return sum;
}

----------

calculate:
  movl %edi, %ecx
  movl %edi, %eax
  addl (%rsi), %eax
  sall %cl, %eax
  andl $512, %eax
  ret
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Large Multiplication
• Multiplying 64-bit numbers can produce a 128-bit result.  How does x86-64 

support this with only 64-bit registers?
• If you specify two operands to imul, it multiplies them together and truncates 

it to fit in the second of the two 64-bit register operands.
imul S, D  D ← D * S

• If you specify one operand, it multiplies that by %rax, and splits the product 
across 2 registers.  It puts the high-order 64 bits in %rdx and the low-order 64 
bits in %rax.

Instruction Effect Description

imulq S R[%rdx]:R[%rax] ← S x R[%rax] Signed full multiply

mulq S R[%rdx]:R[%rax] ← S x R[%rax] Unsigned full multiply
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Division and Remainder

• Terminology: dividend / divisor = quotient with remainder
• x86-64 supports dividing up to a 128-bit value by a 64-bit value.
• The high-order 64 bits of the dividend need to be prepared and stored in %rdx, 

the low-order 64 bits in %rax.  The divisor is the only listed operand.
• The quotient is stored in %rax, and the remainder in %rdx. 

Instruction Effect Description

idivq S R[%rdx] ← R[%rdx]:R[%rax] mod S;
R[%rax] ← R[%rdx]:R[%rax] ➗ S

Signed divide

divq S R[%rdx] ← R[%rdx]:R[%rax] mod S;
R[%rax] ← R[%rdx]:R[%rax] ➗ S

Unsigned divide
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Division and Remainder

• Terminology: dividend / divisor = quotient with remainder
• The high-order 64 bits of the dividend need to be prepared and stored in %rdx, 

the low-order 64 bits in %rax.  The divisor is the only listed operand.
• Most division uses only 64-bit dividends.  The cqto instruction sign-extends the 

64-bit value in %rax into %rdx to fill both registers with the dividend, as the 
division instruction expects.

Instruction Effect Description

idivq S R[%rdx] ← R[%rdx]:R[%rax] mod S;
R[%rax] ← R[%rdx]:R[%rax] ➗ S

Signed divide

divq S R[%rdx] ← R[%rdx]:R[%rax] mod S;
R[%rax] ← R[%rdx]:R[%rax] ➗ S

Unsigned divide

cqto R[%rdx]:R[%rax] ← SignExtend(R[%rax]) Convert to oct word
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Compiler Explorer Demo

https://godbolt.org/z/4cT75M4nd 

https://godbolt.org/z/4cT75M4nd
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Code Reference: full_divide
// Returns x/y, stores remainder in location stored in remainder_ptr
long full_divide(long x, long y, long *remainder_ptr) {
    long quotient = x / y;
    long remainder = x % y;
    *remainder_ptr = remainder;
    return quotient;
}

-------

full_divide:
  movq %rdi, %rax
  movq %rdx, %rcx
  cqto
  idivq %rsi
  movq %rdx, (%rcx)
  ret
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Assembly Exercise 1
000000000040116e <sum_example1>:
  40116e: 8d 04 37          lea  (%rdi,%rsi,1),%eax
  401171: c3                retq 

Which of the following is most likely to have generated the above assembly?

// A)
void sum_example1() {
    int x;
    int y;
    int sum = x + y;
}

// B)
int sum_example1(int x, int y) {
    return x + y;
}

// C)
void sum_example1(int x, int y) {
    int sum = x + y;
}
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Assembly Exercise 2
0000000000401172 <sum_example2>:
      401172: 8b 47 0c      mov  0xc(%rdi),%eax
      401175: 03 07         add  (%rdi),%eax
      401177: 2b 47 18      sub  0x18(%rdi),%eax
      40117a: c3            retq 

int sum_example2(int arr[]) {
    int sum = 0;
    sum += arr[0];
    sum += arr[3];
    sum -= arr[6];
    return sum;
}

What location or value in the assembly above represents the 
C code’s sum variable?

%eax
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Assembly Exercise 3
0000000000401172 <sum_example2>:
      401172: 8b 47 0c      mov  0xc(%rdi),%eax
      401175: 03 07         add  (%rdi),%eax
      401177: 2b 47 18      sub  0x18(%rdi),%eax
      40117a: c3            retq 

int sum_example2(int arr[]) {
    int sum = 0;
    sum += arr[0];
    sum += arr[3];
    sum -= arr[6];
    return sum;
}

What location or value in the assembly code above 
represents the C code’s 6 (as in arr[6])?

0x18
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Reverse Engineering 1
int add_to(int x, int arr[], int i) {
    int sum = ___?___;
    sum += arr[___?___];
    return ___?___;
}

----------
// x in %edi, arr in %rsi, i in %edx
add_to:
  movslq %edx, %rdx
  movl %edi, %eax
  addl (%rsi,%rdx,4), %eax
  ret
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Reverse Engineering 1
int add_to(int x, int arr[], int i) {
    int sum = ___?___;
    sum += arr[___?___];
    return ___?___;
}

----------
// x in %edi, arr in %rsi, i in %edx
add_to:
  movslq %edx, %rdx           // sign-extend i into full register
  movl %edi, %eax             // copy x into %eax
  addl (%rsi,%rdx,4), %eax    // add arr[i] to %eax
  ret
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Reverse Engineering 1
int add_to(int x, int arr[], int i) {
    int sum = x;
    sum += arr[i];
    return sum;
}

----------
// x in %edi, arr in %rsi, i in %edx
add_to:
  movslq %edx, %rdx           // sign-extend i into full register
  movl %edi, %eax             // copy x into %eax
  addl (%rsi,%rdx,4), %eax    // add arr[i] to %eax
  ret
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Reverse Engineering 2
int elem_arithmetic(int nums[], int y) {
    int z = nums[___?___] * ___?___;
    z -= ___?___;
    z >>= ___?___;
    return ___?___;
}
----------
// nums in %rdi, y in %esi
elem_arithmetic:
  movl %esi, %eax
  imull (%rdi), %eax
  subl 4(%rdi), %eax
  sarl $2, %eax
  addl $2, %eax
  ret
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Reverse Engineering 2
int elem_arithmetic(int nums[], int y) {
    int z = nums[___?___] * ___?___;
    z -= ___?___;
    z >>= ___?___;
    return ___?___;
}
----------
// nums in %rdi, y in %esi
elem_arithmetic:
  movl %esi, %eax         // copy y into %eax
  imull (%rdi), %eax      // multiply %eax by nums[0]
  subl 4(%rdi), %eax      // subtract nums[1] from %eax
  sarl $2, %eax           // shift %eax right by 2
  addl $2, %eax           // add 2 to %eax
  ret
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Reverse Engineering 2
int elem_arithmetic(int nums[], int y) {
    int z = nums[0] * y;
    z -= nums[1];
    z >>= 2;
    return z + 2;
}
----------
// nums in %rdi, y in %esi
elem_arithmetic:
  movl %esi, %eax         // copy y into %eax
  imull (%rdi), %eax      // multiply %eax by nums[0]
  subl 4(%rdi), %eax      // subtract nums[1] from %eax
  sarl $2, %eax           // shift %eax right by 2
  addl $2, %eax           // add 2 to %eax
  ret
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Our First Assembly
int sum_array(int arr[], int nelems) {
   int sum = 0;
   for (int i = 0; i < nelems; i++) {
      sum += arr[i];
   }
   return sum;
}

0000000000401136 <sum_array>:
  401136: b8 00 00 00 00       mov    $0x0,%eax
  40113b: ba 00 00 00 00       mov    $0x0,%edx
  401140: 39 f0                cmp    %esi,%eax
  401142: 7d 0b                jge    40114f <sum_array+0x19>
  401144: 48 63 c8             movslq %eax,%rcx
  401147: 03 14 8f             add    (%rdi,%rcx,4),%edx
  40114a: 83 c0 01             add    $0x1,%eax
  40114d: eb f1                jmp    401140 <sum_array+0xa>
  40114f: 89 d0                mov    %edx,%eax
  401151: c3                   retq

We’re 1/2 of the way to understanding assembly! 
What looks understandable right now?


