CS107, Lecture 21

Reverse Engineering, Privacy and Trust
Managing Heap: Preamble

Reading: None
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5666895

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

https://edstem.org/us/courses/65949/discussion/5666895

Privacy and Trust

How does a computer interpret and execute C programs?

Why is answering this question important?

* Learning how our code is really translated and executed helps us write better
code

 We can learn how to reverse engineer and exploit programs at the assembly
level

assign5: find and exploit vulnerabilities in an ATM program, reverse engineer a
program without seeing its code, and de-anonymize users given a data leak.

Privacy and Trust

* Learning about machine code and program execution helps us better
understand computer security.

 Computer security (the protection of data, devices, and networks from
disruption, harm, theft, unauthorized access or modification) is important in
part because it helps us maintain privacy and trust.

Have you been affected by a
data breach/hack or some
other unauthorized access to
your data?

How did that make you feel?

What is privacy? Here are 4 ways of framing it:

* Privacy as control of information: controlling how our private information is
shared with others.

* Privacy as autonomy: the agency to decide for ourselves what is valuable.

* Privacy as social good: social life would be severely compromised without
privacy.

 Privacy as a display of trust: privacy enables trusting relationships.

First two are individualist —the value of privacy as an individual right.
Second two are social — the value of privacy for a group.

Privacy as control of information: controlling how our private
information is shared with others.

* Consent requires free choice with available alternatives and informed
understanding of what is being offered.
 How many of you just skip past the terms of service for some new online service? What
are you surrendering by simply agreeing to it?
* Control over personal data collection and aggregation (e.g., data exports from
services you use, privacy dashboards, device privacy protections)

Privacy as autonomy: the agency to decide for ourselves what
is valuable.

* Pertains to the autonomy over our own lives and our ability to lead them as we
choose.

* Do you feel your autonomy is consistently respected when using products and
services? Why or why not?

"[P]rivacy is valuable because it acknowledges our respect for persons as
autonomous beings with the capacity to love, care and like—in other words,
persons with the potential to freely develop close relationships" (Innes 1992)

Individualist Models of Privacy

Privacy as autonomy and privacy as control over information
focus on the value of privacy at an individual level.

* Individual privacy can conflict with interests of state or society.

* Many debates over "privacy vs. security" — whether one should be sacrificed
for the other
* Apple v. FBI case re: unlocking iPhones (link)
* Debates around encryption (link)
* Privacy in the age of surveillance (link)

https://www.cnbc.com/2016/03/29/apple-vs-fbi-all-you-need-to-know.html
https://www.nytimes.com/2019/11/19/technology/end-to-end-encryption.html
https://www.economist.com/open-future/2019/12/13/surveillance-is-a-fact-of-life-so-make-privacy-a-human-right

Privacy as social good: social life would be severely
compromised without privacy.

 Privacy provides a social value strongly influencing the kind of society we live
in.

 What would society look like without privacy?

Privacy as display of trust: privacy enables trusting
relationships.

* Privacy enables trusting relationships essential to cooperation. For instance, a
fiduciary: someone who stands in a legal or ethical relationship of trust with
another person or group. The fiduciary must act for the benefit of and in the
best interest of the other person.

* e.g., tax filer with access to your bank account
» Should anyone who has access to personal info have a fiduciary responsibility? (Richards
& Hartzog, 2020).

* This model of privacy stresses the essential relationship between trust placed

in any holder of personal data and responsibilities that come with this trust.

10

Models of Privacy

Individualist Societal Models

Models of Privacy

Privacy as Privacy as a
Control over Social Good
Information

Privacy as
Respect for
Autonomy

Privacy as based on
Trust

11

Loss of Privacy

Loss of privacy can cause us various forms harms, including:

* Aggregation: combining personal information from various sources to build
someone’s profile

e Exclusion: not knowing or understanding how our information is being used, or
being unable to access or modify it (Google removing personal info from

search — link)

e Secondary Use: using your information for purposes other than what was
intended without permission.

12

https://mashable.com/article/how-to-remove-personal-info-from-google-search-results

Who Should We Trust?

Both security and privacy rely on trusted people (who administer security,
perform penetration tests, submit vulnerabilities to databases, or keep private
information secret). The final piece of the security puzzle is understanding trust.

Trust = Reliance + Risk of Betrayal

What makes trust unique to relationships between people is that trust exposes
one to being betrayed or being let down (Baier 1986).

13

Penetration Testing & Trust

Penetration testing is the practice of encouraging or even hiring security
researchers to find vulnerabilities in one’s own code or system.

The tester is placed in a position of trust: they are given access to the system
itself and encouraged to find easily and not-so-easily exploited vulnerabilities,
with the expectation that the tester will share what they have found with you.

Hiring a penetration tester means relying on their skill at finding vulnerabilities
but also trusting their ethical compass will lead them to tell you and to act as a
trustworthy fiduciary (guardian of your interests). In assign5, you will have the
opportunity to exercise your own ethical compass!

14

Example: Differential Privacy

Imagine a large database—perhaps a medical one—with personal information
and records of past activity tied to a name.

The records might be useful for research purposes, or to train a machine
learning model to predict future health outcomes, but what if giving access to
the records exposed the privacy of individual person’s health records?

Differential privacy is a formal measure of privacy that attempts to address
these concerns. By adding inconsequential noise (changing a birthday from 2001
to 2002, for example) or removing records, differential privacy protects
individuals from aggregation by making them harder to identify (Dwork 2008).

15

Differential Privacy’s Trust Model

Differential privacy assumes that the only threat to privacy is an external user
accessing the database who must be prevented from aggregating data that
could identify a user.

In other words, the trust model of differential privacy is that the database
owners and maintainers are to be fully trusted, and no one else.

16

Differential Privacy: The Other Threats

But is that the only threat? Differential privacy does not protect against
improper use by people with full access to data or against data leaks from the
database itself, which may be the primary data exposure risks.

Differential privacy also does not question the assumption that amassing &
storing large amounts of personal data is worth the risk of inevitable leaks

(Rogaway 2015).

In every evaluation of privacy, we can ask: who is trusted? Who is distrusted?
Does this model concentrate trust (and therefore power) in a single individual or
small group, or does it distribute trust?

17

Errata: Optimizations you’'ll see

nop
* nop/nopl are "no-op" instructions — they do nothing!
 intent: Make functions align on address boundaries that are nice multiples of 8.

mov %ebx,%ebx

 zeros out the top 32 register bits (because a mov int an e-pseudo-register zeros
out the upper 32 bits).

xor %ebx,%ebx

e Optimizes for performance as well as code size (read more here):

b8 00 00 00 00 mov $0x0,%eax

31 co Xor %eax,seax
18

https://stackoverflow.com/questions/33666617/what-is-the-best-way-to-set-a-register-to-zero-in-x86-assembly-xor-mov-or-and/33668295

Errata: Funky Assembly you’ll see

Some functions like printf take a variable numbers of arguments.

* It turns out that in assembly when we call these functions, we must indicate
the presence of any float/double arguments by setting %rax to the count of
vector registers used. If none are used (i.e., no parameters of float/double
type), it sets %rax to zero.

19

Running a program

* Creates new process

* Sets up address space/segments

Ox7ffffffff0000

* Read executable file, load instructions, global data

Mapped from file into gray segments
 Libraries loaded on demand

e Set up stack
Reserve stack segment, initialize %rsp, callg main

Ox7ffff770000

0x60000

* malloc written in C, heap will initialize itself on first use

Asks OS for large memory region,
parcels out to service requests

0x40000

Main Memory

Shared library text/data

Global data

Text (machine code)
R

20

The Stack Review

Main Memory

Ox7ffffffff0000

away" after function call

ends.
Ox7ffff770000

Automatically managed
at compile-time by gcc

Heap From Assembly:
0x60000
1 Stack management
Global data .
Text (machine code) amounts to moving
OX 40000 — %rsp up and down

(pushq, popq, mov)

21

Today: The Heap

Ox7ffffffff0000

Ox7ffff770000

0x60000

0x40000

Main Memory

Shared library text/data

Heap

]
Global data

Text (machine code)
1

Heap memory persists
until caller indicates it
no longer needs it.

Managed by C standard
library functions
(malloc, realloc, free)

This lecture:
How does heap
management work?

22

Your role so far: Client

void *malloc(size t size);

Returns a pointer to a block of heap memory of at least size bytes, or
NULL if an error occurred.

void free(void *ptr);
Frees the heap-allocated block starting at the specified address.

void *realloc(void *ptr, size t size);

Changes the size of the heap-allocated block starting at the specified
address to be the new specified size. Returns address of new, larger

allocated memory region. realloc(NULL, size) ->malloc(size)
23

What is a heap allocator?

* A heap allocator is a suite of functions that cooperatively fulfill requests for
dynamically allocated memory.

* When initialized, a heap allocator tracks the base address and the size of a
large contiguous block of memory. That block of memory is the heap.

0x10 Ox11 0x12 0x13 0x14 0x15 0x16 Ox17 0x18 0x19

AVAILABLE

D4

What is a heap allocator?

* A heap allocator is a suite of functions that cooperatively fulfill requests for
dynamically allocated memory.

* When initialized, a heap allocator tracks the base address and the size of a
large contiguous block of memory. That block of memory is the heap.

* The allocator manages the heap as clients request or donate back pieces of it.

Request 1: Hi! May |
please have 2 bytes of

Allocator: Sure, I've given

you address 0x10.

heap memory?

ox10 ox11 ox12 ox13 ox14 ox15 ox16 ox17 ox18 ox19

AVAILABLE

25

What is a heap allocator?

* A heap allocator is a suite of functions that cooperatively fulfill requests for
dynamically allocated memory.

* When initialized, a heap allocator tracks the base address and the size of a
large contiguous block of memory. That block of memory is the heap.

* The allocator manages the heap as clients request or donate back pieces of it.

Request 1: Hi! May |
please have 2 bytes of

Allocator: Sure, I've given

you address 0x10.

heap memory?

ox10 ox11 ox12 ox13 ox14 ox15 ox16 ox17 ox18 ox19

FOR REQUEST 1 AVAILABLE

06

What is a heap allocator?

* A heap allocator is a suite of functions that cooperatively fulfill requests for
dynamically allocated memory.

* When initialized, a heap allocator tracks the base address and the size of a
large contiguous block of memory. That block of memory is the heap.

* The allocator manages the heap as clients request or donate back pieces of it.

Request 2: Howdy! May |
please have 3 bytes of

Allocator: Sure, I've given

you address 0x12.

heap memory?

ox10 ox11 ox12 ox13 ox14 ox15 ox16 ox17 ox18 ox19

FOR REQUEST 1 AVAILABLE

L7

What is a heap allocator?

* A heap allocator is a suite of functions that cooperatively fulfill requests for
dynamically allocated memory.

* When initialized, a heap allocator tracks the base address and the size of a
large contiguous block of memory. That block of memory is the heap.

* The allocator manages the heap as clients request or donate back pieces of it.

Request 2: Howdy! May |
please have 3 bytes of

Allocator: Sure, I've given

you address 0x12.

heap memory?

ox10 ox11 ox12 ox13 ox14 ox15 ox16 ox17 ox18 ox19

FOR REQUEST 1 FOR REQUEST 2 AVAILABLE

D8

What is a heap allocator?

* A heap allocator is a suite of functions that cooperatively fulfill requests for
dynamically allocated memory.

* When initialized, a heap allocator tracks the base address and the size of a
large contiguous block of memory. That block of memory is the heap.

* The allocator manages the heap as clients request or donate back pieces of it.

Request 1: I'm done with Allocator: Thanks. Have a

the memory | requested.

Thank you! gOOd day!

ox10 ox11 ox12 ox13 ox14 ox15 ox16 ox17 ox18 ox19

FOR REQUEST 1 FOR REQUEST 2 AVAILABLE

D9

What is a heap allocator?

* A heap allocator is a suite of functions that cooperatively fulfill requests for
dynamically allocated memory.

* When initialized, a heap allocator tracks the base address and the size of a
large contiguous block of memory. That block of memory is the heap.

* The allocator manages the heap as clients request or donate back pieces of it.

Request 1: I'm done with Allocator: Thanks. Have a

the memory | requested.

Thank you! gOOd day!

ox10 ox11 ox12 ox13 ox14 ox15 ox16 ox17 ox18 ox19

AVAILABLE FOR REQUEST 2 AVAILABLE

What is a heap allocator?

* A heap allocator is a suite of functions that cooperatively fulfill requests for
dynamically allocated memory.

* When initialized, a heap allocator tracks the base address and the size of a
large contiguous block of memory. That block of memory is the heap.

* The allocator manages the heap as clients request or donate back pieces of it.

Request 3: Hello there!
I'd like to request 2 bytes

Allocator: Sure thing. I've

of heap memory, please. given you address 0x10.

ox10 ox11 ox12 ox13 ox14 ox15 ox16 ox17 ox18 ox19

AVAILABLE FOR REQUEST 2 AVAILABLE

What is a heap allocator?

* A heap allocator is a suite of functions that cooperatively fulfill requests for
dynamically allocated memory.

* When initialized, a heap allocator tracks the base address and the size of a
large contiguous block of memory. That block of memory is the heap.

* The allocator manages the heap as clients request or donate back pieces of it.

Request 3: Hello there!
I'd like to request 2 bytes

Allocator: Sure thing. I've

of heap memory, please. given you address 0x10.

ox10 ox11 ox12 ox13 ox14 ox15 ox16 ox17 ox18 ox19

FOR REQUEST 3 FOR REQUEST 2 AVAILABLE

What is a heap allocator?

* A heap allocator is a suite of functions that cooperatively fulfill requests for
dynamically allocated memory.

* When initialized, a heap allocator tracks the base address and the size of a
large contiguous block of memory. That block of memory is the heap.

* The allocator manages the heap as clients request or donate back pieces of it.

Request 3: Hi again! I'd

] 1 ’
e i e st he ragia Allocator: Sure thing. I've

of memory at 0x10 be given you address 0x15.

reallocated to 4 bytes.

ox10 ox11 ox12 ox13 ox14 ox15 ox16 ox17 ox18 ox19

FOR REQUEST 3 FOR REQUEST 2 AVAILABLE

What is a heap allocator?

* A heap allocator is a suite of functions that cooperatively fulfill requests for
dynamically allocated memory.

* When initialized, a heap allocator tracks the base address and the size of a
large contiguous block of memory. That block of memory is the heap.

* The allocator manages the heap as clients request or donate back pieces of it.

Request 3: Hi again! I'd

] 1 ’
e i e st he ragia Allocator: Sure thing. I've

of memory at 0x10 be given you address 0x15.

reallocated to 4 bytes.

ox10 ox11 ox12 ox13 ox14 ox15 ox16 ox17 ox18 ox19

AVAILABLE FOR REQUEST 2 FOR REQUEST 3 AVAILABLE

