CS107, Lecture 26
Wrap-Up / What’s Next?

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

We've covered a lot in just
10 weeks! Let’s be
nostalgic.

Our CS107 Journey

Arrays
Bits and and Heap
Bytes Pointers Generics Allocators
C Strings Stack and Assembly

Heap

Course Overview

Bits and Bytes - How can a computer represent integer numbers?

. Characters and C Strings - How can a computer represent and manipulate
more complex data types like text?

Pointers, Stack Memory and Heap Memory — How can we effectively
manage all forms of memory in our programs?

. Generics - How can we tap our knowledge of computer memory and data
representation to write code that works with any data type?

. Assembly - How does a computer compile, interpret, and execute C
programs? And what does assembly code look like?

Heap Allocators - How do core memory-allocation operations
like malloc and free work? Are the built-in versions always good enough?

First Day

* hello.c

* This program prints a welcome message
* to the user.

*/
#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

First Day

The command-line is a text-based interface to navigate a computer, instead of a
Graphical User Interface (GUI).

% Dropbox
@ AirDrop
@ Recents
A Applications
= Desktop
@® Downloads

E] Creative Cloud Files

< iCloud Drive
(= Desktop

[% Documents

£ lectures

01

05

FaYel

0D A = [NON) {7 lectures — -bash — 83x22
00 v goo ¥ » Q
Last login: Sun Sep 25 15:47:49 on ttys000
Welcome, Jerry!
Jerrys-MacBook-Pro-2:~ jerry$ cd Desktop/csl07/WWW/lectures/01/
[N [N [N Jerrys-MacBook-Pro-2:01 jerry$ ls
Lecture(l.pdf Lecture(l.pptx
Jerrys-MacBook-Pro-2:01 jerry$ cd ..
- Jerrys-MacBook-Pro-2:lectures jerry$ ls
02 03 04 01 03 05 07 09 11 13 15 17
02 04 06 08 10 12 14 16
Jerrys-MacBook-Pro-2:lectures jerrys [|
[, [, [,
06 07 08
— - ——

Graphical User Interface

Text-based interface

Bits And Bytes

Key Question: How can a computer represent integer numbers?

0000

1111 0001

1110 0010

1101 0011

4-bit

two's complement
signed integer

representation

1100 0100

Bits And Bytes

Why does this matter?
* Limitations of representation and arithmetic impact programs!

* We can also efficiently manipulate data using bits.
000000 007650

PSY - GANGNAM STYLE (s AEHY) MV

officialpsy
g D sivscroe -2142584554

+ < & o

Key Question: How can a computer represent and manipulate more complex
data like text?

 Strings in C are arrays of characters ending with a null terminator!

* We can manipulate them using pointers and C library functions (many of which
you could probably implement).

index
va/ue lHI lel lll Ill lol I)l 1 1 IWI IOI lr‘l lll ldl l!l l\el

Why does this matter?

* Understanding this representation is key to efficient string manipulation.

* This is how strings are represented in both low- and high-level languages!
e C++: https://www.quora.com/How-does-C++-implement-a-string
* Python: https://www.laurentluce.com/posts/python-string-objects-implementation/

10

https://www.quora.com/How-does-C++-implement-a-string
https://www.laurentluce.com/posts/python-string-objects-implementation/

Pointers, Stack and Heap

Key Question: How can we effectively manage all types of memory in our
programs?

e Arrays let us store ordered lists of information.
* Pointers let us pass addresses of data instead of the data itself.

* We can use the stack, which cleans up memory for us, or the heap, which we
must manually manage.

STACK
Address Value

X ©Ox1fo 2

main()

—
—

myFunc() intPtr 0x16

11

Stack And Heap

Why does this matter?

* The stack and heap allow for two ways to store data in
our programs, each with their own tradeoffs, and it’s

crucial to understand the nuances of managing memory
in any program you write!

* Pointers let us pass around references to data efficiency

Ox7ffffffff000
x Stack 8MB
‘ reserved

0x7ffff7ffe000 | Shared library Sized for
text/data library

1 Grows on

Heap demand
0x602010

0x600000 Global data Sized for

executable

Text
0x400000 (machine code)

Low addresses
deliberately unmapped

12

Key Question: How can we use our knowledge of memory and data
representation to write code that works with any data type?

* We can use void * to circumvent the type system, memcpy, etc. to copy
generic data, and function pointers to pass logic around.

Why does this matter?
* Working with any data type lets us write more generic, reusable code.

* Using generics helps us better understand the type system in C and other
languages, and where it can help and hinder our program.

13

Assembly Language

Key Question: How does a computer interpret and execute C programs?

* GCC compiles our code into machine code instructions executable by our
processor.

e Our processor uses registers and instructions like mov to manipulate data.

14

Assembly Language

Why does this matter?

We write C code because it is higher level
and transferrable across machines. Butitis
not the representation executed by the
computer!

Understanding how programs are compiled
and executed, as well as computer
architecture, is key to writing performant
programs (e.g. fewer lines of code is not
necessarily better).

We can reverse engineer and (ethically!)
exploit programs at the assembly level!

CPU
Register file
PC l ALU
— | System bus Memory bus
K [E r | ”»
L W RN 170 Main hello, world\n
| bridge memory|l code
I/0 bus -J D D ,
Expansion slots for
. other devices such
usB Graphics Disk as network adapters
controller adapter | controller
- 1
s i
Mouse Keyboard Display (B

— | hello executable
Disk | stored on disk

15

Heap Allocators

Key Question: How do core memory-allocation operations
like malloc and free work?

* A heap allocator manages a block of memory for the heap and completes
requests to use or give up memory space.

 We can manage the data in a heap allocator using headers, pointers to free
blocks, or other designs

Why does this matter?

* Designing a heap allocator requires making many design decisions to optimize
it as much as possible. There is no perfect design!

* All languages have a "heap" but manipulate it in different ways.

16

Ethics, Privacy, Partiality and Trust

Key Question: How do we act responsibly in maintaining security, protecting
privacy, and ensuring warranted trust in the systems we build and maintain?

Why does this matter?

* Responsible programming involves documentation—including informative
error messages!—that allows others to evaluate the reliability of your code.

* Responsible system and program design requires choosing a trust model and
considering data privacy. This might also require deciding to whom to be
partial.

17

Our CS107 Journey

Arrays
Bits and and Heap
Bytes Pointers Generics Allocators
C Strings Stack and Assembly

Heap

18

CS107 Learning Goals

The goals for C5107 are for students

to acquire a fluency with
* pointers and memory and how to make use of them when writing C code
* an executable’s address space and runtime behavior
to acquire competency with
* the translation of C to and from assembly code
the implementation of programs that respect the limits of computer arithmetic
the ability to identify bottlenecks and improve runtime performance
the ability to navigate your own Unix development environment
the ethical frameworks you need to better design and implement software
and to have some exposure to
* the basics of computer architecture

19

The C Coding Experience

https://www.youtube.com/watch?v=G7LJCOvJIuU

20

https://www.youtube.com/watch?v=G7LJC9vJluU

Tools and Techniques

 Unix and the command line

* Coding Style

* Debugging (gdb)

 Testing (sanitycheck)
 Memory Checking (valgrind)
* Profiling (callgrind)

21

Unix And The Command Line

Unix and command line tools are extremely popular tools outside of CS107 for:

* Running programs (web servers, python programs, remote programs...)
* Accessing remote servers (Amazon Web Services, Microsoft Azure, Heroku...)

* Programming embedded devices (Raspberry Pi, etc.)

Our goal for CS107 was to help you become proficient in navigating Unix

22

Coding Style

* Writing clean, readable code is crucial for any computer science project

* Unfortunately, a fair amount of existing code is poorly-designed/documented

Our goal for CS107 was to help you write with good coding style and
read/understand/comment provided code.

23

Debugging (GDB)

* Debugging is a crucial skill for any computer scientist

e Qur goal for CS107 was to help you become a better debugger
* narrow in on bugs
* diagnose the issue
* implement a fix

* Practically every project you work on will have debugging facilities
* Python: pdb
* |IDEs: built-in debuggers (e.g., QT Creator, Eclipse, XCode, Visual Studio)
* Web development: in-browser debugger

24

Testing (sanitycheck)

 Testing is a crucial skill for any computer scientist

e Qur goal for CS107 was to help you become a better tester
* Writing targeted tests to validate correctness
* Use tests to prevent or quickly identify and triage regressions
* Use tests to develop incrementally

25

Memory Validation and Profiling

* Memory checking and profiling are crucial for any computer scientist to
analyze program performance and increase efficiency.

* Many projects you work on will have profiling and memory analysis facilities:
* Mobile development: integrated tools (XCode Instruments, Android Profiler, etc.)
* Web development: in-browser tools

26

Tools

You’ll see manifestations of these tools throughout projects you work on. We
hope you can use your CS107 knowledge to take advantage of them!

Choose a profiling template for: j iPhone XR (12.1) > CS107

Custom Recent
.‘ ﬁ

Blank Activity Monitor Allocations Core Animation Core Data Counters

i
E
&
m @

Energy Log File Activity Game Leaks Metal System Network
Performance Trace
a

SceneKit System Trace System Usage Time Profiler Zombies

Time Profiler
Performs low-overhead time-based sampling of processes running on the system's CPUs.

27

* C Language

* Bit-Level Representations
* Arrays and Pointers

* Memory Management

* Generics

* Assembly

* Allocators

28

Systems

How can we write programs to execute many tasks simultaneously? (take CS111!)
* Threads of execution
 Locks to prevent simultaneous access

How is a compiler implemented? (take CS143!)
* Lexical analysis

* Parsing

e Semantic Analysis

* Code Generation

How can applications communicate over a network? (take CS144!)
* How can we weigh different tradeoffs of network architecture design?
* How can we effectively transmit bits across a network?

29

Systems

How is an operating system implemented? (take CS111/CS112/CS212!)
* Threads

* User Programs

* Virtual Memory

* Filesystem

30

Machine Learning

Can we speed up machine learning training with reduced precision
computation?

e https://www.top500.org/news/ibm-takes-aim-at-reduced-precision-for-new-
generation-of-ai-chips/

e https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/

How can we implement performant machine learning libraries?
* Popular tools such as TensorFlow and PyTorch are implemented using C!
* https://pytorch.org/blog/a-tour-of-pytorch-internals-1/

e https://www.tensorflow.org/guide/extend/architecture

31

https://www.top500.org/news/ibm-takes-aim-at-reduced-precision-for-new-generation-of-ai-chips/
https://www.top500.org/news/ibm-takes-aim-at-reduced-precision-for-new-generation-of-ai-chips/
https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/
https://pytorch.org/blog/a-tour-of-pytorch-internals-1/
https://www.tensorflow.org/guide/extend/architecture

Web Development

How can we efficiently translate JavaScript code to machine code?

 The Chrome V8 JavaScript engine converts JavaScript into machine code for
computers to execute: https://medium.freecodecamp.org/understanding-the-
core-of-nodejs-the-powerful-chrome-v8-engine-79e7eb8af964

* The popular nodejs web server tool is built on top of Chrome V8

How can we compile programs into an efficient binary instruction format that
runs in a web browser?

* WebAssembly is an emerging standard instruction format that runs in
browsers: https://webassembly.org

* You can compile C/C++/other languages into WebAssembly for web execution

32

https://medium.freecodecamp.org/understanding-the-core-of-nodejs-the-powerful-chrome-v8-engine-79e7eb8af964
https://medium.freecodecamp.org/understanding-the-core-of-nodejs-the-powerful-chrome-v8-engine-79e7eb8af964
https://webassembly.org/
https://blog.chromium.org/2019/06/webassembly-brings-google-earth-to-more.html

Programming Languages / Runtimes

How can programming languages and runtimes efficiently manage memory?
* Manual memory management (C/C++)

» Reference Counting (Swift)

» Garbage Collection (Java)

How can we design programming languages to reduce the potential for
programmer error? (take C5242!)

* Haskell/Swift 'optionals'

How can we design portable programming languages?

e Java Bytecode: https://en.wikipedia.org/wiki/Java bytecode -

https://en.wikipedia.org/wiki/Java_bytecode

How can compilers output efficient
machine code instructions for
programs? (take CS143!)

e Languages can be represented as
regular expressions and context-free
grammars, and programs can be
represented as tree structures.

 We can model programs as control-
flow graphs for additional
optimization

while return
condition
compare variable
op: = body name: a
variable constant
branch
name: b value: 0
condition if-body else-body
[assign assign
op: > 9 g

/SN SN N

variable| variable

name: a name: b

variable
name: a

bin op
op: —

variable
name: b

bin op
op: —

/N N

variable
name: a

variable| variable
name: b name: b

variable
name: a

34

Security

How can we find / fix vulnerabilities at various levels in our programs? (take
CS155!)

e Understand machine-level representation and data manipulation
* Understand how a computer executes programs

* macOS High Sierra Root Login Bug: https://objective-
see.com/blog/blog 0x24.html

How can we ensure that our systems and networks are secure? (take CS155!)

How can we design internet services worthy of our trust? (take CS152!)

35

https://objective-see.com/blog/blog_0x24.html
https://objective-see.com/blog/blog_0x24.html

Ethics, Privacy, Partiality and Trust

How can we recognize ethically important decisions as they arise? What
policies ought we to adopt to address these issues? (take CS 181!)

Why is privacy important? What technical and policy standards should we
strive for to protect privacy? (take CS 182!)

36

After CS107, you are
prepared to take a variety
of classes in various areas.

What are some options?

Systems

Where Are We?

We are here

Cs 103

Mathematical
Foundations of
Computing

\ 4

CS 109

Intro to Probability
for Computer
Scientists

A 4

CS 161

Design and Analysis
of Algorithms

Aioay)

38

* How can programs perform multiple tasks

concurrently and share resources between those)-8
taS kS? Jerry Cain David Mazieres

 How does every program think it has access to all

-

memory addresses If It needs them? NickTrocfoIi John Ousteout

* How can we implement a filesystem to store
persistent data? Process

Time

39

CS112:
CS212:
CS143:
CS144:
CS145:
CS149:
CS152:
CS155:

Other Courses

Operating Systems Project
Operating Systems
Compilers

Networking

Databases

Parallel Programming

Trust and Safety Engineering

Computer and Network Security

CS181: Computers, Ethics, and Public Policy

CS182: Ethics, Public Policy, and Technological
Change

CS229S: Systems for Machine Learning
CS246: Mining Massive Datasets
EE108: Digital Systems Design

EE180: Digital Systems Architecture

40

Thank you!

