CS107, Lecture 22
Managing The Heap, Take |

Reading: B&0 9.9 and 9.11
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5687299

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

https://edstem.org/us/courses/65949/discussion/5687299

CS107 Topic 6: How do the
core malloc/realloc/free

memory-allocation
operations work?

How do malloc/realloc/free work?

Pulling together all our CS107 topics this quarter:
* Testing

* Efficiency

* Bit-level manipulation

* Memory management

* Pointers

* Generics

* Assembly

e And more...

Learning Goals

* Learn the restrictions, goals and assumptions of a heap allocator
* Understand the conflicting goals of utilization and throughput
* Learn about different ways to implement a heap allocator

Heap Allocator Requirements

A heap allocator must...

1. Handle arbitrary request sequences of allocations and frees

2. Keep track of what memory has been allocated and what memory is free
3. Decide which memory to use when fulfilling an allocation request

4. Respond to requests as quickly as possible

Heap Allocator Requirements

A heap allocator must...

N =

oW

Handle arbitrary request sequences of allocations and frees

Keep track of what memory has been allocated and what memory is free
Decide which memory to use when fulfilling an allocation request
Respond to requests as quickly as possible

A heap allocator cannot assume anything about the order of allocation
and free requests, or even that every allocation request is accompanied
by a matching free request.

Heap Allocator Requirements

A heap allocator must...

1.

2
3.
4

Handle arbitrary request sequences of allocations and frees

Keep track of what memory has been allocated and what memory is free
Decide which memory to use when fulfilling an allocation request
Respond to requests as quickly as possible

A heap allocator marks memory regions as allocated or available. It
must remember which is which to properly provide memory to clients.

Heap Allocator Requirements

A heap allocator must...

Handle arbitrary request sequences of allocations and frees

2. Keep track of what memory has been allocated and what memory is free
3. Decide which memory to use when fulfilling an allocation request
4. Respond to requests as quickly as possible

A heap allocator may have options for which memory to use to fulfill an
allocation request. It must decide this based on a variety of factors.

Heap Allocator Requirements

A heap allocator must...

1.

2.
3.
4

Handle arbitrary request sequences of allocations and frees

Keep track of what memory has been allocated and what memory is free
Decide which memory to use when fulfilling an allocation request
Respond to requests as quickly as possible

A heap allocator must respond immediately to allocation requests and
should not e.g., prioritize or reorder certain requests to improve
performance.

Heap Allocator Requirements

A heap allocator must...

i B

Handle arbitrary request sequences of allocations and frees

Keep track of what memory has been allocated and what memory is free
Decide which memory to use when fulfilling an allocation request
Respond to requests as quickly as possible

Return addresses that are 8-byte-aligned (must be multiples of 8).

10

Heap Allocator Goals

e Goal 1: Maximize throughput, or the number of requests completed per unit
of time. This means minimizing the average time to satisfy a request.

e Goal 2: Maximize utilization, or how efficiently we make use of the limited
heap memory to satisfy requests.

11

* The primary cause of poor utilization is fragmentation. Fragmentation occurs
when otherwise unused memory is not available to satisfy allocation requests.

* In this example, there is enough aggregate memory to satisfy the request, but
no single free block is large enough to satisfy it.

* In general: we want the largest address used to be as low as possible.

Allocator: I’'m sorry, |
don’t have a 4 byte block

Request 6: Hi! May |
please have 4 bytes of

heap memory? available...

ox10 ox11 ox12 ox13 ox14 ox15 ox16 ox17 ox18 ox19

Reqg. 1 Free Req. 2 Free Req. 3 Free Req. 4 Free Req. 5 Free

12

Question: what if we shifted these blocks down to make more space? Can we
do this?

A. YES, great ideal

B. YES, it can be done, but not a good idea for some reason (e.g., not
efficient use of time)

C. NQ, it can’t be done!

0x10 ox11 0x12 0x13 0x14 0x15 0x16 ox17 0x18 0x19

Reg.1 | Req.2 | Req.3 | Reg.4 | Req.5 Free

13

Question: what if we shifted these blocks down to make more space? Can we
do this?

* No - we have already shared these addresses to the client. We cannot move
allocated memory around, since doing so would invalidate the pointers held by
the client!

0x10 ox11 0x12 0x13 0x14 0x15 0x16 ox17 0x18 0x19

Reg.1 | Req.2 | Req.3 | Reg.4 | Req.5 Free

14

Fragmentation

* Internal Fragmentation: an allocated block is larger than what’s needed (e.g.,
due to minimum block size)

* External Fragmentation: no single block is large enough to satisfy an allocation
request, even though enough aggregate free memory is available

15

Heap Allocator Goals

e Goal 1: Maximize throughput, or the number of requests completed per unit
of time. This means minimizing the average time to satisfy a request.

* Goal 2: Maximize memory utilization, or how efficiently we make use of the
limited heap memory to satisfy requests.

These are seemingly conflicting goals —i.e., it may take longer to better plan out
heap memory use for each request.

Heap allocators must strike the right balance between the two.

16

Heap Allocator Goals

e Goal 1: Maximize throughput, or the number of requests completed per unit
of time. This means minimizing the average time to satisfy a request.

* Goal 2: Maximize memory utilization, or how efficiently we make use of the
limited heap memory to satisfy requests.

Other desirable goals:
Locality ("similar" blocks allocated close to each other)
Robust (handle client errors)
Ease of implementation/maintenance

17

Bump Allocator

Let’s say we want to prioritize throughput at all cost and not care about
utilization even one bit. This might even mean we not care about reusing
memory. How could we do this?

18

Bump Allocator Performance

1. Utilization 2. Throughput

Never reuses memory Ultra fast, short routines

Bump Allocator

* A bump allocator is an allocator that simply allocates the next available
memory address in response to an allocation request and does nothing in
response to free.

* Throughput: each malloc and free executes only a handful of instructions:
* It is easy to find the next location to use
* free does nothing!

 Utilization: we use each memory block at most once. No freeing at all, so no
memory is ever reused. ®

 We provide a bump allocator implementation as part of the final assignment
as a code reading exercise.

20

Bump Allocator

void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);

free(b);
void *d = malloc(8);
0x10 Ox14 Ox18 Ox1c Ox20 Ox24 Ox28 Ox2c Ox30 Ox34

AVAILABLE

21

Bump Allocator

void *a = malloc(8);
void *b = malloc(4); 5 0x10
void *c = malloc(24);

free(b);

void *d = malloc(8);

0x10 0x14 Ox18 Ox1lc 0x20 0x24 Ox28 Ox2c 0x30 0x34

a AVAILABLE

Bump Allocator

void *a = malloc(s);
void *b = malloc(4); 5 0x10
void *c = malloc(24);

free(b); b ox18
void *d = malloc(8);

0x10 0x14 0x18 Ox1c 0x20 0x24 0x28 OX2cC 0x30 0x34

a b + padding AVAILABLE

Bump Allocator

void *a = malloc(s);
void *b = malloc(4); 5 0x10
void *c = malloc(24);

free(b); b ox18
void *d = malloc(8); C 0x20

0x10 0x14 Ox18 Ox1lc 0x20 0x24 Ox28 Ox2c 0x30 0x34

a b + padding C

Bump Allocator

void *a = malloc(s);
void *b = malloc(4); 5 0x10
void *c = malloc(24);

free(b); b ox18
void *d = malloc(8); C 0x20

0x10 0x14 0x18 Ox1c 0x20 0x24 0x28 OX2cC 0x30 0x34

a b + padding C

Bump Allocator

void *a = malloc(s);
void *b = malloc(4); 5 0x10
void *c = malloc(24);
free(b); b ox18
void *d = malloc(8); C 0x20

d NULL
0x10 0x14 0x18 Ox1c 0x20 0x24 0x28 OX2cC 0x30 0x34

a b + padding C

26

Summary: Bump Allocator

A bump allocator is extreme—it optimizes only for throughput, not utilization.

* Better allocators strike a more reasonable balance to achieve acceptable and
even admirable levels for both. But how?

Questions to consider:
1. How do we keep track of free blocks?

2. How do we choose which free block to use to help satisfy an allocation
request?

3. After we choose an appropriate free block, what do we do with any excess
that isn’t needed?

4. What do we do with a block as it’s being freed?

27

Implicit Free List Allocator

* Key idea: in order to reuse blocks, we need a way to track which blocks are
allocated and which ones are free.

* We could store this information in a separate global data structure, but this is,
in general, inefficient and requires substantial overhead.

* Instead: let’s allocate extra space before each block for a header storing its
payload size and whether it's free or in use.

* When we allocate a block, we look through all blocks to find a free one and
update its header to reflect its allocation size and status.

* When we free a block, we update its header to be clear it's now free.
* The header should be 8 bytes (or larger).
* By storing header information, we’re implicitly maintaining a list of free blocks.

28

Implicit Free List Allocator

void *a = malloc(4);

void *b = malloc(8);

void *c = malloc(4);

free(b);

void *d = malloc(8);

free(a);

void *e = malloc(24);

0x10 Ox18 Ox20 Ox28 Ox30 Ox38 Ox40 Ox48 Ox50 Ox58

72

Free
P9

Implicit Free List Allocator

void *a = malloc(4);
void *b = malloc(8); - Ox18
void *c = malloc(4);

free(b);

void *d = malloc(8);

free(a);

void *e = malloc(24);

0x10 Ox18 0x20 Ox28 Ox30 Ox38 0x40 Ox48 Ox50 Ox58

8 a+ 56
Used pad Free

30

Implicit Free List Allocator

void *a = malloc(4);
void *b = malloc(8); - Ox18
void *c = malloc(4);
b 0x28
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);
0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58
8 a+ 8 b 40

Used pad Used Free

31

Implicit Free List Allocator

void *a = malloc(4);
void *b = malloc(8); 5 Ox18
void *c = malloc(4);
free(b); b Ox28
void *d = malloc(8); C 0x38
free(a);
void *e = malloc(24);

0x10 Ox18 Ox20 Ox28 Ox30 Ox38 Ox40 Ox48 Ox50 Ox58

8 a+ 8 b 8 c+ 24
Used pad Used Used pad Free

32

Implicit Free List Allocator

void *a = malloc(4);
void *b = malloc(8); 5 Ox18
void *c = malloc(4);
free(b); b Ox28
void *d = malloc(8); C 0x38
free(a);
void *e = malloc(24);

0x10 Ox18 Ox20 Ox28 Ox30 Ox38 Ox40 Ox48 Ox50 Ox58

8 a+ 8 b 8 c+ 24
Used pad Free Used pad Free .

Implicit Free List Allocator

void *a = malloc(4);
void *b = malloc(8); 5 Ox18
void *c = malloc(4);

free(b); b ox28
void *d = malloc(8); C 0x38
free(a); d 0x28
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8 a+ 8 q 8 c+ 24
Used pad Used Used pad Free .

Implicit Free List Allocator

void *a = malloc(4);
void *b = malloc(8); - Ox18
void *c = malloc(4);

free(b); ° oxz8
void *d = malloc(8); C Ox38
free(a); d Ox28

void *e = malloc(24);

0x10

0x18

0x20

0x28

0x30

0x38

0x40

0x48

0x50

Ox58

Free

a+
pad

8
Used

Used

C+
pad

24
Free

35

Implicit Free List Allocator

void *a = malloc(4);
void *b = malloc(8); 5 Ox18
void *c = malloc(4);
free(b); b ox28
void *d = malloc(8); C 0x38
free(a); d 0x28
void *e = malloc(24);
e 0x48

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8 a+ 8 q 8 c+ 24 o

Free pad Used Used pad Used .

Implicit Free List Allocator

void *a = malloc(4);
void *b = malloc(8); 5 Ox18
void *c = malloc(4);
free(b); b ox28
void *d = malloc(8); C 0x38
free(a); d 0x28
void *e = malloc(24);
e 0x48

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8 a+ 8 q 8 c+ 24 o

Free pad Used Used pad Used -

Representing Headers

How can we store both a size and a status (free versus allocated) in 8 bytes?

int for size, int for status? no! malloc/realloc use size_t for sizes!

Key idea: block sizes will always be multiples of 8.

 Least-significant 3 bits aren’t really needed to represent block size if they're
assumed to always be zeroes!

 Solution: use one of the 3 least-significant bits to store free/allocated status

38

Implicit Free List Allocator

* How can we choose a free block to use for an allocation request?
* First fit: search the list from beginning each time and choose first free block that fits.
* Next fit: instead of starting at the beginning, continue where previous search left off.
* Best fit: examine every free block and choose the one with the smallest size that fits.

* First fit/next fit easier to implement

* What are the pros/cons of each approach?

39

Implicit Free List Summary

For all blocks, Header (8B)
* Have a header that

stores size and status. 63 3 0
e Our list links all blocks, Block size @@ﬁ
allocated (A) and free (F).
alloc/free

Keeping track of free blocks:

* Improves memory utilization (vs bump allocator)

* Decreases throughput (worst case allocation request has O(A + F) time)
* Increases design complexity © (but compared to bump, it’s worth it)

40

Implicit free list header design

Should we store the block size as
(A) payload size, or
(B) header + payload size?

Up to you! | Your decision affects

how you traverse the list (but be
careful of off-by-one errors)

41

Splitting Policy

So far, we have seen that a
reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

void *e = malloc(16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0X50 0X58
8 a+ 8 q 8 c+ 24
Free pad Used Used pad Free "

Splitting Policy

So far, we have seen that a
reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

void *e = malloc(16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0X50 0X58
+ +
8 a 8 q 8 C 16 297
Free pad Used Used pad Used .

Splitting Policy

So far, we have seen that a

void *e = malloc(16); reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

A. Throw into allocation for e as extra padding? Internal fragmentation —
unused bytes because of padding

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0X50 0X58
8 a+ 8 8 c+ 24
d e + pad
Free pad Used Used pad Used »

Splitting Policy

So far, we have seen that a

void *e = malloc(16); reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

A. Throw into allocation for e as extra padding?

B. Make a "zero-byte free block"? External fragmentation — unused free
blocks

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0X50 0X58
8 a+ 8 q 8 c+ 16 o 0
Free pad Used Used pad Used Free <

Revisiting Our Goals

Questions we considered:

1.
2.

How do we keep track of free blocks? We use headers!

How do we choose an appropriate free block in which to place a newly
allocated block? We iterate through all blocks!

After we place a newly allocated block in some free block, what do we do
with the rest of the free block? We try to make the most of it!

What do we do with a block that has just been freed? We update its header!

46

Practice 1: Implicit (first-fit)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
first-fit approach?

0x10 ox18 Ox20 Ox28 0x30 0x38 Ox40 Ox48 Ox50 0Ox58
24 16 8 A
Free Free Used

void *b = malloc(8);

47

Practice 1: Implicit (first-fit)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
first-fit approach?

0x10 ox18 Ox20 Ox28 0x30 0x38 Ox40 Ox48 Ox50 0Ox58
24 16 8 A
Free Free Used

void *b = malloc(8);

0x10 ox18 Ox20 Ox28 0x30 0x38 Ox40 Ox48 Ox50 0Ox58
8 5 8 16 8 A
Used Free Free Used

48

Practice 2: Implicit (best-fit)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
best-fit approach?

ox10 ox18 Ox20 ox28 0x30 0x38 Ox40 Ox48 Ox50
24 8 8 A
Free Free Used

void *b = malloc(8);

49

Practice 2: Implicit (best-fit)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
best-fit approach?

Ox10 ox18 Ox20 Ox28 0x30 Ox38 Ox40 Ox48 Ox50
24 3 8 A
Free Free Used
void *b = malloc(8);
Ox10 ox18 Ox20 Ox28 0x30 Ox38 Ox40 Ox48 Ox50
24 8 8 A
Free Used Used

50

Final Assignment: Implicit Allocator

* Must have headers that track block information (size, status in-use or free) —
you must use the 8 byte header size, storing the status using the free bits (this
is larger than the 4 byte headers used in the textbook, as this makes it easier
to satisfy alignment constraints and store information in 64-bit systems).

* Must allow, when possible, free blocks to be recycled and reused for
subsequent malloc requests

* Must have a malloc implementation that searches the heap for free blocks via
its implicit list (i.e., traverses block-by-block).

* Does not need to coalesce free blocks.
* Does not need to support in-place realloc.

51

Coalescing

void *e = malloc(24); // returns NULL!

You do not need to worry about this

(More about this later).

problem for the implicit allocator, but this
is a requirement for the explicit allocator!

0x10 Ox18 0x20 Ox28 ©x30 Ox38 Ox40 OXx48 ©Xx50 OXx58
8 8 8 24
Free

Free Free Used

52

Supporting In-Place Realloc

void *a = malloc(4);

void *b = realloc(a, 8);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 Ox58

72
Free

b3

Supporting In-Place Realloc

void *a = malloc(4);
okl .

void *b = realloc(a, 8); 5 0x18

0x10 ox18 0x20 ox28 0x30 0x38 0x40 ox48 0x50 0x58
3 a+ 56

Used pad Free L,

Supporting In-Place Realloc

void *a = malloc(4);

LJ * — °
void *b = realloc(a, 8); . Ox10
b 0x28
The implicit allocator can always move memory to a new
location for a realloc request. The explicit allocator must
support in-place realloc (more on this later).
0x10 Ox18 0x20 Ox28 Ox30 Ox38 0x40 Ox48 Ox50 Ox58
8 a+ 8 40

Free pad Used b Free

b5

Summary: Implicit Allocator

An implicit allocator is a more efficient implementation that has reasonable
throughput and utilization.

Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse?
2. Can we merge adjacent free blocks to keep large spaces available?

3. Can we avoid always copying/moving data during ra?

56

