CS107, Lecture 18

Assembly: Control Flow

Reading: B&O 3.6
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5619681

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

https://edstem.org/us/courses/65949/discussion/5619681

Learning Goals

e Understand how assembly implements loops and control flow

* Learn about how assembly stores comparison and operation results in
condition codes

Executing Instructions

What does it mean for a program
to execute?

So far:
* Program values can be stored in memory or registers.

» Assembly instructions read/write values back and forth
between registers and main memory.

* Assembly instructions are also stored in memory.

Today:

* Who controls the instructions?
How do we know what to do now or next?

Answer:

* The program counter, stored in %rip.

y

4004+d
4004fc

4004fb
4004fa
400419
40048
400417
400416
40045
400414
40043
40042
400411
400410
4004ef
4004ee
4004ed

fa
eb

01

fc

45

83

00

00

00

00

fc

45

c/

e5

89

48

55

Register Responsibilities

Some registers take on special responsibilities during program execution.

* %rip stores the address of the next instruction to execute

See the x86-64 Guide and Reference Sheet on the Resources webpage for more!

Instructions Are Just Bytes!

Main Memory

Stack

Heap
|

Data

Machine code
etiotions E—
0x0

00000000004004ed <loop>:

4004ed:

40041 :
400418:
4004fc:

55

c7 45 fc 00 00 0O 00
83 45 fc 01
eb fa

push

mov1l
addl
jmp

%rbp

$0x0, -0x4(%rbp)
$0x1, -0x4(%rbp)
400418 <loop+0xb>

4004fd

4004fc

4004fb o1
4004fa | fc
400419 45
40048 83
400417 00
4004f6 00
400415 00
400414 00
400413 fc
400412 45
40041 c7
4004ed 55

Main Memory

Stack

-

Heap

Data

Text (code)

N ‘

000000004004ed <loop>:
m) 4004ed: 55

4004f1: c7 45 fc 00 00 0O 00O
4004f8: 83 45 fc 01
4004fc: eb fa

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

push %rbp

movl $0x0,-0x4(%rbp)

addl $0x1,-0x4(%rbp)

jmp 400418 <loop+Oxb>
0x4004ed \

%rip

4004fd

4004fc

4004fb o1
4004fa fc
40049 45
400418 83
400417 00
400416 00
40045 00
400414 00
40043 fc
400412 45
4004f1 c7

4004ed

55

00000000004004ed <loop>:
4004ed: 55

4004f1: c7 45 fc 00 00 0O 00O
4004f8: 83 45 fc 01
4004fc: eb fa

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

4004fd

4004fc

4004fb |01
4004fa fc
push %rbp 4004f9 |45
4004f8 |83
movl $0x0,-0x4(%rbp) 4004f7 |00
addl $0x1, -0x4(%rbp) 4004f6 |00
jmp 400418 <loop+Oxb> 1004f5 | 00
4004f4 |00
40043 | fc
40042 |45
4004f1 | c7
Ox4004ece r———
4004ed 55

%rip

00000000004004ed <loop>:
4004ed: 55

» 4004f1: c7 45 fc 00 00 0O 00O
4004f8: 83 45 fc 01
4004fc: eb fa

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

push %rbp

movl $0x0,-0x4(%rbp)
addl $0x1,-0x4(%rbp)
jmp 400418 <loop+Oxb>
0x4004f1

%rip

4004fd

4004fc

4004fb o1
4004fa fc
40049 45
40048 |83
400417 00
400416 00
40045 00
400414 00
40043 fc
400412 45
4004f1 c7
4004ed 55

10

4004fd

4004fc

4004fb |01
00000000004004ed <loop>: 4004fa | fc
4004ed: 55 push %rbp 4004f9 |45

400418 83

4004F1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp) 4004f7 |00
B) 4004f8: 83 45 fc 01 addl $0x1, -0x4(%rbp) 20046 | 00
4004fc: eb fa jmp 400418 <loop+oxy> 4004F5 | 00
400414 00
400413 fc
40042 45
The program counter (PC), rooafi oo
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed. | 9x4004f8
4004ed 55

%rip 11

00000000004004ed <loop>:
4004ed: 55

4004f1: c7 45 fc 00 00 00 00
400418: 83 45 fc o1
m) 4004fc: eb fa

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

push %rbp

movl $0x0,-0x4(%rbp
addl $0x1,-0x4(%rbp)
jmp 400418 <loopffoxb>
Ox4004fc

%rip

4004fd

4004fc

4004fb o1
4004fa fc
40049 45
40048 |83
400417 00
400416 00
40045 00
400414 00
40043 fc
400412 45
4004f1 c7
4004ed 55

12

4004fd

4004fc
4004fb 01
00000000004004ed <loop>: 4004fa | fc
4004ed: 55 push %rbp 4004f9 | 45
400418 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp 4004f7 |00
4004f8: 83 45 fc o1 addl $0x1, -0x4(%rbf) 4004f6 | 00
m) 4004fc: eb fa jmp 400418 <loopfoxb> [Loears oo
400414 00
_ 40043 | fc
Special hardware sets the program counter roonts | as
to the next instruction: 100t leo

%rip += size of bytes of current instruction
0x4004fc

4004ed 55

%rip 13

Going In Circles

* How can we use this representation of execution to represent e.g., a loop?

* Key Idea: we can override what %rip stores and populate it with the address of
an earlier instruction.

14

00000000004004ed <loop>:
4004ed: 55 push

4004f1: c7 45 fc 00 00 00 00 movl
4004f8: 83 45 fc o1 addl
m) 4004fc: eb fa jmp

The jmp instruction is an
unconditional jump that sets

%rbp

$0x0, -0x4(%rbp
$0x1, -0x4(%rbp)
400418 <loopfoxb>

the program counter to the

jump target (the operand). Ox4004FfcC

%rip

4004fd

4004fc

4004fb o1
4004fa fc
40049 45
40048 |83
400417 00
400416 00
40045 00
400414 00
40043 fc
400412 45
4004f1 c7
4004ed 55

15

4004fd

4004fc

4004fb |01
00000000004004ed <loop>: 4004fa | fc
4004ed: 55 push %rbp 4004f9 |45

400418 83

4004F1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp) 4004f7 |00
B) 4004f8: 83 45 fc 01 addl $0x1, -0x4(%rbp) 20046 | 00
4004fc: eb fa jmp 400418 <loop+oxy> 4004F5 | 00
4004f4 |00
4004f3 | fc
4004f2 |45
The jmp instruction is an nooatl lev
unconditional jump that sets
the program counter to the
jump target (the operand). Ox4004fc
4004ed 55

%rip 16

00000000004004ed <loop>:
4004ed: 55 push

4004f1: c7 45 fc 00 00 00 00 movl
4004f8: 83 45 fc o1 addl
m) 4004fc: eb fa jmp

The jmp instruction is an
unconditional jump that sets

%rbp

$0x0, -0x4(%rbp
$0x1, -0x4(%rbp)
400418 <loopfoxb>

the program counter to the

jump target (the operand). Ox4004FfcC

%rip

4004fd

4004fc

4004fb o1
4004fa fc
40049 45
40048 |83
400417 00
400416 00
40045 00
400414 00
40043 fc
400412 45
4004f1 c7
4004ed 55

17

4004fd

4004fc

4004fb |01
00000000004004ed <loop>: 4004fa | fc
4004ed: 55 push %rbp 4004f9 |45

400418 83

4004F1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp) 4004f7 |00
B) 4004f8: 83 45 fc 01 addl $0x1, -0x4(%rbp) 20046 | 00
4004fc: eb fa jmp 400418 <loop+oxy> 4004F5 | 00
4004f4 |00
4004f3 | fc
4004f2 |45
The jmp instruction is an nooatl lev
unconditional jump that sets
the program counter to the
jump target (the operand). Ox4004fc
4004ed 55

%rip 18

4004fd

4004fc

4004fb |01
00000000004004ed <loop>: 4004fa | fc
4004ed: 55 push %rbp 4004f9 |45

400418 83

4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp) 4004f7 |00
B) 4004f8: 83 45 fc 01 addl $ox1,-0x4(%rbp) 4004f6 | 00
4004fc: eb fa jmp 400418 <loop+oxy> 4004f5 | 00
400414 00
400413 fc
- 40042 45
This assembly represents an 20041 | 7
infinite loop in C!

. Ox4004fc

while (true) {..} zooaed oo

%rip 19

The jmp instruction jumps to another instruction in the assembly code (an
"unconditional jump").

jmp Label (Direct Jump)
jmp *Operand (Indirect Jump)

The destination can be hardcoded into the instruction (direct jump):
jmp 4048 <loop+Oxb>

The destination can also be one of the usual operand forms (indirect jump):
jmp *%rax

20

"Interfering” with %rip

1. How do we repeat instructions in a loop?
jmp [target]
e A 1-step unconditional jump (always

jump when we execute this instruction)

What if we want a conditional jump?

21

* In C, we have control flow statements like if, else, while, for, etc. to write
programs that are more expressive than just one instruction following another.

* This is conditional execution of statements: executing statements if some
condition is true, executing other statements if that condition is false, etc.

* How is this represented in assembly?

22

o In Assembly:
1 -F (X > y) { 1. Calculate the condition result
/ / a 2. Based on theresult,gotoaorb

} else {
// b

* In assembly, it takes more than one instruction to do these two steps.

* Most often: 1 instruction to calculate the condition, 1 to conditionally jump

Common Pattern:
1. cmp S1, S2 // compare two values

2. je[target] or jne [target] or jl[target] or ... // conditionally jump
"jump if "jump if "jump if

equal"” not equal" less than"

24

Conditional Jumps

There are variants of jmp that branch if and only if certain conditions are met.
The jump location for these must be hardcoded into the instruction.

Instruction Synonym Set Condition

je Label jz Equal / zero

jne Label jnz Not equal / not zero

js Label Negative

jns Label Nonnegative

jg Label jnle Greater (signed >)

jge Label jnl Greater or equal (signed >=)
j1 Label jnge Less (signed <)

jle Label jng Less or equal (signed <=)

ja Label jnbe Above (unsigned >)

jae Label jnb Above or equal (unsigned >=)
jb Label jnae Below (unsigned <)

jbe Label jna Below or equal (unsigned <=) -

Read cmp S1, S2 as "compare S2 to S1":

// Jump if Z%edi > 2 // Jump if Z%edi ==
cmp $2, %edi cmp $4, %edi

jg [target] je [target]

// Jump if %edi != 3 // Jump if Z%edi <=1
cmp $3, %edi cmp $1, %edi

jne [target] jle [target]

Wait a minute — how do jump instructions know anything about the
comparisons of earlier instructions?

26

 The CPU has special registers called condition codes that act as "global
variables". They automatically track information about the most recent
arithmetic or logical operation.
e cmp compares via calculation (subtraction) and info is stored in the condition codes
e conditional jump instructions look at these condition codes to know whether to jump

* What exactly are the condition codes? How do they store this information?

27

Condition Codes

Alongside normal registers, the CPU also has single-bit condition code registers.
They store information about the most recent arithmetic or logical operation.

Most common condition codes:

e CF: Carry flag. The most recent operation generated a carry beyond the most
significant bit. Used to detect overflow for unsigned operations.

e ZF: Zero flag. The most recent operation yielded a zero.
* SF: Sign flag. The most recent operation produced a negative value.

e OF: Overflow flag. The most recent operation prompted a two’s-complement
overflow or underflow.

28

Setting Condition Codes

The cmp instruction is like the subtraction instruction, but it does not store the
result anywhere. It just sets condition codes. (Note the operand order!)

CMP S1, S2 S2 - S1
cmpb Compare byte
cmpw Compare word
cmpl Compare double word
cmpq Compare quad word

29

Read cmp S1,52 as "compare S2 to S1". It calculates S2 — S1 and updates the
condition codes with the result.

// Jump if Z%edi > 2 // Jump if Z%edi == 4
// calculates %edi - 2 // calculates %edi - 4
cmp $2, %edi cmp $4, %edi

jg [target] je [target]

// Jump if %edi != 3 // Jump if Z%edi <=1
// calculates %edi - 3 // calculates %edi - 1
cmp $3, %edi cmp $1, %edi

jne [target] jle [target]

30

* How to remember cmp/jmp

1 S2 > S1 . S2 - S1 >0
jg .. ' !

31

Conditional Jumps

Conditional jumps look at a relevant subset of the condition codes to determine
whether to branch or fall through without jumping.

Instruction Synonym Set Condition

je Label jz Equal / zero

jne Label jnz Not equal / not zero

js Label Negative

jns Label Nonnegative

jg Label jnle Greater (signed >)

jge Label jnl Greater or equal (signed >=)
j1 Label jnge Less (signed <)

jle Label jng Less or equal (signed <=)

ja Label jnbe Above (unsigned >)

jae Label jnb Above or equal (unsigned >=)
jb Label jnae Below (unsigned <)

jbe Label jna Below or equal (unsigned <=) -

Setting Condition Codes

The test instruction is like cmp, but for AND. It does not store the & result
anywhere. It just sets condition codes.

TEST S1, S2 S2 & S1
testb Test byte
testw Test word
testl Test double word
testq Test quad word

Cool trick: if we pass the same value for both operands, we can check the sign

of that value using the Sign Flag and Zero Flag condition codes! .

The test Instruction

e TEST S1, S2 isS2 & S1

test %edi, %edi
jns

%edl & %edi is nonnegative
%edl is nonnegative

34

Condition Codes

* Previously discussed arithmetic and logical instructions update these flags. lea
does not (it's intended only for address computation and nothing else).

 Logical operations (xor, etc.) set carry and overflow flags to zero.

 Shift operations set the carry flag to the last bit shifted out and set the
overflow flag to zero.

* For more complicated reasons, inc and dec set the overflow and zero flags, but
leave the carry flag unchanged.

35

Exercise 1: Conditional jump

je target jump if ZF is 1

Let %ed1 store 0x10. Will we jump in the following cases? %edi

1. cmp $0x10,%edi
je 40056f
add $0x1,%edi

2. test $0x10,%edi
je 40056
add $0x1,%edi

Exercise 1: Conditional jump

je target jump if ZF is 1

Let %ed1 store 0x10. Will we jump in the following cases? %edi

1. cmp $0x10,%edi _
je 40056f S2-S51==0, sojump

add $0x1,%edi

2. test $0x10,%edi
je 40056f S2 & S1!1=0, so don’t jump

add $0x1,%edi

37

How can we use instructions like cmp and conditional jumps to implement 1 £
statements in assembly?

38

Practice: Fill In The Blank

int if then(int paraml) { ©0000000000401126 <if_then>:

if 401126
(:) 1 401129:

1 ’ 40112b:
40112e:

40112F:

return ; 401132:

¥

cmp
je
lea
retq
add

jmp

$0x6, %edi

40112f
(%rdi,%rdi,1), %eax
$0x1,%edi

40112b

Practice: Fill In The Blank

int if then(int paraml) { ©0000000000401126 <if_then>:

if (paraml == 6) { 4ollze:
paraml++; jgﬂ%g:

} 40112e:
401127

return paraml * 2; 401132:

¥

cmp
je
lea
retq
add

jmp

$0x6, %edi

40112f
(%rdi,%rdi,1), %eax
$0x1, %edi

40112b

Practice: Fill in the Blank

If-Else In C

long absdiff(long x, long y) {
long result;

if () A
} else { ’
} J

return result;

401134
401137
40113a
40113c
40113f
401140
401143
401146

<+0>: mov %rsi,%rax

<+3>: cmp %rsi,%rdi

<+6>: jge Ox401140 <absdiff+12>
<+8>: sub %rdi,%rax

<+11>: retq

<+12>: sub %rsi,%rdi

<+15>: mov %rdi,%rax

<+18>: retq

If-Else In Assembly pseudocode

Check opposite of code condition
Jump to else-body if test passes
If-body

Jump to past else-body
Else-body

Past else body

2

ég?

()

41

Practice: Fill in the Blank

If-Else In C 401134 <+0>: mov %Brsi,%rax

. 401137 <+3>: cmp %rsi,%rdi
long absdiff(long x, long y) { C > ,
long result; 40113a <+6>: jge 0x401140 <absdiff+12>

: X < 40113c <+8>: sub %rdi,%rax
1 Y A 40113f <+11>: retq

result =y - X , 401140 <+12>: sub %rsi,%rdi
} else { 401143 <+15>: mov %rdi,%rax

401146 <+18>: retq
result = x - y.
? If-Else In Assembly pseudocode
} . L
Check opposite of code condition
return result; Jump to else-body if test passes
} If-body
Jump to past else-body
Else-body
Past else body

42

If-Else Construction Variations

C Code
int test(int arg) {
int ret;
if (arg > 3) {
ret = 10;
} else {
ret = 0;
}
ret++;

return ret;

Assembly

401134
401137
401139
40113e
401141
401142
401147

<+0>:
<+3>:
<+5>:

<+10>:
<+13>:
<+14>:
<+19>:

cmp
jle
mov
add
retq
mov

Jmp

$0x3,%edi
0x401142 <test+14>
$0xa, %eax
$0x1, %eax

$0x0, %eax
Ox40113e <test+10>

43

Loops and Control Flow

void loop() { 0x000000000040115¢c <+0>: mov $0x0, %eax
int i = o: 0Xx0000000000401161 <+5>: cmp $0x63, %eax
- 9 Ox0000000000401164 <+8>: jig 0x40116b <loop+15>
while (i < 100) { 0Xx0000000000401166 <+10>: add $0x1,%eax
j_.|..|.; 0Xx0000000000401169 <+13>: jmp 0x401161 <loop+5>
} 0x000000000040116b <+15>: retq

44

Loops and Control Flow

void loop() { 0x000000000040115¢c <+0>: mov $0x0, %eax
int i = o: 0Xx0000000000401161 <+5>: cmp $0x63, %eax
- 9 Ox0000000000401164 <+8>: jig 0x40116b <loop+15>
while (i < 100) { 0Xx0000000000401166 <+10>: add $0x1,%eax
j_.|..|.; 0Xx0000000000401169 <+13>: jmp 0x401161 <loop+5>
} 0x000000000040116b <+15>: retq

Set %eax (i) to O.

45

Loops and Control Flow

void loop() { 0x000000000040115¢c <+0>: mov $0x0, %eax
int i = 9 0x0000000000401161 <+5>: cmp $0x63, %eax
-) PXx0000000000401164 <+8>: g Ox40116b <loop+15>
while (i < 100) { 0x0000000000401166 <+10>: add $0x1,%eax
j_.|..|.; 0Xx0000000000401169 <+13>: jmp 0x401161 <loop+5>
} 0x000000000040116b <+15>: retq

Compare %eax (i) to 0x63 (99)
by calculating %eax — 0x63.
This is 0 —99 = -99, so it sets
the Sign Flag to 1.

46

Loops and Control Flow

void loop() { 0x000000000040115¢c <+0>: mov $0x0, %eax
int i = o: 0Xx0000000000401161 <+5>: cmp $0x63, %eax
. - 0x0000000000401164 <+8>: jg 0x40116b <loop+15>
while (i < 100) { 0x0000000000401166 <+10>: add $0x1,%eax
j_.|..|.; 0Xx0000000000401169 <+13>: jmp 0x401161 <loop+5>
} 0x000000000040116b <+15>: retq

jg means "jump if greater than".
This jumps if %eax > 0x63. The
flags indicate this is false, so we do
not jump.

47

Loops and Control Flow

void loop() { 0x000000000040115¢c <+0>: mov $0x0, %eax
int i = 0: Ox0000000000401161 <+5>: cmp $0x63, %eax
- 2 OXx0000000000401164 <+8>: ig Ox40116b <loop+15>
while (i < 100) { OXx0000000000401166 <+10>: add $0x1, %eax
j_.|..|.; 0Xx0000000000401169 <+13>: jmp 0x401161 <loop+5>
} Ox000000000040116b <+15>: retq

Add 1 to %eax (i).

48

Loops and Control Flow

void loop() { 0x000000000040115¢c <+0>: mov $0x0, %eax
int i = o: 0Xx0000000000401161 <+5>: cmp $0x63, %eax
- 9 Ox0000000000401164 <+8>: jig Ox40116b <loop+15>
while (i < 100) { 0Xx0000000000401166 <+10>: add $0x1,%eax
j_.|..|.; 0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
} 0x000000000040116b <+15>: retq

Jump to another instruction.

49

Loops and Control Flow

void loop() { 0x000000000040115¢c <+0>: mov $0x0, %eax
int i = 9 0x0000000000401161 <+5>: cmp $0x63, %eax
-) PXx0000000000401164 <+8>: g Ox40116b <loop+15>
while (i < 100) { 0x0000000000401166 <+10>: add $0x1,%eax
j_.|..|.; 0Xx0000000000401169 <+13>: jmp 0x401161 <loop+5>
} 0x000000000040116b <+15>: retq

Compare %eax (i) to 0x63 (99)
by calculating %eax — 0x63.
Thisis 1 —99 =-98, so it sets
the Sign Flag to 1.

50

Loops and Control Flow

void loop() { 0x000000000040115¢c <+0>: mov $0x0, %eax
int i = o: 0Xx0000000000401161 <+5>: cmp $0x63, %eax
. - 0x0000000000401164 <+8>: jg 0x40116b <loop+15>
while (i < 100) { 0x0000000000401166 <+10>: add $0x1,%eax
j_.|..|.; 0Xx0000000000401169 <+13>: jmp 0x401161 <loop+5>
} 0x000000000040116b <+15>: retq

We continue in this pattern until
we make this conditional jump.
When will that be?

51

Loops and Control Flow

void loop() { 0x000000000040115¢c <+0>: mov $0x0, %eax
int i = 9 0x0000000000401161 <+5>: cmp $0x63, %eax
-) Ox0000000000401164 <+8>: g Ox40116b <loop+15>
while (i < 100) { 0x0000000000401166 <+10>: add $0x1,%eax
j_.|..|.; 0Xx0000000000401169 <+13>: jmp 0x401161 <loop+5>
} 0x000000000040116b <+15>: retq
}

We will stop looping when this
comparison says that %eax > 0x63!

52

Loops and Control Flow

void loop() { 0x000000000040115Cc <+0>: mov $0x0, %eax
int i = 9 0x0000000000401161 <+5>: cmp $0x63, %eax
- 9o PX0000000000401164 <+8>: jg Ox40116b <loop+15>
while (i < 100) { 0Xx0000000000401166 <+10>: add $0x1,%eax
j_.|..|.; 0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
} 0x000000000040116b <+15>: retq

Then, we return from the function.

53

GCC Common While Loop Construction

C Assembly
while (test) { Check opposite of code condition
body Skip loop if test passes
} Body
Jump back to test

From Previous Slide:

0x0000000000401161 <+5>: cmp $0x63, %eax
0x0000000000401164 <+8>: jg 0x40116b <loop+15>
OX000000PVVV401166 <+10>: add $0x1, %eax
0x0000000000401169 <+13>: jmp 0x401161 <loop+5>

54

GCC Other While Loop Construction

c Assembly
while (test) { Jump to check
body Body
} Check code condition
Jump to body if test passes

From Previous Slide:

0x0000000000400575 <+5>: jmp 0x40057a <loop+10>
OX000000VLVR40O577 <+7>: add $0x1, %eax
0x00000000040057a <+10>: cmp $0x63, %eax

0Xx000000000040057d <+13>: jle 0x400577 <loop+7>

55

