
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

CS107, Lecture 18
Assembly: Control Flow

Reading: B&O 3.6
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5619681

https://edstem.org/us/courses/65949/discussion/5619681

2

Learning Goals
• Understand how assembly implements loops and control flow
• Learn about how assembly stores comparison and operation results in

condition codes

3

Executing Instructions

What does it mean for a program
to execute?

4

Executing Instructions
So far:
• Program values can be stored in memory or registers.
• Assembly instructions read/write values back and forth

between registers and main memory.
• Assembly instructions are also stored in memory.

Today:
• Who controls the instructions?

How do we know what to do now or next?
Answer:
• The program counter, stored in %rip.

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

5

Register Responsibilities
Some registers take on special responsibilities during program execution.
• %rax stores the return value
• %rdi stores the first parameter to a function
• %rsi stores the second parameter to a function
• %rdx stores the third parameter to a function
• %rip stores the address of the next instruction to execute
• %rsp stores the address of the current top of the stack

See the x86-64 Guide and Reference Sheet on the Resources webpage for more!

6

Instructions Are Just Bytes!

0x0

Heap

Stack

Data

Text (code)
Machine code

instructions

Main Memory

7

%rip
00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

Heap

Stack

Data

Text (code)

Main Memory

8

%rip
00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004ed

%rip

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

9

%rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004ee

%rip

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

10

%rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004f1

%rip

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

11

%rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004f8

%rip

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

12

%rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

13

%rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

Special hardware sets the program counter
to the next instruction:
%rip += size of bytes of current instruction

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

14

Going In Circles
• How can we use this representation of execution to represent e.g., a loop?
• Key Idea: we can override what %rip stores and populate it with the address of

an earlier instruction.

15

Jump! 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

The jmp instruction is an
unconditional jump that sets
the program counter to the
jump target (the operand).

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

16

Jump! 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

The jmp instruction is an
unconditional jump that sets
the program counter to the
jump target (the operand).

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

17

Jump! 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

The jmp instruction is an
unconditional jump that sets
the program counter to the
jump target (the operand).

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

18

Jump! 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

The jmp instruction is an
unconditional jump that sets
the program counter to the
jump target (the operand).

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

19

Jump! 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004fc

%rip

This assembly represents an
infinite loop in C!

while (true) {…}

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

20

jmp
The jmp instruction jumps to another instruction in the assembly code (an
"unconditional jump").

jmp Label (Direct Jump)
jmp *Operand (Indirect Jump)

The destination can be hardcoded into the instruction (direct jump):
 jmp 404f8 <loop+0xb> # jump to instruction at 0x404f8

The destination can also be one of the usual operand forms (indirect jump):
 jmp *%rax # jump to instruction at address in %rax

21

"Interfering" with %rip

1. How do we repeat instructions in a loop?
jmp [target]
• A 1-step unconditional jump (always

jump when we execute this instruction)

What if we want a conditional jump?

22

Control
• In C, we have control flow statements like if, else, while, for, etc. to write

programs that are more expressive than just one instruction following another.
• This is conditional execution of statements: executing statements if some

condition is true, executing other statements if that condition is false, etc.
• How is this represented in assembly?

23

Control

if (x > y) {
 // a
} else {
 // b
}

In Assembly:
1. Calculate the condition result
2. Based on the result, go to a or b

24

Control
• In assembly, it takes more than one instruction to do these two steps.
• Most often: 1 instruction to calculate the condition, 1 to conditionally jump

Common Pattern:
1. cmp S1, S2 // compare two values
2. je [target] or jne [target] or jl [target] or ... // conditionally jump

"jump if
equal"

"jump if
not equal"

"jump if
less than"

25

Conditional Jumps
There are variants of jmp that branch if and only if certain conditions are met.
The jump location for these must be hardcoded into the instruction.

Instruction Synonym Set Condition

je Label jz Equal / zero

jne Label jnz Not equal / not zero

js Label Negative

jns Label Nonnegative

jg Label jnle Greater (signed >)

jge Label jnl Greater or equal (signed >=)

jl Label jnge Less (signed <)

jle Label jng Less or equal (signed <=)

ja Label jnbe Above (unsigned >)

jae Label jnb Above or equal (unsigned >=)

jb Label jnae Below (unsigned <)

jbe Label jna Below or equal (unsigned <=)

26

Control
Read cmp S1, S2 as "compare S2 to S1":
// Jump if %edi > 2
cmp $2, %edi
jg [target]

// Jump if %edi != 3
cmp $3, %edi
jne [target]

// Jump if %edi == 4
cmp $4, %edi
je [target]

// Jump if %edi <= 1
cmp $1, %edi
jle [target]

Wait a minute – how do jump instructions know anything about the
comparisons of earlier instructions?

27

Control
• The CPU has special registers called condition codes that act as "global

variables". They automatically track information about the most recent
arithmetic or logical operation.
• cmp compares via calculation (subtraction) and info is stored in the condition codes
• conditional jump instructions look at these condition codes to know whether to jump

• What exactly are the condition codes? How do they store this information?

28

Condition Codes
Alongside normal registers, the CPU also has single-bit condition code registers.
They store information about the most recent arithmetic or logical operation.

Most common condition codes:
• CF: Carry flag. The most recent operation generated a carry beyond the most

significant bit. Used to detect overflow for unsigned operations.
• ZF: Zero flag. The most recent operation yielded a zero.
• SF: Sign flag. The most recent operation produced a negative value.
• OF: Overflow flag. The most recent operation prompted a two’s-complement

overflow or underflow.

29

Setting Condition Codes
The cmp instruction is like the subtraction instruction, but it does not store the
result anywhere. It just sets condition codes. (Note the operand order!)

CMP S1, S2 S2 – S1

Instruction Description

cmpb Compare byte

cmpw Compare word

cmpl Compare double word

cmpq Compare quad word

30

Control

// Jump if %edi > 2
// calculates %edi – 2
cmp $2, %edi
jg [target]

// Jump if %edi != 3
// calculates %edi – 3
cmp $3, %edi
jne [target]

// Jump if %edi == 4
// calculates %edi – 4
cmp $4, %edi
je [target]

// Jump if %edi <= 1
// calculates %edi – 1
cmp $1, %edi
jle [target]

Read cmp S1,S2 as "compare S2 to S1". It calculates S2 – S1 and updates the
condition codes with the result.

31

🌟 How to remember cmp/jmp
• CMP S1, S2 is S2 – S1 (just sets condition codes). But generally:

cmp S1, S2
jg … S2 S1 S2 - S1 > 0>

32

Conditional Jumps
Conditional jumps look at a relevant subset of the condition codes to determine
whether to branch or fall through without jumping.

Instruction Synonym Set Condition

je Label jz Equal / zero

jne Label jnz Not equal / not zero

js Label Negative

jns Label Nonnegative

jg Label jnle Greater (signed >)

jge Label jnl Greater or equal (signed >=)

jl Label jnge Less (signed <)

jle Label jng Less or equal (signed <=)

ja Label jnbe Above (unsigned >)

jae Label jnb Above or equal (unsigned >=)

jb Label jnae Below (unsigned <)

jbe Label jna Below or equal (unsigned <=)

33

Setting Condition Codes
The test instruction is like cmp, but for AND. It does not store the & result
anywhere. It just sets condition codes.

TEST S1, S2 S2 & S1

Cool trick: if we pass the same value for both operands, we can check the sign
of that value using the Sign Flag and Zero Flag condition codes!

Instruction Description

testb Test byte

testw Test word

testl Test double word

testq Test quad word

34

The test Instruction
• TEST S1, S2 is S2 & S1

test %edi, %edi
jns …

%edi & %edi is nonnegative
%edi is nonnegative

35

Condition Codes
• Previously discussed arithmetic and logical instructions update these flags. lea

does not (it's intended only for address computation and nothing else).
• Logical operations (xor, etc.) set carry and overflow flags to zero.
• Shift operations set the carry flag to the last bit shifted out and set the

overflow flag to zero.
• For more complicated reasons, inc and dec set the overflow and zero flags, but

leave the carry flag unchanged.

36

Exercise 1: Conditional jump

je target jump if ZF is 1

Let %edi store 0x10. Will we jump in the following cases?

1. cmp $0x10,%edi
 je 40056f
 add $0x1,%edi

2. test $0x10,%edi
 je 40056f
 add $0x1,%edi

0x10%edi

37

Exercise 1: Conditional jump

je target jump if ZF is 1

Let %edi store 0x10. Will we jump in the following cases?

1. cmp $0x10,%edi
 je 40056f
 add $0x1,%edi

2. test $0x10,%edi
 je 40056f
 add $0x1,%edi

0x10%edi

S2 - S1 == 0, so jump

S2 & S1 != 0, so don’t jump

38

If Statements
How can we use instructions like cmp and conditional jumps to implement if
statements in assembly?

39

int if_then(int param1) {
 if (__________) {
 _________;
 }

 return __________;
}

Practice: Fill In The Blank

0000000000401126 <if_then>:
 401126: cmp $0x6,%edi
 401129: je 40112f
 40112b: lea (%rdi,%rdi,1), %eax
 40112e: retq
 40112f: add $0x1,%edi
 401132: jmp 40112b

40

int if_then(int param1) {
 if (__________) {
 _________;
 }

 return __________;
}

Practice: Fill In The Blank

0000000000401126 <if_then>:
 401126: cmp $0x6,%edi
 401129: je 40112f
 40112b: lea (%rdi,%rdi,1), %eax
 40112e: retq
 40112f: add $0x1,%edi
 401132: jmp 40112b

param1++

param1 * 2

param1 == 6

41

Practice: Fill in the Blank

long absdiff(long x, long y) {
 long result;
 if (________) {

 _________________ ;
 } else {

 _________________ ;
 }

 return result;
}

Check opposite of code condition
Jump to else-body if test passes
If-body
Jump to past else-body
Else-body
Past else body

If-Else In C

If-Else In Assembly pseudocode

401134 <+0>: mov %rsi,%rax
401137 <+3>: cmp %rsi,%rdi
40113a <+6>: jge 0x401140 <absdiff+12>
40113c <+8>: sub %rdi,%rax
40113f <+11>: retq
401140 <+12>: sub %rsi,%rdi
401143 <+15>: mov %rdi,%rax
401146 <+18>: retq

42

Practice: Fill in the Blank

long absdiff(long x, long y) {
 long result;
 if (________) {

 _________________ ;
 } else {

 _________________ ;
 }

 return result;
}

Check opposite of code condition
Jump to else-body if test passes
If-body
Jump to past else-body
Else-body
Past else body

If-Else In C

If-Else In Assembly pseudocode

401134 <+0>: mov %rsi,%rax
401137 <+3>: cmp %rsi,%rdi
40113a <+6>: jge 0x401140 <absdiff+12>
40113c <+8>: sub %rdi,%rax
40113f <+11>: retq
401140 <+12>: sub %rsi,%rdi
401143 <+15>: mov %rdi,%rax
401146 <+18>: retq

x < y

result = y - x

result = x - y

43

If-Else Construction Variations

int test(int arg) {
 int ret;
 if (arg > 3) {
 ret = 10;
 } else {
 ret = 0;
 }

 ret++;
 return ret;
}

401134 <+0>: cmp $0x3,%edi
401137 <+3>: jle 0x401142 <test+14>
401139 <+5>: mov $0xa,%eax
40113e <+10>: add $0x1,%eax
401141 <+13>: retq
401142 <+14>: mov $0x0,%eax
401147 <+19>: jmp 0x40113e <test+10>

C Code Assembly

44

Loops and Control Flow
void loop() {
 int i = 0;
 while (i < 100) {
 i++;
 }
}

0x000000000040115c <+0>: mov $0x0,%eax
 0x0000000000401161 <+5>: cmp $0x63,%eax
 0x0000000000401164 <+8>: jg 0x40116b <loop+15>
 0x0000000000401166 <+10>: add $0x1,%eax
 0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
 0x000000000040116b <+15>: retq

45

Loops and Control Flow
void loop() {
 int i = 0;
 while (i < 100) {
 i++;
 }
}

0x000000000040115c <+0>: mov $0x0,%eax
 0x0000000000401161 <+5>: cmp $0x63,%eax
 0x0000000000401164 <+8>: jg 0x40116b <loop+15>
 0x0000000000401166 <+10>: add $0x1,%eax
 0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
 0x000000000040116b <+15>: retq

Set %eax (i) to 0.

46

Loops and Control Flow
void loop() {
 int i = 0;
 while (i < 100) {
 i++;
 }
}

0x000000000040115c <+0>: mov $0x0,%eax
 0x0000000000401161 <+5>: cmp $0x63,%eax
 0x0000000000401164 <+8>: jg 0x40116b <loop+15>
 0x0000000000401166 <+10>: add $0x1,%eax
 0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
 0x000000000040116b <+15>: retq

Compare %eax (i) to 0x63 (99)
by calculating %eax – 0x63.
This is 0 – 99 = -99, so it sets
the Sign Flag to 1.

47

Loops and Control Flow
void loop() {
 int i = 0;
 while (i < 100) {
 i++;
 }
}

0x000000000040115c <+0>: mov $0x0,%eax
 0x0000000000401161 <+5>: cmp $0x63,%eax
 0x0000000000401164 <+8>: jg 0x40116b <loop+15>
 0x0000000000401166 <+10>: add $0x1,%eax
 0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
 0x000000000040116b <+15>: retq

jg means "jump if greater than".
This jumps if %eax > 0x63. The
flags indicate this is false, so we do
not jump.

48

Loops and Control Flow
void loop() {
 int i = 0;
 while (i < 100) {
 i++;
 }
}

0x000000000040115c <+0>: mov $0x0,%eax
 0x0000000000401161 <+5>: cmp $0x63,%eax
 0x0000000000401164 <+8>: jg 0x40116b <loop+15>
 0x0000000000401166 <+10>: add $0x1,%eax
 0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
 0x000000000040116b <+15>: retq

Add 1 to %eax (i).

49

Loops and Control Flow
void loop() {
 int i = 0;
 while (i < 100) {
 i++;
 }
}

0x000000000040115c <+0>: mov $0x0,%eax
 0x0000000000401161 <+5>: cmp $0x63,%eax
 0x0000000000401164 <+8>: jg 0x40116b <loop+15>
 0x0000000000401166 <+10>: add $0x1,%eax
 0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
 0x000000000040116b <+15>: retq

Jump to another instruction.

50

Loops and Control Flow
void loop() {
 int i = 0;
 while (i < 100) {
 i++;
 }
}

0x000000000040115c <+0>: mov $0x0,%eax
 0x0000000000401161 <+5>: cmp $0x63,%eax
 0x0000000000401164 <+8>: jg 0x40116b <loop+15>
 0x0000000000401166 <+10>: add $0x1,%eax
 0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
 0x000000000040116b <+15>: retq

Compare %eax (i) to 0x63 (99)
by calculating %eax – 0x63.
This is 1 – 99 = -98, so it sets
the Sign Flag to 1.

51

Loops and Control Flow
void loop() {
 int i = 0;
 while (i < 100) {
 i++;
 }
}

0x000000000040115c <+0>: mov $0x0,%eax
 0x0000000000401161 <+5>: cmp $0x63,%eax
 0x0000000000401164 <+8>: jg 0x40116b <loop+15>
 0x0000000000401166 <+10>: add $0x1,%eax
 0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
 0x000000000040116b <+15>: retq

We continue in this pattern until
we make this conditional jump.
When will that be?

52

Loops and Control Flow
void loop() {
 int i = 0;
 while (i < 100) {
 i++;
 }
}

0x000000000040115c <+0>: mov $0x0,%eax
 0x0000000000401161 <+5>: cmp $0x63,%eax
 0x0000000000401164 <+8>: jg 0x40116b <loop+15>
 0x0000000000401166 <+10>: add $0x1,%eax
 0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
 0x000000000040116b <+15>: retq

We will stop looping when this
comparison says that %eax > 0x63!

53

Loops and Control Flow
void loop() {
 int i = 0;
 while (i < 100) {
 i++;
 }
}

0x000000000040115c <+0>: mov $0x0,%eax
 0x0000000000401161 <+5>: cmp $0x63,%eax
 0x0000000000401164 <+8>: jg 0x40116b <loop+15>
 0x0000000000401166 <+10>: add $0x1,%eax
 0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
 0x000000000040116b <+15>: retq

Then, we return from the function.

54

GCC Common While Loop Construction

while (test) {
 body
}

Check opposite of code condition
Skip loop if test passes
Body
Jump back to test

C Assembly

0x000000000040115c <+0>: mov $0x0,%eax
 0x0000000000401161 <+5>: cmp $0x63,%eax
 0x0000000000401164 <+8>: jg 0x40116b <loop+15>
 0x0000000000401166 <+10>: add $0x1,%eax
 0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
 0x000000000040116b <+15>: retq

From Previous Slide:

55

GCC Other While Loop Construction

while (test) {
 body
}

Jump to check
Body
Check code condition
Jump to body if test passes

C Assembly

0x0000000000400570 <+0>: mov $0x0,%eax
0x0000000000400575 <+5>: jmp 0x40057a <loop+10>
0x0000000000400577 <+7>: add $0x1,%eax
0x000000000040057a <+10>: cmp $0x63,%eax
0x000000000040057d <+13>: jle 0x400577 <loop+7>
0x000000000040057f <+15>: repz retq

From Previous Slide:

