
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

CS107, Lecture 22
Managing The Heap, Take I

Reading: B&O 9.9 and 9.11
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5687299

https://edstem.org/us/courses/65949/discussion/5687299

2

CS107 Topic 6: How do the
core malloc/realloc/free

memory-allocation
operations work?

3

How do malloc/realloc/free work?
Pulling together all our CS107 topics this quarter:
• Testing
• Efficiency
• Bit-level manipulation
• Memory management
• Pointers
• Generics
• Assembly
• And more…

4

Learning Goals
• Learn the restrictions, goals and assumptions of a heap allocator
• Understand the conflicting goals of utilization and throughput
• Learn about different ways to implement a heap allocator

5

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of what memory has been allocated and what memory is free
3. Decide which memory to use when fulfilling an allocation request
4. Respond to requests as quickly as possible

6

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of what memory has been allocated and what memory is free
3. Decide which memory to use when fulfilling an allocation request
4. Respond to requests as quickly as possible

A heap allocator cannot assume anything about the order of allocation
and free requests, or even that every allocation request is accompanied
by a matching free request.

7

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of what memory has been allocated and what memory is free
3. Decide which memory to use when fulfilling an allocation request
4. Respond to requests as quickly as possible

A heap allocator marks memory regions as allocated or available. It
must remember which is which to properly provide memory to clients.

8

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of what memory has been allocated and what memory is free
3. Decide which memory to use when fulfilling an allocation request
4. Respond to requests as quickly as possible

A heap allocator may have options for which memory to use to fulfill an
allocation request. It must decide this based on a variety of factors.

9

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of what memory has been allocated and what memory is free
3. Decide which memory to use when fulfilling an allocation request
4. Respond to requests as quickly as possible

A heap allocator must respond immediately to allocation requests and
should not e.g., prioritize or reorder certain requests to improve
performance.

10

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of what memory has been allocated and what memory is free
3. Decide which memory to use when fulfilling an allocation request
4. Respond to requests as quickly as possible
5. Return addresses that are 8-byte-aligned (must be multiples of 8).

11

Heap Allocator Goals
• Goal 1: Maximize throughput, or the number of requests completed per unit

of time. This means minimizing the average time to satisfy a request.
• Goal 2: Maximize utilization, or how efficiently we make use of the limited

heap memory to satisfy requests.

12

Utilization
• The primary cause of poor utilization is fragmentation. Fragmentation occurs

when otherwise unused memory is not available to satisfy allocation requests.
• In this example, there is enough aggregate memory to satisfy the request, but

no single free block is large enough to satisfy it.
• In general: we want the largest address used to be as low as possible.

Request 6: Hi! May I
please have 4 bytes of

heap memory?

Allocator: I’m sorry, I
don’t have a 4 byte block

available…

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

Req. 1 Free Req. 2 Free Req. 3 Free Req. 4 Free Req. 5 Free

13

Utilization
Question: what if we shifted these blocks down to make more space? Can we
do this?
 A. YES, great idea!
 B. YES, it can be done, but not a good idea for some reason (e.g., not
 efficient use of time)
 C. NO, it can’t be done!

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

Req. 1 Req. 2 Req. 3 Req. 4 Req. 5 Free

14

Utilization
Question: what if we shifted these blocks down to make more space? Can we
do this?
• No - we have already shared these addresses to the client. We cannot move

allocated memory around, since doing so would invalidate the pointers held by
the client!

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

Req. 1 Req. 2 Req. 3 Req. 4 Req. 5 Free

15

Fragmentation
• Internal Fragmentation: an allocated block is larger than what’s needed (e.g.,

due to minimum block size)
• External Fragmentation: no single block is large enough to satisfy an allocation

request, even though enough aggregate free memory is available

16

Heap Allocator Goals
• Goal 1: Maximize throughput, or the number of requests completed per unit

of time. This means minimizing the average time to satisfy a request.
• Goal 2: Maximize memory utilization, or how efficiently we make use of the

limited heap memory to satisfy requests.

These are seemingly conflicting goals – i.e., it may take longer to better plan out
heap memory use for each request.

Heap allocators must strike the right balance between the two.

17

Heap Allocator Goals
• Goal 1: Maximize throughput, or the number of requests completed per unit

of time. This means minimizing the average time to satisfy a request.
• Goal 2: Maximize memory utilization, or how efficiently we make use of the

limited heap memory to satisfy requests.

Other desirable goals:
Locality ("similar" blocks allocated close to each other)

Robust (handle client errors)
Ease of implementation/maintenance

18

Bump Allocator
Let’s say we want to prioritize throughput at all cost and not care about
utilization even one bit. This might even mean we not care about reusing
memory. How could we do this?

19

Bump Allocator Performance

1. Utilization

😱

Never reuses memory

2. Throughput

⭐

Ultra fast, short roubnes

20

Bump Allocator
• A bump allocator is an allocator that simply allocates the next available

memory address in response to an allocation request and does nothing in
response to free.
• Throughput: each malloc and free executes only a handful of instructions:

• It is easy to find the next location to use
• free does nothing!

• Utilization: we use each memory block at most once. No freeing at all, so no
memory is ever reused. L
• We provide a bump allocator implementation as part of the final assignment

as a code reading exercise.

21

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

AVAILABLE

22

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a AVAILABLE

Variable Value

a 0x10

23

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

Variable Value

a 0x10

b 0x18

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a b + padding AVAILABLE

24

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

Variable Value

a 0x10

b 0x18

c 0x20

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a b + padding c

25

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

Variable Value

a 0x10

b 0x18

c 0x20

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a b + padding c

26

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

Variable Value

a 0x10

b 0x18

c 0x20

d NULL

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a b + padding c

27

Summary: Bump Allocator
• A bump allocator is extreme–it optimizes only for throughput, not utilization.
• Better allocators strike a more reasonable balance to achieve acceptable and

even admirable levels for both. But how?

Questions to consider:
1. How do we keep track of free blocks?
2. How do we choose which free block to use to help satisfy an allocation

request?
3. After we choose an appropriate free block, what do we do with any excess

that isn’t needed?
4. What do we do with a block as it’s being freed?

28

Implicit Free List Allocator
• Key idea: in order to reuse blocks, we need a way to track which blocks are

allocated and which ones are free.
• We could store this information in a separate global data structure, but this is,

in general, inefficient and requires substantial overhead.
• Instead: let’s allocate extra space before each block for a header storing its

payload size and whether it's free or in use.
• When we allocate a block, we look through all blocks to find a free one and

update its header to reflect its allocation size and status.
• When we free a block, we update its header to be clear it's now free.
• The header should be 8 bytes (or larger).
• By storing header information, we’re implicitly maintaining a list of free blocks.

29

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Free

30

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a +
pad

56
Free

Variable Value

a 0x18

31

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a +
pad

8
Used b 40

Free

Variable Value

a 0x18

b 0x28

32

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a +
pad

8
Used b 8

Used
c +
pad

24
Free

Variable Value

a 0x18

b 0x28

c 0x38

33

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a +
pad

8
Free b 8

Used
c +
pad

24
Free

Variable Value

a 0x18

b 0x28

c 0x38

34

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a +
pad

8
Used d 8

Used
c +
pad

24
Free

Variable Value

a 0x18

b 0x28

c 0x38

d 0x28

35

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

24
Free

Variable Value

a 0x18

b 0x28

c 0x38

d 0x28

36

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

Variable Value

a 0x18

b 0x28

c 0x38

d 0x28

e 0x48

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

24
Used e

37

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

Variable Value

a 0x18

b 0x28

c 0x38

d 0x28

e 0x48

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

24
Used e

38

Representing Headers
How can we store both a size and a status (free versus allocated) in 8 bytes?

int for size, int for status?

Key idea: block sizes will always be multiples of 8.
• Least-significant 3 bits aren’t really needed to represent block size if they’re

assumed to always be zeroes!
• Solution: use one of the 3 least-significant bits to store free/allocated status

no! malloc/realloc use size_t for sizes!

39

Implicit Free List Allocator
• How can we choose a free block to use for an allocation request?

• First fit: search the list from beginning each time and choose first free block that fits.
• Next fit: instead of starting at the beginning, continue where previous search left off.
• Best fit: examine every free block and choose the one with the smallest size that fits.

• First fit/next fit easier to implement
• What are the pros/cons of each approach?

40

Implicit Free List Summary
For all blocks,
• Have a header that

stores size and status.
• Our list links all blocks,

allocated (A) and free (F).

Keeping track of free blocks:
• Improves memory utilization (vs bump allocator)
• Decreases throughput (worst case allocation request has O(A + F) time)
• Increases design complexity J (but compared to bump, it’s worth it)

Header (8B)

Block size 00X

alloc/free

0363

41

Implicit free list header design
Should we store the block size as
(A) payload size, or
(B) header + payload size?

 Your decision affects
how you traverse the list (but be
careful of off-by-one errors)

Up to you!

Up to you!

42

Splitting Policy
...
void *e = malloc(16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

24
Free

So far, we have seen that a
reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

Up to you!

43

Splitting Policy
...
void *e = malloc(16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

16
Used e ???

So far, we have seen that a
reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

Up to you!

44

Splitting Policy
...
void *e = malloc(16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

24
Used e + pad

So far, we have seen that a
reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

A. Throw into allocation for e as extra padding? Internal fragmentation –
unused bytes because of padding

Up to you!

45

Splitting Policy
...
void *e = malloc(16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

16
Used e 0

Free

So far, we have seen that a
reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

A. Throw into allocation for e as extra padding?
B. Make a "zero-byte free block"? External fragmentation – unused free
blocks

Up to you!

46

Revisiting Our Goals
Questions we considered:
1. How do we keep track of free blocks? We use headers!
2. How do we choose an appropriate free block in which to place a newly

allocated block? We iterate through all blocks!
3. After we place a newly allocated block in some free block, what do we do

with the rest of the free block? We try to make the most of it!
4. What do we do with a block that has just been freed? We update its header!

47

Practice 1: Implicit (first-fit)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
first-fit approach?

void *b = malloc(8);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

24
Free

16
Free

8
Used A

48

Practice 1: Implicit (first-fit)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
first-fit approach?

void *b = malloc(8);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

24
Free

16
Free

8
Used A

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used B 8

Free
16

Free
8

Used A

49

Practice 2: Implicit (best-fit)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
best-fit approach?

void *b = malloc(8);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

24
Free

8
Free

8
Used A

50

Practice 2: Implicit (best-fit)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
best-fit approach?

void *b = malloc(8);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

24
Free

8
Free

8
Used A

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

24
Free

8
Used B 8

Used A

51

Final Assignment: Implicit Allocator
• Must have headers that track block information (size, status in-use or free) –

you must use the 8 byte header size, storing the status using the free bits (this
is larger than the 4 byte headers used in the textbook, as this makes it easier
to satisfy alignment constraints and store information in 64-bit systems).
• Must allow, when possible, free blocks to be recycled and reused for

subsequent malloc requests
• Must have a malloc implementation that searches the heap for free blocks via

its implicit list (i.e., traverses block-by-block).

• Does not need to coalesce free blocks.
• Does not need to support in-place realloc.

52

Coalescing
void *e = malloc(24); // returns NULL!

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

8
Free

8
Free

24
Used

You do not need to worry about this
problem for the implicit allocator, but this
is a requirement for the explicit allocator!
(More about this later).

53

Supporting In-Place Realloc
void *a = malloc(4);
void *b = realloc(a, 8);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Free

54

Supporting In-Place Realloc
void *a = malloc(4);
void *b = realloc(a, 8);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a +
pad

56
Free

Variable Value

a 0x18

55

Supporting In-Place Realloc
void *a = malloc(4);
void *b = realloc(a, 8);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used b 40

Free

Variable Value

a 0x10

b 0x28

The implicit allocator can always move memory to a new
location for a realloc request. The explicit allocator must
support in-place realloc (more on this later).

56

Summary: Implicit Allocator
An implicit allocator is a more efficient implementation that has reasonable
throughput and utilization.

Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse?
2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during ra?

