
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

CS107, Lecture 19
Assembly: Control Flow Wrap, Function Call Take I

Reading: B&O 3.7
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5634457

https://edstem.org/us/courses/65949/discussion/5634457

2

GCC For Loop Output

Initialization
Jump to test
Body
Update
Test
Jump to body if success

Initialization
Test
Jump past loop if success
Body
Update
Jump to test

GCC Common For Loop Output Possible Alternative

for (int i = 0; i < n; i++) // n = 100

3

GCC For Loop Output

Initialization
Jump to test
Body
Update
Test
Jump to body if success

Initialization
Test
Jump past loop if success
Body
Update
Jump to test

GCC Common For Loop Output Possible Alternative

for (int i = 0; i < n; i++) // n = 100

Initialization
Test
No jump
Body
Update
Jump to test
Test
No jump
Body
Update
Jump to test
...

4

GCC For Loop Output

Initialization
Jump to test
Body
Update
Test
Jump to body if success

Initialization
Test
Jump past loop if success
Body
Update
Jump to test

GCC Common For Loop Output Possible Alternative

for (int i = 0; i < n; i++) // n = 100

Initialization
Test
No jump
Body
Update
Jump to test
Test
No jump
Body
Update
Jump to test
...

5

GCC For Loop Output

Initialization
Jump to test
Body
Update
Test
Jump to body if success

Initialization
Test
Jump past loop if passes
Body
Update
Jump to test

GCC Common For Loop Output Possible Alternative

for (int i = 0; i < n; i++) // n = 100

Initialization
Jump to test
Test
Jump to body
Body
Update
Test
Jump to body
Body
Update
Test
Jump to body
...

6

GCC For Loop Output

Initialization
Jump to test
Body
Update
Test
Jump to body if success

Initialization
Test
Jump past loop if passes
Body
Update
Jump to test

GCC Common For Loop Output Possible Alternative

for (int i = 0; i < n; i++) // n = 100

Initialization
Jump to test
Test
Jump to body
Body
Update
Test
Jump to body
Body
Update
Test
Jump to body
...

7

GCC For Loop Output

Initialization
Jump to test
Body
Update
Test
Jump to body if success

Initialization
Test
Jump past loop if passes
Body
Update
Jump to test

GCC Common For Loop Output Possible Alternative

Which instructions are better when n = 0? n = 1000?

for (int i = 0; i < n; i++)

8

Optimizing Instruction Counts
• Both versions have the same static instruction count (# of written instructions).
• But they have different dynamic instruction counts (# of executed instructions

when program is run).
• If n = 0, left (GCC common output) is best b/c fewer instructions executed
• If n is large, right (alternative) is best b/c fewer instructions executed

• The compiler may emit a static instruction count that is longer than some
alternative, but it may be more efficient if loop executes many times.

• Does the compiler know that a loop will execute many times? Of course not.
• What if our code has loops that always execute a small number of times? How

do we know when gcc makes a bad decision?
• (take EE108 and EE180!)

9

Condition Code-Dependent Instructions
There are three common instruction types that use condition codes:
• jmp instructions conditionally jump to a different next instruction
• set instructions conditionally set a byte to 0 or 1
• new versions of mov instructions conditionally move data

10

set: Read condition codes
set instructions conditionally set a byte to 0 or 1.
• Reads current state of flags
• Destination is a single-byte register (e.g., %al) or single-byte memory location
• Leaves other bytes of register (e.g., everything else in %rax) alone
• Typically followed by movzbl to zero those other bytes

int small(int x) {
 return x < 16;
}

cmp $0xf,%edi
setle %al
movzbl %al, %eax
retq

11

set: Read condition codes
Instruction Synonym Set Condition (1 if true, 0 if false)

sete D setz Equal / zero

setne D setnz Not equal / not zero

sets D Negative

setns D Nonnegative

setg D setnle Greater (signed >)

setge D setnl Greater or equal (signed >=)

setl D setnge Less (signed <)

setle D setng Less or equal (signed <=)

seta D setnbe Above (unsigned >)

setae D setnb Above or equal (unsigned >=)

setb D setnae Below (unsigned <)

setbe D setna Below or equal (unsigned <=)

12

cmov: Conditional move
cmovx src, dst conditionally moves data in src to data in dst.
• Mov src to dst if condition holds; no change otherwise
• src is memory address/register, dst is register
• May be more efficient than branch (i.e., jump)
• Often seen with C ternary operator: result = test ? then: else;

int max(int x, int y) {
 return x > y ? x : y;
}

cmp %edi, %esi
mov %edi, %eax
cmovge %esi, %eax
retq

13

cmov: Conditional move
Instruction Synonym Move Condition

cmove S,R cmovz Equal / zero (ZF = 1)

cmovne S,R cmovnz Not equal / not zero (ZF = 0)

cmovs S,R Negative (SF = 1)

cmovns S,R Nonnegative (SF = 0)

cmovg S,R cmovnle Greater (signed >) (SF = 0 and SF = OF)

cmovge S,R cmovnl Greater or equal (signed >=) (SF = OF)

cmovl S,R cmovnge Less (signed <) (SF != OF)

cmovle S,R cmovng Less or equal (signed <=) (ZF = 1 or SF! = OF)

cmova S,R cmovnbe Above (unsigned >) (CF = 0 and ZF = 0)

cmovae S,R cmovnb Above or equal (unsigned >=) (CF = 0)

cmovb S,R cmovnae Below (unsigned <) (CF = 1)

cmovbe S,R cmovna Below or equal (unsigned <=) (CF = 1 or ZF = 1)

14

Calling Functions In Assembly
To call a function in assembly, we must do a few things:
• Transfer Control – %rip must be adjusted to execute the callee’s instructions,

and then resume the caller’s instructions afterwards.
• Pass Data – we must pass parameters and extract return values.
• Manage Memory – we must handle all of the callee’s stack space needs.

Terminology: caller function calls the callee function.

How does assembly
interact with the stack?

15

%rsp
• %rsp is a special register that stores the address of the "top" of the stack (the

bottom in our diagrams, since the stack grows downwards).

0x0

main()

Heap

myfunction()

Data

Text (code)

%rsp

Main Memory

16

%rsp
• %rsp is a special register that stores the address of the current “top” of the

stack (the bottom in our diagrams, since the stack grows downwards).

0x0

main()

Heap

myfunction()

Data

Text (code)

%rsp

Main Memory

foo()

17

%rsp
• %rsp is a special register that stores the address of the current “top” of the

stack (the bottom in our diagrams, since the stack grows downwards).

0x0

main()

Heap

myfunction()

Data

Text (code)

%rsp

Main Memory

foo()

bar()

18

%rsp
• %rsp is a special register that stores the address of the current “top” of the

stack (the bottom in our diagrams, since the stack grows downwards).

0x0

main()

Heap

myfunction()

Data

Text (code)

%rsp

Main Memory

foo()

19

%rsp
• %rsp is a special register that stores the address of the current “top” of the

stack (the bottom in our diagrams, since the stack grows downwards).

0x0

main()

Heap

myfunction()

Data

Text (code)

%rsp

Main Memory

Key idea: %rsp must
point to the same place
before a function is
called and after that
function returns, since
stack frames go away
when a function finishes.

20

push
• The push instruction pushes the data at the specified source onto the top of

the stack, adjusting %rsp accordingly.

Instruction Effect
pushq S R[%rsp] ⟵ R[%rsp] – 8;

M[R[%rsp]] ⟵ S

21

push
• The push instruction pushes the data at the specified source onto the top of

the stack, adjusting %rsp accordingly.

Instruction Effect
pushq S R[%rsp] ⟵ R[%rsp] – 8;

M[R[%rsp]] ⟵ S

22

push
• The push instruction pushes the data at the specified source onto the top of

the stack, adjusting %rsp accordingly.

Instruction Effect
pushq S R[%rsp] ⟵ R[%rsp] – 8;

M[R[%rsp]] ⟵ S

23

push
• The push instruction pushes the data at the specified source onto the top of

the stack, adjusting %rsp accordingly.

• This behavior is equivalent to the following, but pushq is a shorter instruction:
 subq $8, %rsp
 movq S, (%rsp)
• Sometimes, you’ll see instructions just explicitly decrement the stack pointer

to make room for new local variables.

Instruction Effect
pushq S R[%rsp] ⟵ R[%rsp] – 8;

M[R[%rsp]] ⟵ S

24

pop
• The pop instruction pops the topmost data from the stack and stores it in the

specified destination, adjusting %rsp accordingly.

• Note: this doesn’t remove/clear out the data! It just increments %rsp to
indicate the next push can overwrite that location.

Instruction Effect
popq D D ⟵ M[R[%rsp]]

R[%rsp] ⟵ R[%rsp] + 8;

25

pop
• The pop instruction pops the topmost data from the stack and stores it in the

specified destination, adjusting %rsp accordingly.

• This behavior is equivalent to the following, but popq is a shorter instruction:
 movq (%rsp), D
 addq $8, %rsp
• Sometimes, you’ll see instructions just explicitly increment the stack pointer to

pop data.

Instruction Effect
popq D D ⟵ M[R[%rsp]]

R[%rsp] ⟵ R[%rsp] + 8;

26

Stack Example
Initially

%rax 0x123

%rdx 0

%rsp 0x108

Stack “bottom”

Stack “top”0x108

Increasing
addresses

pushq %rax
%rax 0x123

%rdx 0

%rsp 0x100

Stack “bottom”

Stack “top”

Increasing
addresses

popq %rdx
%rax 0x123

%rdx 0x123

%rsp 0x108

Stack “bottom”

0x108

Increasing
addresses

0x123

Stack “top”

0x108
0x100 0x100

0x123

27

Calling Functions In Assembly
To call a function in assembly, we must do a few things:
• Pass Control – %rip must be adjusted to execute the callee’s instructions, and

then resume the caller’s instructions afterwards.
• Pass Data – we must pass any parameters and receive any return value.
• Manage Memory – we must handle any space needs of the callee on the

stack.

Terminology: caller function calls the callee function.

28

Remembering Where We Left Off
Problem: %rip points to the
next instruction to execute. To
call a function, we must
remember that instruction
address for later.
Solution: push the next value of
%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue
executing.

…

…

Stack

0xff20%rsp

main()

0x3021%rip

E.g. main() calls foo():

29

Remembering Where We Left Off
Problem: %rip points to the
next instruction to execute. To
call a function, we must
remember that instruction
address for later.
Solution: push the next value of
%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue
executing.

…

…

0x3026

Stack

main()

0xff18%rsp

0x3021%rip

E.g. main() calls foo():

30

Remembering Where We Left Off
Problem: %rip points to the
next instruction to execute. To
call a function, we must
remember that instruction
address for later.
Solution: push the next value of
%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue
executing.

…

…

0x3026

…

Stack

main()

foo()

0xff08%rsp

0x4058%rip

E.g. main() calls foo():

31

Remembering Where We Left Off
Problem: %rip points to the
next instruction to execute. To
call a function, we must
remember that instruction
address for later.
Solution: push the next value of
%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue
executing.

…

…

0x3026

Stack

0xff18%rsp

0x4058%rip

main()

E.g. main() calls foo():

32

Remembering Where We Left Off
Problem: %rip points to the
next instruction to execute. To
call a function, we must
remember that instruction
address for later.
Solution: push the next value of
%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue
executing.

…

…

Stack

main()

0xff20%rsp

0x3026%rip

E.g. main() calls foo():

33

Call And Return
The call instruction pushes the address of the instruction immediately following
the call instruction onto the stack and sets %rip to point to the beginning of the
specified function’s instructions.

 call Label
call *Operand

The ret instruction pops this instruction address from the stack and stores it in
%rip.

ret
The stored %rip is called the return address. It is the address of the instruction
where execution would have continued had flow not been interrupted by the
function call. (Don’t confuse this with return value, which is the value returned
by the function via %rax or a subset of it).

34

Registers

What does call do?

call pushes the next instruction address
onto the stack and overwrites %rip to
address another function’s very first

instruction.

35

Registers

What does ret do?

ret pops off the 8 bytes from the top of
the stack and places it in %rip, thereby

resuming execution in the caller.
ret is separate from the return value of the function (put in %rax).

36

Function Pointers
The call instruction pushes the address of the instruction immediately following
the call instruction onto the stack and sets %rip to point to the beginning of the
specified function’s instructions.

 call Label
call *Operand

• Why would we use call with a register instead of hardcoding the function
name in the assembly? When would we not know the function to call until we
run the code?

• Function pointers! e.g., qsort – qsort calls a function passed through as a
parameter and stored in a register.

37

Parameters and Return
• There are special registers that store parameters and the return value.
• To call a function, we must put any parameters we are passing into the correct

registers. (%rdi, %rsi, %rdx, %rcx, %r8, %r9, in that order)
• Parameters beyond the first 6 are placed directly on the stack.
• If the caller expects a return value, it looks in %rax after the callee completes.

38

Local Storage
• So far, all local variables have been stored directly in registers.
• There are four common reasons that a local variable must be stored in

memory instead of a register:
• We’ve simply run out of registers—we only have 16, some of which are special-purpose.
• Registers aren’t protected against function call, so any variables or important partial

results stored in register must be flushed out to the stack.
• The & operator is applied to a variable, so we need an address for it
• The variables themselves are arrays or structs and we should anticipate the need for

pointer arithmetic.

39

Local Storage
long caller() {
 long arg1 = 534;
 long arg2 = 1057;
 long sum = swap_add(&arg1, &arg2);
 ...
}
caller:
 sub $0x10, %rsp // 16 bytes for stack frame
 movq $0x216, 0x8(%rsp) // store 534 in arg1
 movq $0x421, (%rsp) // store 1057 in arg2
 mov %rsp, %rsi // compute &arg2 as second arg
 lea 0x8(%rsp), %rdi // compute &arg1 as first arg
 callq swap_add // call swap_add(&arg1, &arg2)

40

Parameters and Return
...main()int main(int argc, char *argv[]) {

 int i1 = 1;
 int i2 = 2;
 int i3 = 3;

 int i4 = 4;
 int result = func(&i1, &i2, &i3, &i4,

 i1, i2, i3, i4);
 …

}

int func(int *p1, int *p2, int *p3, int *p4,
 int v1, int v2, int v3, int v4) {
 …

}

41

Parameters and Return
...main()

0xffea08

0x40054f

%rsp

%rip

int main(int argc, char *argv[]) {
 int i1 = 1;
 int i2 = 2;
 int i3 = 3;

 int i4 = 4;
 int result = func(&i1, &i2, &i3, &i4,

 i1, i2, i3, i4);
 …

}

int func(int *p1, int *p2, int *p3, int *p4,
 int v1, int v2, int v3, int v4) {
 …

}

0x40054f <+0>: sub $0x18,%rsp
0x400553 <+4>: movl $0x1,0xc(%rsp)
0x40055b <+12>: movl $0x2,0x8(%rsp)
0x400563 <+20>: movl $0x3,0x4(%rsp)
0x40056b <+28>: movl $0x4,(%rsp)
0x400572 <+35>: pushq $0x4
0x400574 <+37>: pushq $0x3
0x400576 <+39>: mov $0x2,%r9d
0x40057c <+45>: mov $0x1,%r8d
0x400582 <+51>: lea 0x10(%rsp),%rcx
0x400587 <+56>: lea 0x14(%rsp),%rdx
0x40058c <+61>: lea 0x18(%rsp),%rsi
0x400591 <+66>: lea 0x1c(%rsp),%rdi
0x400596 <+71>: callq 0x400546 <func>

42

Parameters and Return
...

0xffe9f0

main()

0xffe9f0

0x400553

%rsp

%rip

int main(int argc, char *argv[]) {
 int i1 = 1;
 int i2 = 2;
 int i3 = 3;

 int i4 = 4;
 int result = func(&i1, &i2, &i3, &i4,

 i1, i2, i3, i4);
 …

}

int func(int *p1, int *p2, int *p3, int *p4,
 int v1, int v2, int v3, int v4) {
 …

}

0x40054f <+0>: sub $0x18,%rsp
0x400553 <+4>: movl $0x1,0xc(%rsp)
0x40055b <+12>: movl $0x2,0x8(%rsp)
0x400563 <+20>: movl $0x3,0x4(%rsp)
0x40056b <+28>: movl $0x4,(%rsp)
0x400572 <+35>: pushq $0x4
0x400574 <+37>: pushq $0x3
0x400576 <+39>: mov $0x2,%r9d
0x40057c <+45>: mov $0x1,%r8d
0x400582 <+51>: lea 0x10(%rsp),%rcx
0x400587 <+56>: lea 0x14(%rsp),%rdx
0x40058c <+61>: lea 0x18(%rsp),%rsi
0x400591 <+66>: lea 0x1c(%rsp),%rdi
0x400596 <+71>: callq 0x400546 <func>

43

Parameters and Return
...

0xffe9fc 1

0xffe9f0

main()

0xffe9f0

0x40055b

%rsp

%rip

int main(int argc, char *argv[]) {
 int i1 = 1;
 int i2 = 2;
 int i3 = 3;

 int i4 = 4;
 int result = func(&i1, &i2, &i3, &i4,

 i1, i2, i3, i4);
 …

}

int func(int *p1, int *p2, int *p3, int *p4,
 int v1, int v2, int v3, int v4) {
 …

}

0x40054f <+0>: sub $0x18,%rsp
0x400553 <+4>: movl $0x1,0xc(%rsp)
0x40055b <+12>: movl $0x2,0x8(%rsp)
0x400563 <+20>: movl $0x3,0x4(%rsp)
0x40056b <+28>: movl $0x4,(%rsp)
0x400572 <+35>: pushq $0x4
0x400574 <+37>: pushq $0x3
0x400576 <+39>: mov $0x2,%r9d
0x40057c <+45>: mov $0x1,%r8d
0x400582 <+51>: lea 0x10(%rsp),%rcx
0x400587 <+56>: lea 0x14(%rsp),%rdx
0x40058c <+61>: lea 0x18(%rsp),%rsi
0x400591 <+66>: lea 0x1c(%rsp),%rdi
0x400596 <+71>: callq 0x400546 <func>

44

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2

0xffe9f0

main()

0xffe9f0

0x400563

%rsp

%rip

int main(int argc, char *argv[]) {
 int i1 = 1;
 int i2 = 2;
 int i3 = 3;

 int i4 = 4;
 int result = func(&i1, &i2, &i3, &i4,

 i1, i2, i3, i4);
 …

}

int func(int *p1, int *p2, int *p3, int *p4,
 int v1, int v2, int v3, int v4) {
 …

}

0x40054f <+0>: sub $0x18,%rsp
0x400553 <+4>: movl $0x1,0xc(%rsp)
0x40055b <+12>: movl $0x2,0x8(%rsp)
0x400563 <+20>: movl $0x3,0x4(%rsp)
0x40056b <+28>: movl $0x4,(%rsp)
0x400572 <+35>: pushq $0x4
0x400574 <+37>: pushq $0x3
0x400576 <+39>: mov $0x2,%r9d
0x40057c <+45>: mov $0x1,%r8d
0x400582 <+51>: lea 0x10(%rsp),%rcx
0x400587 <+56>: lea 0x14(%rsp),%rdx
0x40058c <+61>: lea 0x18(%rsp),%rsi
0x400591 <+66>: lea 0x1c(%rsp),%rdi
0x400596 <+71>: callq 0x400546 <func>

45

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0

main()

0xffe9f0

0x40056b

%rsp

%rip

int main(int argc, char *argv[]) {
 int i1 = 1;
 int i2 = 2;
 int i3 = 3;

 int i4 = 4;
 int result = func(&i1, &i2, &i3, &i4,

 i1, i2, i3, i4);
 …

}

int func(int *p1, int *p2, int *p3, int *p4,
 int v1, int v2, int v3, int v4) {
 …

}

0x400553 <+4>: movl $0x1,0xc(%rsp)
0x40055b <+12>: movl $0x2,0x8(%rsp)
0x400563 <+20>: movl $0x3,0x4(%rsp)
0x40056b <+28>: movl $0x4,(%rsp)
0x400572 <+35>: pushq $0x4
0x400574 <+37>: pushq $0x3
0x400576 <+39>: mov $0x2,%r9d
0x40057c <+45>: mov $0x1,%r8d
0x400582 <+51>: lea 0x10(%rsp),%rcx
0x400587 <+56>: lea 0x14(%rsp),%rdx
0x40058c <+61>: lea 0x18(%rsp),%rsi
0x400591 <+66>: lea 0x1c(%rsp),%rdi
0x400596 <+71>: callq 0x400546 <func>

46

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

main()

0xffe9f0

0x400572

%rsp

%rip

int main(int argc, char *argv[]) {
 int i1 = 1;
 int i2 = 2;
 int i3 = 3;

 int i4 = 4;
 int result = func(&i1, &i2, &i3, &i4,

 i1, i2, i3, i4);
 …

}

int func(int *p1, int *p2, int *p3, int *p4,
 int v1, int v2, int v3, int v4) {
 …

}

0x40055b <+12>: movl $0x2,0x8(%rsp)
0x400563 <+20>: movl $0x3,0x4(%rsp)
0x40056b <+28>: movl $0x4,(%rsp)
0x400572 <+35>: pushq $0x4
0x400574 <+37>: pushq $0x3
0x400576 <+39>: mov $0x2,%r9d
0x40057c <+45>: mov $0x1,%r8d
0x400582 <+51>: lea 0x10(%rsp),%rcx
0x400587 <+56>: lea 0x14(%rsp),%rdx
0x40058c <+61>: lea 0x18(%rsp),%rsi
0x400591 <+66>: lea 0x1c(%rsp),%rdi
0x400596 <+71>: callq 0x400546 <func>

47

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

main()

0xffe9e8

0x400574

%rsp

%rip

int main(int argc, char *argv[]) {
 int i1 = 1;
 int i2 = 2;
 int i3 = 3;

 int i4 = 4;
 int result = func(&i1, &i2, &i3, &i4,

 i1, i2, i3, i4);
 …

}

int func(int *p1, int *p2, int *p3, int *p4,
 int v1, int v2, int v3, int v4) {
 …

}

0x400563 <+20>: movl $0x3,0x4(%rsp)
0x40056b <+28>: movl $0x4,(%rsp)
0x400572 <+35>: pushq $0x4
0x400574 <+37>: pushq $0x3
0x400576 <+39>: mov $0x2,%r9d
0x40057c <+45>: mov $0x1,%r8d
0x400582 <+51>: lea 0x10(%rsp),%rcx
0x400587 <+56>: lea 0x14(%rsp),%rdx
0x40058c <+61>: lea 0x18(%rsp),%rsi
0x400591 <+66>: lea 0x1c(%rsp),%rdi
0x400596 <+71>: callq 0x400546 <func>

48

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x400576

%rsp

%rip

int main(int argc, char *argv[]) {
 int i1 = 1;
 int i2 = 2;
 int i3 = 3;

 int i4 = 4;
 int result = func(&i1, &i2, &i3, &i4,

 i1, i2, i3, i4);
 …

}

int func(int *p1, int *p2, int *p3, int *p4,
 int v1, int v2, int v3, int v4) {
 …

}

0x40056b <+28>: movl $0x4,(%rsp)
0x400572 <+35>: pushq $0x4
0x400574 <+37>: pushq $0x3
0x400576 <+39>: mov $0x2,%r9d
0x40057c <+45>: mov $0x1,%r8d
0x400582 <+51>: lea 0x10(%rsp),%rcx
0x400587 <+56>: lea 0x14(%rsp),%rdx
0x40058c <+61>: lea 0x18(%rsp),%rsi
0x400591 <+66>: lea 0x1c(%rsp),%rdi
0x400596 <+71>: callq 0x400546 <func>

49

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x40057c

%rsp

%rip

int main(int argc, char *argv[]) {
 int i1 = 1;
 int i2 = 2;
 int i3 = 3;

 int i4 = 4;
 int result = func(&i1, &i2, &i3, &i4,

 i1, i2, i3, i4);
 …

}

int func(int *p1, int *p2, int *p3, int *p4,
 int v1, int v2, int v3, int v4) {
 …

}

0x400572 <+35>: pushq $0x4
0x400574 <+37>: pushq $0x3
0x400576 <+39>: mov $0x2,%r9d
0x40057c <+45>: mov $0x1,%r8d
0x400582 <+51>: lea 0x10(%rsp),%rcx
0x400587 <+56>: lea 0x14(%rsp),%rdx
0x40058c <+61>: lea 0x18(%rsp),%rsi
0x400591 <+66>: lea 0x1c(%rsp),%rdi
0x400596 <+71>: callq 0x400546 <func>

50

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x40057c

%rsp

%rip

int main(int argc, char *argv[]) {
 int i1 = 1;
 int i2 = 2;
 int i3 = 3;

 int i4 = 4;
 int result = func(&i1, &i2, &i3, &i4,

 i1, i2, i3, i4);
 …

}

int func(int *p1, int *p2, int *p3, int *p4,
 int v1, int v2, int v3, int v4) {
 …

}

0x400572 <+35>: pushq $0x4
0x400574 <+37>: pushq $0x3
0x400576 <+39>: mov $0x2,%r9d
0x40057c <+45>: mov $0x1,%r8d
0x400582 <+51>: lea 0x10(%rsp),%rcx
0x400587 <+56>: lea 0x14(%rsp),%rdx
0x40058c <+61>: lea 0x18(%rsp),%rsi
0x400591 <+66>: lea 0x1c(%rsp),%rdi
0x400596 <+71>: callq 0x400546 <func>

51

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x40057c

%rsp

%rip

int main(int argc, char *argv[]) {
 int i1 = 1;
 int i2 = 2;
 int i3 = 3;

 int i4 = 4;
 int result = func(&i1, &i2, &i3, &i4,

 i1, i2, i3, i4);
 …

}

int func(int *p1, int *p2, int *p3, int *p4,
 int v1, int v2, int v3, int v4) {
 …

}

0x400572 <+35>: pushq $0x4
0x400574 <+37>: pushq $0x3
0x400576 <+39>: mov $0x2,%r9d
0x40057c <+45>: mov $0x1,%r8d
0x400582 <+51>: lea 0x10(%rsp),%rcx
0x400587 <+56>: lea 0x14(%rsp),%rdx
0x40058c <+61>: lea 0x18(%rsp),%rsi
0x400591 <+66>: lea 0x1c(%rsp),%rdi
0x400596 <+71>: callq 0x400546 <func>

2

%r9d

52

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x400582

%rsp

%rip

int main(int argc, char *argv[]) {
 int i1 = 1;
 int i2 = 2;
 int i3 = 3;

 int i4 = 4;
 int result = func(&i1, &i2, &i3, &i4,

 i1, i2, i3, i4);
 …

}

int func(int *p1, int *p2, int *p3, int *p4,
 int v1, int v2, int v3, int v4) {
 …

}

0x400574 <+37>: pushq $0x3
0x400576 <+39>: mov $0x2,%r9d
0x40057c <+45>: mov $0x1,%r8d
0x400582 <+51>: lea 0x10(%rsp),%rcx
0x400587 <+56>: lea 0x14(%rsp),%rdx
0x40058c <+61>: lea 0x18(%rsp),%rsi
0x400591 <+66>: lea 0x1c(%rsp),%rdi
0x400596 <+71>: callq 0x400546 <func>

2

%r9d

1

%r8d

53

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x400587

%rsp

%rip

int main(int argc, char *argv[]) {
 int i1 = 1;
 int i2 = 2;
 int i3 = 3;

 int i4 = 4;
 int result = func(&i1, &i2, &i3, &i4,

 i1, i2, i3, i4);
 …

}

int func(int *p1, int *p2, int *p3, int *p4,
 int v1, int v2, int v3, int v4) {
 …

}

0x400576 <+39>: mov $0x2,%r9d
0x40057c <+45>: mov $0x1,%r8d
0x400582 <+51>: lea 0x10(%rsp),%rcx
0x400587 <+56>: lea 0x14(%rsp),%rdx
0x40058c <+61>: lea 0x18(%rsp),%rsi
0x400591 <+66>: lea 0x1c(%rsp),%rdi
0x400596 <+71>: callq 0x400546 <func>

2

%r9d

1

%r8d

0xffe9f0

%rcx

54

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x40058c

%rsp

%rip

int main(int argc, char *argv[]) {
 int i1 = 1;
 int i2 = 2;
 int i3 = 3;

 int i4 = 4;
 int result = func(&i1, &i2, &i3, &i4,

 i1, i2, i3, i4);
 …

}

int func(int *p1, int *p2, int *p3, int *p4,
 int v1, int v2, int v3, int v4) {
 …

}

0x40057c <+45>: mov $0x1,%r8d
0x400582 <+51>: lea 0x10(%rsp),%rcx
0x400587 <+56>: lea 0x14(%rsp),%rdx
0x40058c <+61>: lea 0x18(%rsp),%rsi
0x400591 <+66>: lea 0x1c(%rsp),%rdi
0x400596 <+71>: callq 0x400546 <func>

2

%r9d

1

%r8d

0xffe9f0

%rcx

0xffe9f4

%rdx

55

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x400591

%rsp

%rip

int main(int argc, char *argv[]) {
 int i1 = 1;
 int i2 = 2;
 int i3 = 3;

 int i4 = 4;
 int result = func(&i1, &i2, &i3, &i4,

 i1, i2, i3, i4);
 …

}

int func(int *p1, int *p2, int *p3, int *p4,
 int v1, int v2, int v3, int v4) {
 …

}

0x400582 <+51>: lea 0x10(%rsp),%rcx
0x400587 <+56>: lea 0x14(%rsp),%rdx
0x40058c <+61>: lea 0x18(%rsp),%rsi
0x400591 <+66>: lea 0x1c(%rsp),%rdi
0x400596 <+71>: callq 0x400546 <func>

2

%r9d

1

%r8d

0xffe9f0

%rcx

0xffe9f4

%rdx

0xffe9f8

%rsi

56

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x400596

%rsp

%rip

int main(int argc, char *argv[]) {
 int i1 = 1;
 int i2 = 2;
 int i3 = 3;

 int i4 = 4;
 int result = func(&i1, &i2, &i3, &i4,

 i1, i2, i3, i4);
 …

}

int func(int *p1, int *p2, int *p3, int *p4,
 int v1, int v2, int v3, int v4) {
 …

}

0x400587 <+56>: lea 0x14(%rsp),%rdx
0x40058c <+61>: lea 0x18(%rsp),%rsi
0x400591 <+66>: lea 0x1c(%rsp),%rdi
0x400596 <+71>: callq 0x400546 <func>
0x40059b <+76>: add $0x10,%rsp

2

%r9d

1

%r8d

0xffe9f0

%rcx

0xffe9f4

%rdx

0xffe9fc

%rdi
0xffe9f8

%rsi

57

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x40059b

%rsp

%rip

int main(int argc, char *argv[]) {
 int i1 = 1;
 int i2 = 2;
 int i3 = 3;

 int i4 = 4;
 int result = func(&i1, &i2, &i3, &i4,

 i1, i2, i3, i4);
 …

}

int func(int *p1, int *p2, int *p3, int *p4,
 int v1, int v2, int v3, int v4) {
 …

}

0x40058c <+61>: lea 0x18(%rsp),%rsi
0x400591 <+66>: lea 0x1c(%rsp),%rdi
0x400596 <+71>: callq 0x400546 <func>
0x40059b <+76>: add $0x10,%rsp
…

2

%r9d

1

%r8d

0xffe9f0

%rcx

0xffe9f4

%rdx

0xffe9fc

%rdi
0xffe9f8

%rsi

58

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

0x40059b

main()

0xffe9d8

0x40059b

%rsp

%rip

int main(int argc, char *argv[]) {
 int i1 = 1;
 int i2 = 2;
 int i3 = 3;

 int i4 = 4;
 int result = func(&i1, &i2, &i3, &i4,

 i1, i2, i3, i4);
 …

}

int func(int *p1, int *p2, int *p3, int *p4,
 int v1, int v2, int v3, int v4) {
 …

}

0x40058c <+61>: lea 0x18(%rsp),%rsi
0x400591 <+66>: lea 0x1c(%rsp),%rdi
0x400596 <+71>: callq 0x400546 <func>
0x40059b <+76>: add $0x10,%rsp
…

2

%r9d

1

%r8d

0xffe9f0

%rcx

0xffe9f4

%rdx

0xffe9fc

%rdi
0xffe9f8

%rsi

59

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

0x40059b

main()

0xffe9d8

0x400546

%rsp

%rip

int main(int argc, char *argv[]) {
 int i1 = 1;
 int i2 = 2;
 int i3 = 3;

 int i4 = 4;
 int result = func(&i1, &i2, &i3, &i4,

 i1, i2, i3, i4);
 …

}

int func(int *p1, int *p2, int *p3, int *p4,
 int v1, int v2, int v3, int v4) {
 …

}

0x40058c <+61>: lea 0x18(%rsp),%rsi
0x400591 <+66>: lea 0x1c(%rsp),%rdi
0x400596 <+71>: callq 0x400546 <func>
0x40059b <+76>: add $0x10,%rsp
…

2

%r9d

1

%r8d

0xffe9f0

%rcx

0xffe9f4

%rdx

0xffe9fc

%rdi
0xffe9f8

%rsi

