
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License.  All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

CS107, Lecture 21
Reverse Engineering, Privacy and Trust

Managing Heap: Preamble

Reading: None
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5666895

https://edstem.org/us/courses/65949/discussion/5666895


2

Privacy and Trust
How does a computer interpret and execute C programs?

Why is answering this question important?
• Learning how our code is really translated and executed helps us write better 

code
• We can learn how to reverse engineer and exploit programs at the assembly 

level 

assign5: find and exploit vulnerabilities in an ATM program, reverse engineer a 
program without seeing its code, and de-anonymize users given a data leak.



3

Privacy and Trust
• Learning about machine code and program execution helps us better 

understand computer security.
• Computer security (the protection of data, devices, and networks from 

disruption, harm, theft, unauthorized access or modification) is important in 
part because it helps us maintain privacy and trust.



4

Have you been affected by a 
data breach/hack or some 

other unauthorized access to 
your data?

How did that make you feel?



5

Privacy
What is privacy?  Here are 4 ways of framing it:
• Privacy as control of information: controlling how our private information is 

shared with others.
• Privacy as autonomy: the agency to decide for ourselves what is valuable.
• Privacy as social good: social life would be severely compromised without 

privacy.
• Privacy as a display of trust: privacy enables trusting relationships.

First two are individualist –the value of privacy as an individual right.
Second two are social – the value of privacy for a group.



6

Privacy
Privacy as control of information: controlling how our private 
information is shared with others.

• Consent requires free choice with available alternatives and informed 
understanding of what is being offered.

• How many of you just skip past the terms of service for some new online service? What 
are you surrendering by simply agreeing to it?

• Control over personal data collection and aggregation (e.g., data exports from 
services you use, privacy dashboards, device privacy protections)



7

Privacy
Privacy as autonomy: the agency to decide for ourselves what 
is valuable.

• Pertains to the autonomy over our own lives and our ability to lead them as we 
choose.
• Do you feel your autonomy is consistently respected when using products and 

services? Why or why not?

"[P]rivacy is valuable because it acknowledges our respect for persons as 
autonomous beings with the capacity to love, care and like—in other words, 
persons with the potential to freely develop close relationships" (Innes 1992)



8

Individualist Models of Privacy
Privacy as autonomy and privacy as control over information 
focus on the value of privacy at an individual level.

• Individual privacy can conflict with interests of state or society.
• Many debates over "privacy vs. security" – whether one should be sacrificed 

for the other
• Apple v. FBI case re: unlocking iPhones (link)
• Debates around encryption (link)
• Privacy in the age of surveillance (link)

https://www.cnbc.com/2016/03/29/apple-vs-fbi-all-you-need-to-know.html
https://www.nytimes.com/2019/11/19/technology/end-to-end-encryption.html
https://www.economist.com/open-future/2019/12/13/surveillance-is-a-fact-of-life-so-make-privacy-a-human-right


9

Privacy
Privacy as social good: social life would be severely 
compromised without privacy.

• Privacy provides a social value strongly influencing the kind of society we live 
in.
• What would society look like without privacy?



10

Privacy
Privacy as display of trust: privacy enables trusting 
relationships.
• Privacy enables trusting relationships essential to cooperation. For instance, a 

fiduciary: someone who stands in a legal or ethical relationship of trust with 
another person or group. The fiduciary must act for the benefit of and in the 
best interest of the other person.

• e.g., tax filer with access to your bank account
• Should anyone who has access to personal info have a fiduciary responsibility? (Richards 

& Hartzog, 2020).

• This model of privacy stresses the essential relationship between trust placed 
in any holder of personal data and responsibilities that come with this trust.



11

Models of Privacy
Individualist
 Models

Societal Models 
of Privacy

Privacy as 
Control over 
Information 

Privacy as 
Respect for 
Autonomy 

Privacy as a 
Social Good  

Privacy as based on 
Trust



12

Loss of Privacy
Loss of privacy can cause us various forms harms, including:

• Aggregation: combining personal information from various sources to build 
someone’s profile
• Exclusion: not knowing or understanding how our information is being used, or 

being unable to access or modify it (Google removing personal info from 
search – link)
• Secondary Use: using your information for purposes other than what was 

intended without permission.

https://mashable.com/article/how-to-remove-personal-info-from-google-search-results


13

Who Should We Trust?
Both security and privacy rely on trusted people (who administer security, 
perform penetration tests, submit vulnerabilities to databases, or keep private 
information secret). The final piece of the security puzzle is understanding trust.

    Trust = Reliance + Risk of Betrayal

What makes trust unique to relationships between people is that trust exposes 
one to being betrayed or being let down (Baier 1986).



14

Penetration Testing & Trust
Penetration testing is the practice of encouraging or even hiring security 
researchers to find vulnerabilities in one’s own code or system.

The tester is placed in a position of trust: they are given access to the system 
itself and encouraged to find easily and not-so-easily exploited vulnerabilities, 
with the expectation that the tester will share what they have found with you.

Hiring a penetration tester means relying on their skill at finding vulnerabilities 
but also trusting their ethical compass will lead them to tell you and to act as a 
trustworthy fiduciary (guardian of your interests).  In assign5, you will have the 
opportunity to exercise your own ethical compass! 



15

Example: Differential Privacy
Imagine a large database—perhaps a medical one—with personal information 
and records of past activity tied to a name.

The records might be useful for research purposes, or to train a machine 
learning model to predict future health outcomes, but what if giving access to 
the records exposed the privacy of individual person’s health records?  

Differential privacy is a formal measure of privacy that attempts to address 
these concerns. By adding inconsequential noise (changing a birthday from 2001 
to 2002, for example) or removing records, differential privacy protects 
individuals from aggregation by making them harder to identify (Dwork 2008). 



16

Differential Privacy’s Trust Model
Differential privacy assumes that the only threat to privacy is an external user 
accessing the database who must be prevented from aggregating data that 
could identify a user.

In other words, the trust model of differential privacy is that the database 
owners and maintainers are to be fully trusted, and no one else.



17

Differential Privacy: The Other Threats
But is that the only threat?  Differential privacy does not protect against 
improper use by people with full access to data or against data leaks from the 
database itself, which may be the primary data exposure risks.

Differential privacy also does not question the assumption that amassing & 
storing large amounts of personal data is worth the risk of inevitable leaks 
(Rogaway 2015).

In every evaluation of privacy, we can ask: who is trusted? Who is distrusted? 
Does this model concentrate trust (and therefore power) in a single individual or 
small group, or does it distribute trust? 



18

Errata: Optimizations you’ll see
nop
• nop/nopl are "no-op" instructions – they do nothing!
• intent: Make functions align on address boundaries that are nice multiples of 8.

mov %ebx,%ebx
• zeros out the top 32 register bits (because a mov int an e-pseudo-register zeros 

out the upper 32 bits).

xor %ebx,%ebx
• Optimizes for performance as well as code size (read more here):
  b8 00 00 00 00  mov $0x0,%eax
  31 c0    xor %eax,%eax

https://stackoverflow.com/questions/33666617/what-is-the-best-way-to-set-a-register-to-zero-in-x86-assembly-xor-mov-or-and/33668295


19

Errata: Funky Assembly you’ll see
Some functions like printf take a variable numbers of arguments.
• It turns out that in assembly when we call these functions, we must indicate 

the presence of any float/double arguments by setting %rax to the count of 
vector registers used. If none are used (i.e., no parameters of float/double 
type), it sets %rax to zero.



20

Running a program
• Creates new process 
• Sets up address space/segments 
• Read executable file, load instructions, global data 

Mapped from file into gray segments 
• Libraries loaded on demand

• Set up stack 
Reserve stack segment, initialize %rsp, callq main 
• malloc written in C, heap will initialize itself on first use 

Asks OS for large memory region,
parcels out to service requests 

Heap

Stack

Main Memory

0x60000

Shared library text/data0x7ffff770000

0x7ffffffff0000

Global data

Text (machine code)
0x40000



21

The Stack

Stack memory "goes 
away" after function call 
ends.

Automatically managed 
at compile-time by gcc

From Assembly:
Stack management 
amounts to moving 
%rsp up and down
(pushq, popq, mov)

Review

Heap

Stack

Main Memory

0x60000

Shared library text/data0x7ffff770000

0x7ffffffff0000

Global data

Text (machine code)
0x40000



22

Today: The Heap

Heap memory persists 
until caller indicates it 
no longer needs it.

Managed by C standard 
library functions
(malloc, realloc, free)

This lecture:
How does heap 
management work?

Heap

Stack

Main Memory

0x60000

Shared library text/data0x7ffff770000

0x7ffffffff0000

Global data

Text (machine code)
0x40000



23

Your role so far: Client
void *malloc(size_t size);
 Returns a pointer to a block of heap memory of at least size bytes, or 

NULL if an error occurred.

void free(void *ptr);
 Frees the heap-allocated block starting at the specified address.

void *realloc(void *ptr, size_t size);
 Changes the size of the heap-allocated block starting at the specified 

address to be the new specified size.  Returns address of new, larger 
allocated memory region.  realloc(NULL, size) -> malloc(size)



24

What is a heap allocator?
• A heap allocator is a suite of functions that cooperatively fulfill requests for 

dynamically allocated memory.
• When initialized, a heap allocator tracks the base address and the size of a 

large contiguous block of memory.  That block of memory is the heap.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

AVAILABLE



25

What is a heap allocator?
• A heap allocator is a suite of functions that cooperatively fulfill requests for 

dynamically allocated memory.
• When initialized, a heap allocator tracks the base address and the size of a 

large contiguous block of memory.  That block of memory is the heap.
• The allocator manages the heap as clients request or donate back pieces of it.

Request 1: Hi!  May I 
please have 2 bytes of 

heap memory?

Allocator: Sure, I’ve given 
you address 0x10.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

AVAILABLE



26

What is a heap allocator?
• A heap allocator is a suite of functions that cooperatively fulfill requests for 

dynamically allocated memory.
• When initialized, a heap allocator tracks the base address and the size of a 

large contiguous block of memory.  That block of memory is the heap.
• The allocator manages the heap as clients request or donate back pieces of it.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

FOR REQUEST 1 AVAILABLE

Request 1: Hi!  May I 
please have 2 bytes of 

heap memory?

Allocator: Sure, I’ve given 
you address 0x10.



27

What is a heap allocator?
• A heap allocator is a suite of functions that cooperatively fulfill requests for 

dynamically allocated memory.
• When initialized, a heap allocator tracks the base address and the size of a 

large contiguous block of memory.  That block of memory is the heap.
• The allocator manages the heap as clients request or donate back pieces of it.

Request 2: Howdy!  May I 
please have 3 bytes of 

heap memory?

Allocator: Sure, I’ve given 
you address 0x12.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

FOR REQUEST 1 AVAILABLE



28

What is a heap allocator?
• A heap allocator is a suite of functions that cooperatively fulfill requests for 

dynamically allocated memory.
• When initialized, a heap allocator tracks the base address and the size of a 

large contiguous block of memory.  That block of memory is the heap.
• The allocator manages the heap as clients request or donate back pieces of it.

Request 2: Howdy!  May I 
please have 3 bytes of 

heap memory?

Allocator: Sure, I’ve given 
you address 0x12.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

FOR REQUEST 1 FOR REQUEST 2 AVAILABLE



29

What is a heap allocator?
• A heap allocator is a suite of functions that cooperatively fulfill requests for 

dynamically allocated memory.
• When initialized, a heap allocator tracks the base address and the size of a 

large contiguous block of memory.  That block of memory is the heap.
• The allocator manages the heap as clients request or donate back pieces of it.

Request 1: I’m done with 
the memory I requested.  

Thank you!

Allocator: Thanks.  Have a 
good day!

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

FOR REQUEST 1 FOR REQUEST 2 AVAILABLE



30

What is a heap allocator?
• A heap allocator is a suite of functions that cooperatively fulfill requests for 

dynamically allocated memory.
• When initialized, a heap allocator tracks the base address and the size of a 

large contiguous block of memory.  That block of memory is the heap.
• The allocator manages the heap as clients request or donate back pieces of it.

Request 1: I’m done with 
the memory I requested.  

Thank you!

Allocator: Thanks.  Have a 
good day!

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

AVAILABLE FOR REQUEST 2 AVAILABLE



31

What is a heap allocator?
• A heap allocator is a suite of functions that cooperatively fulfill requests for 

dynamically allocated memory.
• When initialized, a heap allocator tracks the base address and the size of a 

large contiguous block of memory.  That block of memory is the heap.
• The allocator manages the heap as clients request or donate back pieces of it.

Request 3: Hello there!  
I’d like to request 2 bytes 
of heap memory, please.

Allocator: Sure thing.  I’ve 
given you address 0x10.  

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

AVAILABLE FOR REQUEST 2 AVAILABLE



32

What is a heap allocator?
• A heap allocator is a suite of functions that cooperatively fulfill requests for 

dynamically allocated memory.
• When initialized, a heap allocator tracks the base address and the size of a 

large contiguous block of memory.  That block of memory is the heap.
• The allocator manages the heap as clients request or donate back pieces of it.

Request 3: Hello there!  
I’d like to request 2 bytes 
of heap memory, please.

Allocator: Sure thing.  I’ve 
given you address 0x10.  

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

FOR REQUEST 3 FOR REQUEST 2 AVAILABLE



33

What is a heap allocator?
• A heap allocator is a suite of functions that cooperatively fulfill requests for 

dynamically allocated memory.
• When initialized, a heap allocator tracks the base address and the size of a 

large contiguous block of memory.  That block of memory is the heap.
• The allocator manages the heap as clients request or donate back pieces of it.

Request 3: Hi again!  I’d 
like to request the region 

of memory at 0x10 be 
reallocated to 4 bytes.

Allocator: Sure thing.  I’ve 
given you address 0x15.  

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

FOR REQUEST 3 FOR REQUEST 2 AVAILABLE



34

What is a heap allocator?
• A heap allocator is a suite of functions that cooperatively fulfill requests for 

dynamically allocated memory.
• When initialized, a heap allocator tracks the base address and the size of a 

large contiguous block of memory.  That block of memory is the heap.
• The allocator manages the heap as clients request or donate back pieces of it.

Request 3: Hi again!  I’d 
like to request the region 

of memory at 0x10 be 
reallocated to 4 bytes.

Allocator: Sure thing.  I’ve 
given you address 0x15.  

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

AVAILABLE FOR REQUEST 2 FOR REQUEST 3 AVAILABLE


