
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License.  All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

CS107, Lecture 25
Optimization, Caching, Writing Cache-Friendly Code

Reading: B&O 5
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5752808

https://edstem.org/us/courses/65949/discussion/5752808


2

Caching
• Processor speed is not the only bottleneck in program performance – memory 

access is perhaps even more of one!
• Memory exists in levels and goes from really fast (registers) to really slow 

(disk).
• As data is more frequently used, it ends up in faster and faster memory.



3

Caching
All caching depends on locality.

Temporal locality
• Repeat access to the same data tends to be co-located in time
• Intuitively: things I have used recently, I am likely to use again soon 

Spatial locality
• Related data tends to be co-located in space
• Intuitively: data that is near a used item is more likely to also be accessed



4

Caching
All caching depends on locality.

Realistic scenario:
• 97% cache hit rate
• Cache hit costs 1 cycle
• Cache miss costs 100 cycles
• How much of your memory access time is spent on the 3% of accesses that are 

cache misses?



5

Demo: cache.c



6

Optimizing Your Code
• Explore various optimizations you can make to your code to reduce instruction 

count and runtime.
• More efficient Big-O for your algorithms
• Explore other ways to reduce instruction count

• Look for hotspots using callgrind
• Optimize using –O2
• And more…



7

Recap
• What is optimization?
• GCC Optimization
• Limitations of GCC Optimization
• Caching

12/2: wrap up

Lecture 24 and 25 takeaways: 
Compilers can apply various 
optimizations to make our code 
more efficient, without us having 
to rewrite code.  However, gcc can 
only do so much! Sometimes we 
must optimize ourselves, using 
tools like callgrind and writing 
code to optimally leverage the 
cache hierarchy.


