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Assembly Exploration

* Let’s pull these commands together and see how some C code might be
translated to assembly.

 Compiler Explorer is a handy website that lets you quickly write C code and see
its assembly translation. Let’s check it out!

https://godbolt.org/z/Ecbde99e3



https://godbolt.org/z/Ecbde99e3

Code Reference: calculate

int calculate(int x, int arr[]) {
int sum = Xx;
sum += arr[0];
sum <<= X;
sum &= 512;
return sum;

calculate:
movl %edi, %ecx
movl %edi, %eax
addl (%rsi), %eax
sall %cl, %eax
andl $512, %eax
ret



Large Multiplication

* Multiplying 64-bit numbers can produce a 128-bit result. How does x86-64
support this with only 64-bit registers?

* If you specify two operands to imul, it multiplies them together and truncates
it to fit in the second of the two 64-bit register operands.

imul S, D D« D *S

* If you specify one operand, it multiplies that by %rax, and splits the product

across 2 registers. It puts the high-order 64 bits in %rdx and the low-order 64
bits in %rax.

Instruction Effect Description
imulq S R[%rdx]:R[%rax] « S x R[%rax] Signed full multiply
mulq S R[%rdx]:R[%rax] « S x R[%rax] Unsigned full multiply




Division and Remainder

Instruction Effect Description

idivqg S R[%rdx] <« R[%rdx]:R[%rax] mod S; Signed divide
R[%rax] < R[%rdx]:R[%rax] = S

divqg S R[%rdx] <« R[%rdx]:R[%rax] mod S; Unsigned divide
R[%rax] < R[%rdx]:R[%rax] = S

* Terminology: dividend / divisor = quotient with remainder

* x86-64 supports dividing up to a 128-bit value by a 64-bit value.

* The high-order 64 bits of the dividend need to be prepared and stored in %rdx,
the low-order 64 bits in %rax. The divisor is the only listed operand.

* The quotient is stored in %rax, and the remainder in %rdx.



Division and Remainder

Instruction Effect Description

idivqg S R[%rdx] <« R[%rdx]:R[%rax] mod S; Signed divide
R[%rax] < R[%rdx]:R[%rax] = S

divqg S R[%rdx] <« R[%rdx]:R[%rax] mod S; Unsigned divide
R[%rax] < R[%rdx]:R[%rax] = S

cqto R[%rdx]:R[%rax] « SignExtend(R[%rax]) Convert to oct word

* Most division uses only 64-bit dividends. The cqto instruction sign-extends the
64-bit value in %rax into %rdx to fill both registers with the dividend, as the
division instruction expects.



Compiler Explorer Demo

https://godbolt.org/z/4cT75M4nd



https://godbolt.org/z/4cT75M4nd

Code Reference: full divide

// Returns x/y, stores remainder in location stored in remainder_ptr

long full divide(long x, long y, long *remainder_ptr) {
long quotient = x / y;

long remainder = xX % y;
*remainder_ptr = remainder;

return quotient;

full divide:
movq %rdi, %rax
movqg %rdx, %rcx
cqgto
idivg %rsi
movq %rdx, (%rcx)
ret



Assembly Exercise 1

000000000040116e <sum_examplel>:
40116e: 8d 04 37 lea (%rdi,%rsi,1),%eax
401171: c3 retq

Which of the following is most likely to have generated the above assembly?

/1 A) B)

void sum_examplel() { int sum_examplel(int x, int y) {
int x; return x + y;
int y; }
int sum = x + y;

}

/] C)

void sum_examplel(int x, int y) {
int sum = x + y;

}



Assembly Exercise 2

0000000000401172 <sum_example2>:

401172: 8b 47 ©Oc
401175: 03 07
401177: 2b 47 18
40117a: c3

int sum_example2(int arr[]) {
int sum = 0;
sum += arr[0];
sum += arr[3];
sum -= arr[6];
return sum;

mov Oxc(%rdi),%eax
add (%rdi),%eax

sub ©x18(%rdi),%eax
retq

What location or value in the assembly above represents the
C code’s sum variable?

%eax
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Assembly Exercise 3

0000000000401172 <sum_example2>:

401172: 8b 47 ©Oc
401175: 03 07
401177: 2b 47 18
40117a: c3

int sum_example2(int arr[]) {
int sum = 0;
sum += arr[0];
sum += arr[3];
sum -= arr[6];
return sum;

mov Oxc(%rdi),%eax
add (%rdi),%eax

sub ©x18(%rdi),%eax
retq

What location or value in the assembly code above
represents the C code’s 6 (as in arr[6])?

0x18

11



Reverse Engineering 1

int add _to(int x, int arr[], int i) {

int sum = ? ;
sum += arr| ? 1;
return ? K

// X in %edi, arr in %rsi, i in %edx
add_to:

movslq %edx, %rdx

movl %edi, %eax

addl (%rsi,%rdx,4), %eax

ret
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Reverse Engineering 1

int add _to(int x, int arr[], int i) {

int sum = ? 5
sum += arr| ? 15
return ? 5
}
// X in %edi, arr in %rsi, i in %edx
add_to:
movslq %edx, %rdx // sign-extend 1 into full register
movl %edi, %eax // copy X into %eax

addl (%rsi,%rdx,4), %eax // add arr[i] to %eax
ret

13



Reverse Engineering 1

int add_to(int x, int arr[], int i) {
int sum = Xx;
sum += arr[i];
return sum;

}

// X in %edi, arr in %rsi, i in %edx

add_to:
movslq %edx, %rdx // sign-extend 1 into full register
movl %edi, %eax // copy X into %eax

addl (%rsi,%rdx,4), %eax // add arr[i] to %eax
ret

14



Reverse Engineering 2

int elem_arithmetic(int nums[], int y) {

int z = nums]| ? ] * ? 5
z -= ? 5

Z >>= ? ;

return ? ;

// nums in %rdi, y in %esi
elem_arithmetic:

movl %esi, %eax

imull (%rdi), %eax

subl 4(%rdi), %eax

sarl $2, %eax

addl $2, %eax

ret
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Reverse Engineering 2

int elem_arithmetic(int nums[], int y) {

int z = nums]| ? ]
z -= ? ;

// nums in %rdi, y in %esi
elem_arithmetic:

movl %esi, %eax

imull (%rdi), %eax

subl 4(%rdi), %eax

sarl $2, %eax

addl $2, %eax

ret

*

//
//
//
//
//

p L[]
* J

copy y into %eax

multiply %eax by nums[O]
subtract nums[1l] from %eax
shift %eax right by 2

add 2 to %eax
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Reverse Engineering 2

int elem_arithmetic(int nums[], int y) {

int z = nums[@] * y;
z -= nums[1];

Z >>= 2;

return z + 2;

// nums in %rdi, y in %esi
elem_arithmetic:

movl %esi, %eax

imull (%rdi), %eax

subl 4(%rdi), %eax

sarl $2, %eax

addl $2, %eax

ret

//
//
//
//
//

copy y into %eax

multiply %eax by nums[O]
subtract nums[1l] from %eax
shift %eax right by 2

add 2 to %eax
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Our First Assembly

int sum_array(int arr[], int nelems) { |We’re 1/2 of the way to understanding assembly!
int sum = ©; What looks understandable right now?
for (int 1 = ©; i < nelems; i++) {
sum += arr[i];

}
return sum;
}
0000000000401136 <sum_array>:
401136: b8 00 00 00 00 mov $0x0, %eax
40113b: ba 00 00 00 00 mov $0x0, %edx
401140: 39 fo cmp %esi,%eax
401142: 7d ©b jge 40114f <sum_array+0x19>
401144 : 48 63 c8 movslqg %eax,%rcx
401147 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 c@ o1l add  $ox1,%eax A7
40114d: eb f1 jmp 401140 <sum_array+0xa> g
40114 89 do mov %edx, seax

401151 c3 retq 18



