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* Processor speed is not the only bottleneck in program performance — memory
access is perhaps even more of one!

 Memory exists in levels and goes from really fast (registers) to really slow

(disk).

* As data is more frequently used, it ends up in faster and faster memory.
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All caching depends on locality.

Temporal locality

* Repeat access to the same data tends to be co-located in time

* Intuitively: things | have used recently, | am likely to use again soon

Spatial locality
* Related data tends to be co-located in space

* Intuitively: data that is near a used item is more likely to also be accessed



All caching depends on locality.

Realistic scenario:

* 97% cache hit rate

* Cache hit costs 1 cycle

e Cache miss costs 100 cycles

* How much of your memory access time is spent on the 3% of accesses that are
cache misses?



Demo: cache.c




Optimizing Your Code

* Explore various optimizations you can make to your code to reduce instruction
count and runtime.
* More efficient Big-O for your algorithms

* Explore other ways to reduce instruction count

* Look for hotspots using callgrind
* Optimize using —02
* And more...



* What is optimization? Lecture 24 and 25 takeaways:

* GCC Optimization Compilers can apply various

* Limitations of GCC Optimization optimizations to make our code

* Caching more efficient, without us having

to rewrite code. However, gcc can
only do so much! Sometimes we
must optimize ourselves, using
tools like callgrind and writing
12/2: wrap up code to optimally leverage the
cache hierarchy.




