CS107, Lecture 19

Assembly: Control Flow Wrap, Function Call Take |

Reading: B&O 3.7
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5634457

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

https://edstem.org/us/courses/65949/discussion/5634457

GCC For Loop Output

// n=100

GCC Common For Loop Output

Initialization

Test

Jump past loop if success
Body

Update

Jump to test

for (inti=0;i<n;i++)

GCC For Loop Output

GCC Common For Loop Output

Initialization

Test

Jump past loop if success
Body

Update

Jump to test

for (inti=0;i<n;i++)

Initialization
Test

No jump

Body

Update

Jump to test
Test

No jump

Body

Update

Jump to test

// n=100

GCC For Loop Output

// n=100

GCC Common For Loop Output

Initialization

Test

Jump past loop if success
Body

Update

Jump to test

for (inti=0;i<n;i++)

Test

No jump
Body

Update

Jump to test

GCC For Loop Output

for (inti=0;i<n;i++)

Initialization
Jump to test
Test

Jump to body
Body

Update

Test

Jump to body
Body

Update

Test

Jump to body

// n=100

Possible Alternative

Initialization

Jump to test

Body

Update

Test

Jump to body if success

GCC For Loop Output

for (inti=0;i<n;i++)

Body

Update

Test

Jump to body

// n=100

Possible Alternative

Initialization

Jump to test

Body

Update

Test

Jump to body if success

GCC For Loop Output

GCC Common For Loop Output Possible Alternative
Initialization Initialization

Test Jump to test

Jump past loop if passes Body

Body Update

Update Test

Jump to test Jump to body if success

Which instructions are better when n=0? n = 10007

for (inti=0; i <n; i++)

Optimizing Instruction Counts

* Both versions have the same static instruction count (# of written instructions).

* But they have different dynamic instruction counts (# of executed instructions
when program is run).
* If n =0, left (GCC common output) is best b/c fewer instructions executed
* If nis large, right (alternative) is best b/c fewer instructions executed

* The compiler may emit a static instruction count that is longer than some
alternative, but it may be more efficient if loop executes many times.

* Does the compiler know that a loop will execute many times? Of course not.

 What if our code has loops that always execute a small number of times? How
do we know when gcc makes a bad decision?
 (take EE108 and EE180!)

Condition Code-Dependent Instructions

There are three common instruction types that use condition codes:

e jmp instructions conditionally jump to a different next instruction
* set instructions conditionally seta bytetoOor 1

* new versions of mov instructions conditionally move data

set: Read condition codes

set instructions conditionally set a byte to 0 or 1.

e Reads current state of flags

e Destination is a single-byte register (e.g., %al) or single-byte memory location
* Leaves other bytes of register (e.g., everything else in %rax) alone

e Typically followed by movzbl to zero those other bytes

cmp $0xf,%edi
setle %al

movzbl %al, %eax
retq

int small(int x) {
return x < 16;

¥

10

set: Read condition codes

Instruction Synonym Set Condition (1 if true, 0 if false)
sete D setz Equal / zero

setne D setnz Not equal / not zero

sets D Negative

setns D Nonnegative

setg D setnle Greater (signed >)

setge D setnl Greater or equal (signed >=)
setl D setnge Less (signed <)

setle D setng Less or equal (signed <=)
seta D setnbe Above (unsigned >)

setae D setnb Above or equal (unsigned >=)
setb D setnae Below (unsigned <)

setbe D setna Below or equal (unsigned <=)

11

cmov: Conditional move

cmovx src, dst conditionally moves data in src to data in dst.
* Mov src to dst if condition holds; no change otherwise
* src is memory address/register, dst is register

* May be more efficient than branch (i.e., jump)
test ? then: else;

e Often seen with C ternary operator: result

. . . cm %edi, %esi
int max(int x, int y) { mos %edi, %eax

return x > ? X I Y; .
y Y cmovge %esi, %eax

I retq

12

cmov: Conditional move

Instruction Synonym Move Condition

cmove S,R cmovz Equal / zero (ZF = 1)

cmovne S,R cmovnz Not equal / not zero (ZF = 0)

cmovs S,R Negative (SF=1)

cmovns S,R Nonnegative (SF = 0)

cmovg S,R cmovnle Greater (signed >) (SF = 0 and SF = OF)
cmovge S,R cmovnl Greater or equal (signed >=) (SF = OF)
cmovl S,R cmovnge Less (signed <) (SF != OF)

cmovle S,R cmovng Less or equal (signed <=) (ZF = 1 or SF! = OF)
cmova S,R cmovnbe Above (unsigned >) (CF =0 and ZF = 0)
cmovae S,R cmovnb Above or equal (unsigned >=) (CF = 0)
cmovb S,R cmovnae Below (unsigned <) (CF = 1)

cmovbe S,R cmovna Below or equal (unsigned <=) (CF=1o0or ZF=1)

13

Calling Functions In Assembly

To call a function in assembly, we must do a few things:

* Transfer Control — %rip must be adjusted to execute the callee’s instructions,
and then resume the caller’s instructions afterwards.

* Pass Data — we must pass parameters and extract return values.

* Manage Memory — we must handle all of the callee’s stack space needs.

How does assembly
interact with the stack?

Terminology: caller function calls the callee function.

14

* %rsp is a special register that stores the address of the "top" of the stack (the
bottom in our diagrams, since the stack grows downwards).

Main Memory

main()

myfunction()

%rsp

Heap
I ——
Data
[

Text (code)
I —

0x0 15

* %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

Main Memory

main()

myfunction()

foo()

%rsp

Heap

Data

Text (code)

0x0 16

* %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

Main Memory

main()

myfunction()

foo()

%rsp

bar()

Heap

Data

Text (code)

0x0 17

* %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

Main Memory

main()

myfunction()

foo()

%rsp

Heap

Data

Text (code)

0x0 18

* %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

%rsp

0x0

Main Memory

main()

myfunction()

Heap
I —

Data

Text (code)

Key idea: %rsp must
point to the same place
before a function is
called and after that
function returns, since
stack frames go away

when a function finishes.

19

* The push instruction pushes the data at the specified source onto the top of
the stack, adjusting %rsp accordingly.

Instruction Effect

pushqg S |R[%rsp] < R[%rsp] - 8;
M[R[%rsp]] «<— S

20

* The push instruction pushes the data at the specified source onto the top of
the stack, adjusting %rsp accordingly.

Instruction Effect
pushqg S |R[%rsp] < R[%rsp] - 8;

21

* The push instruction pushes the data at the specified source onto the top of
the stack, adjusting %rsp accordingly.

Instruction Effect

pushqg S
M[R[%rsp]] «<— S

22

* The push instruction pushes the data at the specified source onto the top of
the stack, adjusting %rsp accordingly.

Instruction

Effect

pushqg S

R[%rsp] «— R[%rsp] - 8;
M[R[%rsp]] «<— S

* This behavior is equivalent to the following, but pushgq is a shorter instruction:

subg $8, %rsp
movq S, (%rsp)

* Sometimes, you’ll see instructions just explicitly decrement the stack pointer
to make room for new local variables.

23

e The pop instruction pops the topmost data from the stack and stores it in the
specified destination, adjusting %rsp accordingly.

Instruction Effect

popg D |D «— M[R[%rsp]]
R[%rsp] «— R[%rsp] + 8;

* Note: this doesn’t remove/clear out the data! It just increments %rsp to
indicate the next push can overwrite that location.

24

e The pop instruction pops the topmost data from the stack and stores it in the
specified destination, adjusting %rsp accordingly.

Instruction Effect

popg D |D «— M[R[%rsp]]
R[%rsp] «— R[%rsp] + 8;

* This behavior is equivalent to the following, but popq is a shorter instruction:
movq (%rsp), D
addq $8, %rsp
* Sometimes, you’ll see instructions just explicitly increment the stack pointer to
pop data.

25

Initially
%rax 0x123
%rdx 0
%rsp 0x108

|

Increasing
addresses

0x108

Stack “bottom”

Stack “top”

Stack Example

pushq %rax

%rax 0x123
%rdx 0
%rsp 0x100

|

Increasing
addresses
0x108
0x123
0x100
Stack “top”

Stack “bottom”

popq %rdx
%rax 0x123
%rdx 0x123
%rsp 0x108

|

Increasing
addresses

0x108
0x100

Stack “bottom”

0x123

Stack “top’y

Calling Functions In Assembly

To call a function in assembly, we must do a few things:

* Pass Control — %rip must be adjusted to execute the callee’s instructions, and
then resume the caller’s instructions afterwards.

Terminology: caller function calls the callee function.

27

Remembering Where We Left Off

Problem: %rip points to the E.g. main() calls foo(): Stack
next instruction to execute. To
call a function, we must
remember that instruction
address for later.

main()

%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue %rsp | oxff20
executing.

Solution: push the next value of l

%rip | 0x3021

28

Remembering Where We Left Off

Problem: %rip points to the
next instruction to execute. To
call a function, we must
remember that instruction
address for later.

Solution: push the next value of
%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue
executing.

E.g. main() calls foo():

%rsp

%rip

Oxff18

0x3021

main()

0x3026

|

29

Remembering Where We Left Off

Problem: %rip points to the
next instruction to execute. To
call a function, we must
remember that instruction
address for later.

Solution: push the next value of
%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue
executing.

E.g. main() calls foo():

%rsp

%rip

Oxff08

0x4058

main()

0x3026

30

Remembering Where We Left Off

Problem: %rip points to the
next instruction to execute. To
call a function, we must
remember that instruction
address for later.

Solution: push the next value of
%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue
executing.

E.g. main() calls foo():

%rsp

%rip

Oxff18

0x4058

main()

0x3026

|

31

Remembering Where We Left Off

Problem: %rip points to the E.g. main() calls foo(): Stack
next instruction to execute. To
call a function, we must
remember that instruction
address for later.

main()

%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue %rsp | oxff20
executing.

Solution: push the next value of l

%rip | 0x3026

32

Call And Return

The call instruction pushes the address of the instruction immediately following

the call instruction onto the stack and sets %rip to point to the beginning of the
specified function’s instructions.

call Label
call *Operand
The ret instruction pops this instruction address from the stack and stores it in
%rip.
ret
The stored %rip is called the return address. It is the address of the instruction
where execution would have continued had flow not been interrupted by the

function call. (Don’t confuse this with return value, which is the value returned

by the function via %rax or a subset of it). .,

What does call do?

call pushes the next instruction address
onto the stack and overwrites %rip to
address another function’s very first
instruction.

What does ret do?

ret pops off the 8 bytes from the top of
the stack and places it in %rip, thereby
resuming execution in the caller.

ret is separate from the return value of the function (put in %rax).

Function Pointers

The call instruction pushes the address of the instruction immediately following

the call instruction onto the stack and sets %rip to point to the beginning of the
specified function’s instructions.

call Label
call *Operand

 Why would we use call with a register instead of hardcoding the function

name in the assembly? When would we not know the function to call until we
run the code?

* Function pointers! e.g., gsort — gsort calls a function passed through as a
parameter and stored in a register.

36

Parameters and Return

* There are special registers that store parameters and the return value.

* To call a function, we must put any parameters we are passing into the correct
registers. (%rdi, %rsi, %rdx, %rcx, %r8, %r9, in that order)

* Parameters beyond the first 6 are placed directly on the stack.
* If the caller expects a return value, it looks in %rax after the callee completes.

37

Local Storage

* So far, all local variables have been stored directly in registers.

* There are four common reasons that a local variable must be stored in
memory instead of a register:
* We've simply run out of registers—we only have 16, some of which are special-purpose.

* Registers aren’t protected against function call, so any variables or important partial
results stored in register must be flushed out to the stack.

* The & operator is applied to a variable, so we need an address for it

* The variables themselves are arrays or structs and we should anticipate the need for
pointer arithmetic.

38

Local Storage

long caller() {

long argl = 534;
long arg2 = 1057;
long sum = swap add(&argl, &argl);
}
caller:
sub $0x10, %rsp // 16 bytes for stack frame
movqg $0x216, 0x8(%rsp) // store 534 in argl
movq $0x421, (%rsp) // store 1057 in arg2
mov %rsp, %rsi // compute &arg2 as second arg

lea Ox8(%rsp), %rdi // compute &argl as first arg
callg swap_add // call swap_add(&argl, &arg2)
39

Parameters and Return

int main(int argc, char *argv[]) { main() C
int i1 = 1; ‘L
int i2 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&il1l, &i2, &i3, &i4,
i1, i2, i3, i4);

}

int func(int *pl, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

40

Parameters and Return

int main(int argc, char *argv[]) { main() C
int i1 = 1; ‘L
int i2 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&il1l, &i2, &i3, &i4,
i1, i2, i3, i4);

}

Oxffea08

int func(int *pl, int *p2, int *p3, int *p4,
p
int v1, int v2, int v3, int v4) {

%rip
} 0x40054f
0x40054f <+0>: sub $0x18,%rsp
Ox400553 <+4>: movl $0x1,0xc(%rsp)
0x40055b <+12>: movl $0x2,0x8(%rsp)
0x400563 <+20>: movl $0x3,0x4(%rsp)
¢ oA (Y nen 41

o AR0EClh ~21.90Q o man]
UATUOUIVUUD NTLO/7 . mouv L .PU/\“I‘, \IOI .)I.l}

Parameters and Return

int main(int argc, char *argv[]) {

int i1l = 1;
int i2 = 2;
int i3 = 3; main()
int i4 = 4;
int result = func(&il1l, &i2, &i3, &i4,
i1, i2, i3, i4); OxFEeofo
" .
} ‘L %rsp
Oxffe9f0
int func(int *pl, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) { %rip
(o]
} 0x400553

0x40054f <+0>: sub $0x18,%rsp

Ox400553 <+4>: movl $0x1,0xc(%rsp)
0x40055b <+12>: movl $0x2,0x8(%rsp)
0x400563 <+20>: movl $0x3,0x4(%rsp)

[oXVY. o Yo\ il <l NP o X o KU marel ¢t (O nen) 42

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1; oxffeofc 1
int i2 = 2;

int i3 = 3; main()

int i4 = 4;

int result = func(&il1l, &i2, &i3, &i4,
i1, i2, i3, i4);

Oxffe9fo
} ‘1, %rsp
0xffe9f0
int func(int *pl, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) { %rip
}) 0x40055b

0x400553 <+4>: movl $0x1,0xc(%rsp)
0x40055b <+12>: movl $0x2,0x8(%rsp)
0x400563 <+20>: movl $0x3,0x4(%rsp)

[oXVY. o Yo\ il <l NP o X o KU marel ¢t (O nen) 43

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1; oxffeofc 1
int i2 = 2;
int i3 = 3; rnajj1() Oxffe9fs8 2
int i4 = 4;

int result = func(&il1l, &i2, &i3, &i4,
i1, i2, i3, i4);

Oxffe9fo
} ‘1, %rsp
0xffe9f0
int func(int *pl, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) { %rip
}) 0x400563

0x40055b <+12>: movl $0x2,0x8(%rsp)
0x400563 <+20>: movl $0x3,0x4(%rsp)

[oXVY. o Yo\ il <l NP o X o KU marel ¢t (O nen) 44

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1; oxffeofc 1
int i2 = 2;
int i3 = 3; rnajj1() Oxffe9fs8 2
int i4 = 4; 3
int result = func(&il, &i2, &i3, &i4, oxffeota
11, 12, 13, 14); Oxffeofo
} l, %rsp
Oxffe9fo
int func(int *pl, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) { %rip
(o]
} 0x40056b

0x400563 <+20>: movl $0x3,0x4(%rsp)
0x40056b <+28>: movl $0x4, (%rsp)

D ADALCT7Y 1 D0\ o nitcha d 45

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1; oxffeofc 1
int i2 = 2;
int i3 = 3; rnajj1() Oxffe9fs8 2
int i4 = 4; 3
int result = func(&il, &i2, &i3, &i4, oxffeota
11, 12, 13, 14); oxffeofo 4
} l, %rsp
Oxffe9f0
int func(int *pl, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) { %rip
(o]
} 0x400572

0x40056b <+28>: movl $0x4, (%rsp)
0x400572 <+35>: pushqg $0x4

D ADACTA 21D\ o nitcha d oD 46

Parameters and Return

int main(int argc, char *argv[]) {
int il = 1; oxffeofc 1
int i2 = 2;
int i3 = 3; rnajj1() Oxffe9fs8 2
int i4 = 4; 3
int result = func(&il, &i2, &i3, &i4, Oxffedt4
11, 12, 13, 14); Oxffeofo 4
} h %rsp
4 Oxffe9e8
int func(int *pl, int *p2, int *p3, int *p4, Oxffe9e8
int v1, int v2, int v3, int v4) { ‘1' %rip
(o]
} 0x400574
0x400572 <+35>: pushg $0x4
Ox400574 <+37>: pushq $0x3
O ADNDET7L£ 120N mans ¢ /nad 47

Parameters and Return

int main(int argc, char *argv[]) {
int il = 1; oxffeofc 1
int i2 = 2;
int i3 = 3; rnajj1() Oxffe9fs8 2
int i4 = 4; 3
int result = func(&il, &i2, &i3, &i4, Oxffedt4
11, 12, 13, 14); Oxffeofo 4
} h %rsp
4 Oxffe9e0
int func(int *pl, int *p2, int *p3, int *p4, Oxffe9e8
int v1, int v2, int v3, int v4) { %rip
(o]
} 3 0x400576
Oxffe9e0
0x400574 <+37>: pushq $0x3
0x400576 <+39>: mov $0x2,%r9d
OADNDE7~ -4 ACN o« mans dna\1 /nOAd 48

Parameters and Return

int main(int argc, char *argv[]) {
int il = 1; oxffeofc 1
int i2 = 2;
int i3 = 3; rnajj1() Oxffe9fs8 2
int i4 = 4; 3
int result = func(&il, &i2, &i3, &i4, oxffeota
11, 12, 13, 14); oxffeofo 4
} h %rsp
4 Oxffe9e0
int func(int *pl, int *p2, int *p3, int *p4, Oxffe9e8
int v1, int v2, int v3, int v4) { %rip
(o]
} 3 0x40057¢
Oxffe9e0
0x400576 <+39>: mov $0x2,%r9d
Ox40057c <+45>: mov $0x1,%r8d
D ANDNACON 1 LA o h IP2NEN o XVA Wo WA A-V-E"0 Wk VA~ V-2V 49

Parameters and Return

int main(int argc, char *argv[]) {
int il = 1; oxffeofc 1
int i2 = 2;
int i3 = 3; rnajj1() Oxffe9fs8 2
int i4 = 4; 3
int result = func(&il, &i2, &i3, &i4, oxffeota
11, 12, 13, 14); oxffeofo 4
}
4
int func(int *pl, int *p2, int *p3, int *p4, Oxffe9e8
int v1, int v2, int v3, int v4) {
} eee 3 %r\sp
Oxffe9e0
xrrese AOxffe%O
‘1’ %rip
0x400576 <+39>: mov $0x2,%r9d 0x40057¢
Ox40057c <+45>: mov $0x1, %r8sd
D ANDNACON 1 LA o h IP2NEN o XVA Wo WA A-V-E"0 Wk VA~ V-2V ‘ 50

Parameters and Return

int main(int argc, char *argv[]) {
int il = 1; oxffeofc 1
int i2 = 2;
int i3 = 3; rnajj1() Oxffe9fs8 2
int i4 = 4; 3
int result = func(&il, &i2, &i3, &i4, oxffeota
11, 12, 13, 14); oxffeofo 4
}
| | | | | = %r9d
int func(int *pl, int *p2, int *p3, int *p4, Oxffe9e8
int v1, int v2, int v3, int v4) { 2
} eee 3 %r\sp
Oxffe9e0
xrrese AOxffe%O
‘1’ %rip
0x400576 <+39>: mov $0x2,%r9d 0x40057c
Ox40057c <+45>: mov $0x1, %r8sd
D ANDNACON 1 LA o h IP2NEN o XVA Wo WA A-V-E"0 Wk VA~ V-2V ‘ 51

Parameters and Return

int main(int argc, char *argv[]) {
int i1 = 1; oxffeofc 1
int i2 = 2;
int i3 = 3; rnajj1() Oxffe9fs8 2
int i4 = 4; 3
int result = func(&il, &i2, &i3, &i4, Oxffedt4
11, 12, 13, 14); Oxffeofo 4 %r8d
} 1
: : : : : 4 %rod
int func(int *pl, int *p2, int *p3, int *p4, Oxffe9e8
int v1, int v2, int v3, int v4) { 2
} 3 %rsp
Oxffe9e0
xrrese AOxffe%O
‘1’ %rip
0x40057c <+45>: mov $0x1,%r8d 0x400582
0x400582 <+51>: lea 0x10(%rsp),%rcx
D\ ADNDLCO7 ., T . 1aa D\ AALS e nN S nAds ‘ 52

Parameters and Return

int main(int argc, char *argv[]) {
int i1 = 1; oxffeofc 1
int i2 = 2;
int i3 = 3; rnajj1() Oxffe9fs8 2 %rcx
int i4 = 4;
0xffe9f0
int result = func(&il, &i2, &i3, &i4, Oxffedt4 3
11, 12, 13, 14); Oxffeofo 4 %r8d
} 1
: : : : : 4 %rod
int func(int *pl, int *p2, int *p3, int *p4, Oxffe9e8
int v1, int v2, int v3, int v4) { 2
} 3 %rsp
Oxffe9e0 g Oxffe9e0
‘1’ %rip
0x400582 <+51>: lea 0x10(%rsp),%rcx
o o 0x400587
0x400587 <+56>: lea Ox14(%rsp),%rdx
D\ ADDCO~ AN . 1aa D10/ e\ s ‘ 53

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&il, &i2, &i3, &i4,
i1, i2, i3, i4);

}

int func(int *pl, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

0x400587 <+56>: lea ox14(%rsp),%rdx
0x40058c <+61>: lea 0x18(%rsp),%rsi

D ANDNEN1 - CLN o i PPN D1 ~l Y nenN S nAS

main()

Oxffe9fc

Oxffeof8

Oxffeoft4

Oxffeofo

Oxffe9e8

Oxffe9e0

%rdx

Oxffe9f4

%rcx

Oxffe9fo

NlwliNn |k

%r8d

1

%rod

2

%rsp

A Oxffe9e0

%rip

0x40058c

‘{54

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&il, &i2, &i3, &i4,
i1, i2, i3, i4);

}

int func(int *pl, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

0x40058c <+61>: lea ox18(%rsp),%rsi
0x400591 <+66>: lea Ox1c(%rsp),%rdi
loXVY.NoYo Il oV 21 711\ o a1l ~ D\ NDNDC AL P o ET-W-RN

main()

%rsi

Oxffe9f8

Oxffe9fc

Oxffeof8

Oxffeoft4

Oxffeofo

Oxffe9e8

Oxffe9e0

%rdx

Oxffe9f4

%rcx

Oxffe9fo

NlwliNn |k

%r8d

1

%rod

2

%rsp

A Oxffe9e0

%rip

0x400591

‘55

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&il, &i2, &i3, &i4,
i1, i2, i3, i4);

}

int func(int *pl, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

0x400591 <+66>: lea oxlc(%rsp),%rdi
0x400596 <+71>: callg ©0x400546 <func>

[oXVY. No Yo nl o) NP T J <R W) ~dAd do10 Snen

Oxffe9fc

majj1() oxffe9ofs

Oxffeof4

Oxffeofo

Oxffe9e8

Oxffe9ed
%»rsi %rdi
Oxffe9f8 Oxffe9fc

%rdx

Oxffe9f4

%rcx

Oxffe9fo

NlwliNn |k

%r8d

1

%rod

2

%rsp

A Oxffe9e0

%rip

0x400596

|‘ 56

Parameters and Return

int main(int argc, char *argv[]) { — %rdx
int i1 = 1; oxffeofc 1 Oxffe9fa
int i2 = 2;
int i3 = 3; rnajj1() Oxffeofs8 2 %Brcx
int 14 = 4;
> Oxffe9fo
int result = func(&il, &i2, &i3, &i4, oxffeota 3
11, 12, 13, 14); oxffeofe 4 %r8d
} 1
| | | | | = %r9d
int func(int *pl, int *p2, int *p3, int *p4, Oxffe9e8
int v1, int v2, int v3, int v4) { 2
} eee 3 %r\sp
Oxffe9e0 g= Oxffe9ed
o/ o/ 12
%rsi %rdi ‘1' %rip
0x400596 <+71>: callg ©x400546 <func> Oxffe9fs Oxffe9fc 0x40059b
Ox40059b <+76>: add $0x10,%rsp ‘
57

Parameters and Return

int main(int

}

int i1 =
int 12 =
int i3 =
int i4 =

argc, char *argv[]) {

int result = func(&il, &i2, &i3, &i4,

i1, i2, i3, i4);

int func(int *pl, int *p2, int *p3, int *p4,

int v1, int v2, int v3, int v4) {

0x400596 <+71>:
0x40059b <+76>: add

callg 0x400546 <func>
$0x10,%rsp

Oxffe9fc

majj1() oxffe9ofs

Oxffeof4

Oxffeofo

Oxffe9e8

Oxffe9ed
%»rsi %rdi
Oxffe9f8 Oxffe9fc

%rdx

Oxffe9f4

%rcx

Oxffe9fo

NlwliNn |k

%r8d

1

%rad

2

Ox40059b

%rsp

Oxffe9d8

%rip

v

0x40059b

|‘ 58

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&il, &i2, &i3, &i4,
i1, i2, i3, i4);

}

int func(int *pl, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

0x400596 <+71>: callg ©x400546 <func>
0x40059b <+76>: add $0x10,%rsp

Oxffe9fc

majj1() oxffe9ofs

Oxffeof4

Oxffeofo

Oxffe9e8

Oxffe9ed
%»rsi %rdi
Oxffe9f8 Oxffe9fc

NlwliNn |k

Ox40059b

v

%rdx

Oxffe9f4

%rcx

Oxffe9fo

%r8d

1

%rod

2

%rsp

Oxffe9d8

59

