CS107, Lecture 25
Optimization, Caching, Writing Cache-Friendly Code

Reading: B&O 5
Ed Discussion: https://edstem.org/us/courses/65949/discussion/5752808

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

https://edstem.org/us/courses/65949/discussion/5752808

* Processor speed is not the only bottleneck in program performance — memory
access is perhaps even more of one!

 Memory exists in levels and goes from really fast (registers) to really slow

(disk).

* As data is more frequently used, it ends up in faster and faster memory.

L1
I-cache

CPU

Reg

32 KB

L1
D-cache

Throughput: 16 B/cycle

Latency:

3 cycles

256KB

L2
cache

8MB

8 B/cycle
14 cycles

I3
cache

4 Bl/cycle
40 cycles

32GB

Main
Memory

2 B/cycle
100 cycles

1 B/30 cycles
millions

1TB

Disk

All caching depends on locality.

Temporal locality

* Repeat access to the same data tends to be co-located in time

* Intuitively: things | have used recently, | am likely to use again soon

Spatial locality
* Related data tends to be co-located in space

* Intuitively: data that is near a used item is more likely to also be accessed

All caching depends on locality.

Realistic scenario:

* 97% cache hit rate

* Cache hit costs 1 cycle

e Cache miss costs 100 cycles

* How much of your memory access time is spent on the 3% of accesses that are
cache misses?

Demo: cache.c

Optimizing Your Code

* Explore various optimizations you can make to your code to reduce instruction
count and runtime.
* More efficient Big-O for your algorithms

* Explore other ways to reduce instruction count

* Look for hotspots using callgrind
* Optimize using —02
* And more...

* What is optimization? Lecture 24 and 25 takeaways:

* GCC Optimization Compilers can apply various

* Limitations of GCC Optimization optimizations to make our code

* Caching more efficient, without us having

to rewrite code. However, gcc can
only do so much! Sometimes we
must optimize ourselves, using
tools like callgrind and writing
12/2: wrap up code to optimally leverage the
cache hierarchy.

