CS107, Lecture 23
Managing The Heap, Take Il

Reading: B&0 9.9 and 9.11
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5698811

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

https://edstem.org/us/courses/65949/discussion/5698811

Can We Do Better?

* It would be nice if we could jump just between free blocks, rather than all
blocks, to find a block to reuse.

* Idea: let’s modify each header to add a pointer to the previous free block and
a pointer to the next free block.

0x10 0x18 0x20 0x28 0x30 Ox38 0x40 0x48 0x50 Ox58 Ox60 Ox68

8 8 56
Free Used Free

Can We Do Better?

* It would be nice if we could jump just between free blocks, rather than all
blocks, to find a block to reuse.

* Idea: let’s modify each header to add a pointer to the previous free block and
a pointer to the next free block.

0x10 0x18 0x20 0x28 0x30 Ox38 0x40 Ox58 Ox60 Ox68

8
Free

null

0x50

8
Used

0x10

0x50

Free

0x10

null

Can We Do Better?

* It would be nice if we could jump just between free blocks, rather than all
blocks, to find a block to reuse.

* Idea: let’s modify each header to add a pointer to the previous free block and
a pointer to the next free block.

This is inefficient — it triples the size of every header,
when we just need to jump from one free block to
another. And even if we just made free headers bigger,
it’s complicated to have two different header sizes.

0x10 0x18 @XZ@ﬂZS 0x30 \@X38 @X4@’ 0x48 ;@XSG \@X58 0x60 Ox68

. null | Ox50 £ 0x10 | 0x50 £ 0x10 | null
Free Used Free

Can We Do Better?

* It would be nice if we could jump just between free blocks, rather than all
blocks, to find a block to reuse.

* Idea: let’s modify each header to add a pointer to the previous free block and
a pointer to the next free block. This is inefficient / complicated.

* Where can we put these pointers to the next/previous free block?
* Idea: In a separate data structure?

Can We Do Better?

* It would be nice if we could jump just between free blocks, rather than all
blocks, to find a block to reuse.

* Idea: let’s modify each header to add a pointer to the previous free block and
a pointer to the next free block. This is inefficient / complicated.

* Where can we put these pointers to the next/previous free block?

 Idea: In a separate data structure? More difficult to access in a separate place
— prefer storing near blocks on the heap itself.

Can We Do Better?

* Key Insight: the payloads of the free blocks aren’t being used, because they’re
free.

 Idea: since we only need to store these pointers for free blocks, let’s store
them in the first 16 bytes of each free block’s payload!

0x10 0x18 0x20 0x28 0x30 Ox38 0x40 0x48 0x50 Ox58 Ox60 Ox68

16 24 32
Free Used Free

Can We Do Better?

* Key Insight: the payloads of the free blocks aren’t being used, because they’re
free.

 Idea: since we only need to store these pointers for free blocks, let’s store

them in the first 16 bytes of each free block’s payload!

First free block

0x10

x10 ox18 Ox20 Ox28 Ox30 Ox38 Ox40 OX48 Ox50 Ox58 OX60 OX68
16 24 32

null 0x48 0x10 null
Free Used Free

Can We Do Better?

* Key Insight: the payloads of the free blocks aren’t being used, because they’re
free.

 Idea: since we only need to store these pointers for free blocks, let’s store
them in the first 16 bytes of each free block’s payload!

* This means each payload must be big enough to store 2 pointers (16 bytes).
So, we must require that for every free block and every allocated one as well.

0x10 0x18 0x20 0x28 0x30 Ox38 0x40 0x48 0x50 Ox58 Ox60 Ox68

16 24 32
Free null 0x48 Used Free 0x10 null

Explicit Free List Allocator

* This design builds on the implicit allocator, but also stores pointers to the next
and previous free block inside each free block’s payload.

* When we allocate a block, we look through just the free blocks using our linked
list to find a free one, and we update its header and the linked list to reflect its
allocated size and that it is now allocated.

* When we free a block, we update its header to reflect it is now free and
update the linked list.

This explicit list of free blocks increases
request throughput, with some costs
(design and internal fragmentation)

10

Explicit Free List: List Design

How do you want to organize your explicit free list?

(compare utilization/throughput) Up to you!
A. Address-order (each block’s address Better memory utilization,
is less than successor block’s address) Linear-time free
B. Last-in first-out (LIFO)/like a stack, where Constant free (push

newly freed blocks are at the beginning of the list recent block onto stack)

C. Other (e.g., by size, etc.) (more at end of lecture)

11

Explicit free list design

How do you want to organize your explicit free list?(utilization/throughput)

Address-order Better memory util, linear free

First free
block X10 Ox18 OXx20 X28 9x30 0x38 Ox40 @xm Ox58 OX60 OX68
16 24 32
1 I
\\\ Free null 0x48 Used Free 0x10 nu

Last-in first-out (LIFO) Constant free (push recent block onto stack)

0x70
Ox50 Ox58 OXx60 Ox68 70

First free

block

x10 ox18 ©ox2 ox30 @x3Wx4 ox48 Ox78 Ox80
-) N\ 6
16 16 16 16 1
1
Free 0x70 0x40 Used Free 0x10 null Used Free null O\X 0

Other (e.g., by size, etc.) (see textbook)

12

Implicit vs. Explicit: So Far

Implicit Free List

* 8B header for size + alloc/free status

* Allocation requests are worst-case
linear in total number of blocks

* Implicitly address-order

Explicit Free List
* 8B header for size + alloc/free status

* Free block payloads store prev/next
free block pointers

* Allocation requests are worst-case
linear in number of free blocks

* Can choose block ordering

13

Revisiting Our Goals

Can we do better?

1. Can we avoid searching all blocks for free blocks to reuse? Yes! We can use
a doubly-linked list.

2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during realloc?

14

Revisiting Our Goals

Can we do better?

1. Can we avoid searching all blocks for free blocks to reuse? Yes! We can use
a doubly-linked list.

2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during realloc?

15

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);

free(b);
free(a);
void *d = malloc(32);
0x10 Ox18 0x20 Ox28 Ox30 Ox38 0x40 Ox48 Ox50
64

Free
16

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);
0x10 Ox18 0x20 Ox28 Ox30 Ox38 0x40 Ox48 Ox50
16 40
Used 3+ pad Free

17

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);

free(b);
free(a);
void *d = malloc(32);
0x10 Ox18 0x20 Ox28 Ox30 Ox38 0x40 Ox48 Ox50
16 16 16
Used 3+ pad Used b+ pad Free o

Coalescing

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 Ox18 Ox20 Ox28 Ox30 Ox38 0x40 Ox48 Ox50

16 16 16
Used a+pad Used b+ pad Used ‘ o

Coalescing

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 Ox18 0x20 Ox28 Ox30 Ox38 0x40 Ox48 Ox50

16 16 16
Used 3+ pad Free b+ pad Used ¢ 2

Coalescing

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 Ox18 0x20 Ox28 Ox30 Ox38 0x40 Ox48 Ox50

16 16 16
Free 3+ pad Free b+ pad Used ¢ .

Coalescing

i 4 ka — .
vold *a malloc(8); We have enough memory space, but
void *b = malloc(8); it is fragmented into free blocks
void *c = malloc(16); sized from earlier requests!
free(b);
free(a); We'd like to be able to merge
void *d = malloc(32); adjacent free blocks back together.

- ; .
How can we do this?
0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50
16 16 16
Free 3+ pad Free b + pad Used ¢

22

Coalescing

void *a = malloc(8);

void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);

void *d = malloc(32
Hey, look! | have a free

right neighbor. Let’s be

friends! ©
Ox28 Ox30 Ox38 Ox40 Ox48 OXx50

16 16 16

Free a+ pad Free b + pad Used ¢

23

Coalescing

void *a = malloc(8);

void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);

void *d = malloc(32
Hey, look! | have a free

right neighbor. Let’s be

friends! ©
Ox28 Ox30 Ox38 Ox40 Ox48 OXx50

40 16
Free Used

24

Coalescing

void *a = malloc(8); The process of combining adjacent
void *b = malloc(8); free blocks is called coalescing.
void *c = malloc(16); e r

For your explicit heap allocator, you
free(b); :)

(b); should coalesce, if possible, when a
free(a); block is freed. You only need to
void *d = malloc(32); coalesce the most immediate right

neighbor.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

40 16

Free Used

25

Practice 1: Explicit (coalesce)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free?

ox10 ox18 0x20 Ox28 0x30 0x38 Ox40 Ox48 Ox50 Ox58
24 B 16 16 A
Used Free Used

free(b);

26

Practice 1: Explicit (coalesce)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free?

ox10 ox18 0x20 Ox28 0x30 0x38 Ox40 Ox48 Ox50 0x58
24 B 16 16 A
Used Free Used
free(b);
0x10 ox18 Ox20 Ox28 0x30 0x38 Ox40 Ox48 Ox50 0x58
48 16

Free Used

27

Revisiting Our Goals

Can we do better?

1. Can we avoid searching all blocks for free blocks to reuse? Yes! We can use
a doubly-linked list.

2. Can we merge adjacent free blocks to keep large spaces available? Yes! We
can try to right-coalesce when calling free.

3. Can we avoid always copying/moving data during realloc?

28

Revisiting Our Goals

Can we do better?

1. Can we avoid searching all blocks for free blocks to reuse? Yes! We can use
a doubly-linked list.

2. Can we merge adjacent free blocks to keep large spaces available? Yes! We
can try to right-coalesce when calling free.

3. Can we avoid always copying/moving data during realloc?

29

ReallocC

* For the implicit allocator, we didn’t worry much about realloc. We always
moved data when they requested a different amount of space.
* Note: realloc can grow or shrink the data size.

* But sometimes we may be able to keep the data in the same place. How?
e Case 1:size is growing, but we added padding to the block and can use that
e Case 2:size is shrinking, so we can use the existing block
» Case 3:size is growing, and current block isn’t big enough, but adjacent blocks are free.

30

Realloc: Growing In Place

void *a = malloc(42); a’s earlier request was too small, so
we added padding. Now they are
void *b = realloc(a, 48); requesting a larger size we can

satisfy with that padding! So realloc
can return the same address.

ox10 ox18 Ox20 Ox28 0x30 0x38 Ox40 Ox48 Ox50 0x58
48 2 + pad 16
Used Free .

Realloc: Growing In Place

void *a = malloc(42); If a realloc is requesting to shrink,
we can still use the same starting
void *b = realloc(a, 16); address.

If we can, we should try to recycle
the now-freed memory into another

freed block.
0x10 0x18 Ox20 0x28 0x30 0x38 ox40 ox48 ox50 Ox58
48 2 + pad 16
Used P Free -

Realloc: Growing In Place

void *a = malloc(42); If a realloc is requesting to shrink,
we can still use the same starting
void *b = realloc(a, 16); address.

If we can, we should try to recycle
the excess memory into another

freed block.
0x10 0x18 Ox20 0x28 0x30 0x38 ox40 ox48 ox50 Ox58
16 24 16

Used Free Free .

Realloc: Growing In Place

void *a = malloc(42); Even with the padding, we don’t
have enough space to satisfy the
void *b = realloc(a, 72); larger size. But we have an adjacent
neighbor that is free — let’s team up!
0x10 0x18 0x20 Ox28 0x30 Ox38 0x40 0x48 0x50 Ox58
48 16
Used 3+ pad Free

34

Realloc: Growing In Place

void *a = malloc(42); Even with the padding, we don’t
have enough space to satisfy the
void *b = realloc(a, 72); larger size. But we have an adjacent

neighbor that is free — let’s team up!

Now we can still return the same
address.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Used

35

Realloc: Growing In Place

void *a = malloc(8); For your project, you should
combine with your right neighbors
void *b = realloc(a, 72); as much as possible until we get
enough space, or until we know we
cannot get enough space.

ox10 ox18 Ox20 Ox28 0x30 0x38 Ox40 Ox48 Ox50 0x58
16 2 + pad 16 24
Used P Free Free 36

Realloc: Growing In Place

void *a = malloc(8); For your project, you should
combine with your right neighbors
void *b = realloc(a, 72); as much as possible until we get
enough space, or until we know we
cannot get enough space.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

40 24
Used Free

37

Realloc: Growing In Place

void *a = malloc(8); For your project, you should
combine with your right neighbors
void *b = realloc(a, 72); as much as possible until we get
enough space, or until we know we
cannot get enough space.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Used

a

38

Practice 1: Explicit (realloc)

For the following heap layout, what would the heap look like after the following

request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

ox10 ox18 Ox20 Ox28 0x30 0x38 Ox40 Ox48 Ox50 0x58 OX60
16 A 32 16 5
Used Free Used

realloc(A, 24);

39

Practice 1: Explicit (realloc)

For the following heap layout, what would the heap look like after the following

request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

ox10 ox18 Ox20 Ox28 0x30 0x38 Ox40 Ox48 Ox50 0x58 OX60
16 A 32 16 5
Used Free Used

realloc(A, 24);
0x10 0x18 0x20 Ox28 0x30 0x38 0x40 0x48 Ox50 Ox58 0x60

24 24 16
Used A Free Used B

Practice 2: Explicit (realloc)

For the following heap layout, what would the heap look like after the following

request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

ox10 ox18 Ox20 Ox28 0x30 0x38 Ox40 Ox48 Ox50 0x58 OX60
16 A 32 16 5
Used Free Used

realloc(A, 56);

41

Practice 2: Explicit (realloc)

For the following heap layout, what would the heap look like after the following

request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

ox10 ox18 Ox20 Ox28 0x30 0x38 Ox40 Ox48 Ox50 0x58 OX60
16 A 32 16 5
Used Free Used

realloc(A, 56);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 Ox58 0x60

56 16
Used A Used B

Practice 3: Explicit (realloc)

For the following heap layout, what would the heap look like after the following

request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

ox10 ox18 Ox20 Ox28 0x30 0x38 Ox40 Ox48 Ox50 0x58 OX60
16 A 32 16 5
Used Free Used

realloc(A, 48);

43

Practice 3: Explicit (realloc)

For the following heap layout, what would the heap look like after the following

request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

ox10 ox18 Ox20 Ox28 0x30 0x38 Ox40 Ox48 Ox50 0x58 OX60
16 A 32 16 5
Used Free Used

realloc(A, 48);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 Ox58 0x60

56 16
Used A Used B

Practice 3: Explicit (realloc)

For the following heap layout, what would the heap look like after the following

request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

ox1e exi8 ox20 ex28 ox3e ox38 For the explicit allocator, note that
16 A 32 we can’t have payload less than 16
Used Free bytes, so here the only option for
the leftover 8 bytes is to use it as
realloc(A, 48); padding for the existing block.
0x10 Ox18 0x20 Ox28 Ox30 Ox38 0x40 0x48 Ox50 Ox58 0x60
56 A 16 3

Used Used

Going beyond: Explicit list w/size buckets

* Explicit lists are much faster than implicit lists.
 However, a first-fit placement policy is still linear in total # of free blocks.
 What about an explicit free list sorted by size (e.g., as a tree)?

 What about several explicit free lists bucketed by size? (below) Heap

memory

>
»

Heap metadata

/ »
small ///////”

medium

vi

large
jumbo

Read B&O Section 9.9.14!

46

In the wild: glibc allocator

e https://sourceware.org/glibc/wiki/MallocInternals

In-use Chunk
mchunkptr —»| prev_size A = Allocated Arena
[size | AMP< M= Mmap'd
returned P = prev in use
by malloc
chunk < payload
\
size AMP| P=1

Free Chunk

mchunkptr —»| prev_size
size | AMP
o fwd
o bck
s| | fd_nextsize
chunk < bk_nextsize
@ \| prev_size
size AMP

/

Footer/Boundary tag (see textbook)

Yy 7

A = Allocated Arena
M= Mmap'd —
P =previn use -

} large chunks only

—» same as Size
P=0

47

https://sourceware.org/glibc/wiki/MallocInternals

Final Assignment: Explicit Allocator

* Must have headers that track block information like in implicit (size, status in-
use or free) — you can copy from your implicit version

* Must have an explicit free list managed as a doubly-linked list, using the first
16 bytes of each free block’s payload for next/prev pointers.

* Must have a malloc implementation that searches the explicit list of free
blocks.

* Must coalesce a free block in free() whenever possible with its immediate right
neighbor.

* Must do in-place realloc when possible. Even if an in-place realloc is not
possible, you should still absorb adjacent right free blocks as much as possible
until you either can realloc in place or can no longer absorb and must realloc

elsewhere.
48

