CS107, Lecture 20
Assembly: Function Call, Take Il

Reading: B&O 3.7
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5649061

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

https://edstem.org/us/courses/65949/discussion/5649061

Register Restrictions

There is only one copy of registers for all programs and functions.

* Problem: what if funcA is building up a value in register %r10, and calls funcB
in the middle, which also has instructions that modify %r10? funcA’s value will
be destroyed!

e Solution: lay down some "rules of the road" that callers and callees must
follow when using registers so they do not interfere with one another.

* These rules define two types of registers: caller-owned and callee-owned

Caller/Callee

Caller/callee is
terminology that
refers to a pair of
functions. A single
function may be both
a caller and callee
simultaneously (e.g.
functionl at right).

functionl

function2

main is the caller,
and functionl s
the callee.

functionl is
the caller, and
function2 is
the callee.

Register Restrictions

Caller-Owned Callee-Owned

* Callee must save the existing value * Callee does not need to save the
and restore it when done. existing value.

 Caller can store values in them and Caller’s values could be overwritten
assume they’ll be preserved across by a callee! The caller may consider
function calls. saving values elsewhere before

calling functions.

Caller-Owned Registers

main can use caller-owned
registers and know that
functionl will not permanently
modify their values.

If function1 wants to use any
caller-owned registers, it must
save the existing values and
restore them before returning.

Caller-Owned Registers

functionl:
push %rbp
push %rbx

pop %rbx
pop %rbp
retq

Callee-Owned Registers

main can use callee-owned
registers but calling functionl
may permanently modify their
values.

If function1 wants to use any
callee-owned registers, it can do
so without saving the existing
values.

Callee-Owned Registers

main:

push %rle

push %rill

callg functionl
pop %rll

pop %rle

A Day In the Life of functionl

functionl

function2

Caller-owned registers:

« functionl must save/restore existing values
of any it wants to use.

 functionl can assume that calling
function2 will not permanently change their
values.

Callee-owned registers:

« functionl does not need to save/restore
existing values of any it wants to use.

« calling function2 may permanently change
their values.

Example: Recursion

* Let’s look at an example of recursion at the assembly level.

 We'll use everything we’ve learned about registers, the stack, function calls,
parameters, and assembly instructions!

* We’ll also see how helpful GDB can be when tracing through assembly.

>

rfact.c and rfact 0

. (ctrl-x a: exit,
layOUt Spllt ctrl-1: resize,
info reg refresh: refresh,

layout reg/asm,
focus next)

p $eax
p $eflags

b *0x400546
b *0x400550 if $eax > 98

ni
si

View C, assembly, and gdb (lab5/6)

Print all registers

Print register value
Print all condition codes currently set

Set breakpoint at assembly instruction
Set conditional breakpoint

Next assembly instruction

Step into assembly instruction (will step
into function calls) 1

p/Xx $rdi
p/t $rsi

X $rdi
x/4bx $rdi
X/4wx $rdi

finish

Print register value in hex

Print register value in binary

Examine the byte stored at this address
Examine 4 bytes starting at this address
Examine 4 ints starting at this address

Finish function, return to caller

12

Our First Assembly

int sum_array(int arr[], int nelems) { | We’re done with all our assembly lectures! Now we
int sum = ©; can fully understand what’s going on in the
for (int i = 9; i < nelems; i++) { assembly below, including how someone would call
sum += arr[i]; sum_array in assembly and what the ret instruction
} does.

return sum;

}

0000000000401136 <sum_array>:
401136 <+0>: mov $0x0, %eax
40113b <+5>: mov $0x0, %edx
401140 <+10>: cmp %esi,%eax
401142 <+12>: jge 0x40114f <sum_array+25>
401144 <+14>: movslqg %eax,%rcx
401147 <+17>: add (%rdi,%rcx,4),%edx
40114a <+20>: add $0x1,%eax
40114d <+23>: jmp 0x401140 <sum_array+10>
40114f <+25>: mov »edx, %seax
401151 <+27>: retq 13

