
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

CS107, Lecture 26
Wrap-Up / What’s Next?

2

We’ve covered a lot in just
10 weeks! Let’s be

nostalgic.

3

Our CS107 Journey

Bits and
Bytes

C Strings

Arrays
and

Pointers

Stack and
Heap

Generics

Assembly

Heap
Allocators

4

Course Overview
1. Bits and Bytes - How can a computer represent integer numbers?
2. Characters and C Strings - How can a computer represent and manipulate

more complex data types like text?
3. Pointers, Stack Memory and Heap Memory – How can we effectively

manage all forms of memory in our programs?
4. Generics - How can we tap our knowledge of computer memory and data

representation to write code that works with any data type?
5. Assembly - How does a computer compile, interpret, and execute C

programs? And what does assembly code look like?
6. Heap Allocators - How do core memory-allocation operations

like malloc and free work? Are the built-in versions always good enough?

5

First Day
/*
* hello.c
* This program prints a welcome message
* to the user.
*/

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

}

6

First Day
The command-line is a text-based interface to navigate a computer, instead of a
Graphical User Interface (GUI).

Graphical User Interface Text-based interface

7

Bits And Bytes
Key Question: How can a computer represent integer numbers?

8

Bits And Bytes
Why does this matter?
• Limitations of representation and arithmetic impact programs!
• We can also efficiently manipulate data using bits.

9

C Strings
Key Question: How can a computer represent and manipulate more complex
data like text?
• Strings in C are arrays of characters ending with a null terminator!
• We can manipulate them using pointers and C library functions (many of which

you could probably implement).

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

value 'H' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

10

C Strings
Why does this matter?
• Understanding this representation is key to efficient string manipulation.
• This is how strings are represented in both low- and high-level languages!

• C++: https://www.quora.com/How-does-C++-implement-a-string
• Python: https://www.laurentluce.com/posts/python-string-objects-implementation/

https://www.quora.com/How-does-C++-implement-a-string
https://www.laurentluce.com/posts/python-string-objects-implementation/

11

Pointers, Stack and Heap
Key Question: How can we effectively manage all types of memory in our
programs?
• Arrays let us store ordered lists of information.
• Pointers let us pass addresses of data instead of the data itself.
• We can use the stack, which cleans up memory for us, or the heap, which we

must manually manage.

Address Value
…

0x1f0 2
…

0x10 0x1f0
…

x

intPtr

main()

myFunc()

STACK

12

Stack And Heap
Why does this matter?
• The stack and heap allow for two ways to store data in

our programs, each with their own tradeoffs, and it’s
crucial to understand the nuances of managing memory
in any program you write!
• Pointers let us pass around references to data efficiency

13

Generics
Key Question: How can we use our knowledge of memory and data
representation to write code that works with any data type?
• We can use void * to circumvent the type system, memcpy, etc. to copy

generic data, and function pointers to pass logic around.

Why does this matter?
• Working with any data type lets us write more generic, reusable code.
• Using generics helps us better understand the type system in C and other

languages, and where it can help and hinder our program.

14

Assembly Language
Key Question: How does a computer interpret and execute C programs?
• GCC compiles our code into machine code instructions executable by our

processor.
• Our processor uses registers and instructions like mov to manipulate data.

15

Assembly Language
Why does this matter?
• We write C code because it is higher level

and transferrable across machines. But it is
not the representation executed by the
computer!

• Understanding how programs are compiled
and executed, as well as computer
architecture, is key to writing performant
programs (e.g. fewer lines of code is not
necessarily better).

• We can reverse engineer and (ethically!)
exploit programs at the assembly level!

16

Heap Allocators
Key Question: How do core memory-allocation operations
like malloc and free work?
• A heap allocator manages a block of memory for the heap and completes

requests to use or give up memory space.
• We can manage the data in a heap allocator using headers, pointers to free

blocks, or other designs

Why does this matter?
• Designing a heap allocator requires making many design decisions to optimize

it as much as possible. There is no perfect design!
• All languages have a "heap" but manipulate it in different ways.

17

Ethics, Privacy, Partiality and Trust
Key Question: How do we act responsibly in maintaining security, protecting
privacy, and ensuring warranted trust in the systems we build and maintain?

Why does this matter?
• Responsible programming involves documentation—including informative

error messages!—that allows others to evaluate the reliability of your code.
• Responsible system and program design requires choosing a trust model and

considering data privacy. This might also require deciding to whom to be
partial.

18

Our CS107 Journey

Bits and
Bytes

C Strings

Arrays
and

Pointers

Stack and
Heap

Generics

Assembly

Heap
Allocators

19

CS107 Learning Goals
The goals for CS107 are for students

 to acquire a fluency with
• pointers and memory and how to make use of them when writing C code
• an executable’s address space and runtime behavior

 to acquire competency with
• the translation of C to and from assembly code
• the implementation of programs that respect the limits of computer arithmetic
• the ability to identify bottlenecks and improve runtime performance
• the ability to navigate your own Unix development environment
• the ethical frameworks you need to better design and implement software

 and to have some exposure to
• the basics of computer architecture

20

The C Coding Experience

https://www.youtube.com/watch?v=G7LJC9vJluU

https://www.youtube.com/watch?v=G7LJC9vJluU

21

Tools and Techniques
• Unix and the command line
• Coding Style
• Debugging (gdb)
• Testing (sanitycheck)
• Memory Checking (valgrind)
• Profiling (callgrind)

22

Unix And The Command Line
Unix and command line tools are extremely popular tools outside of CS107 for:
• Running programs (web servers, python programs, remote programs…)
• Accessing remote servers (Amazon Web Services, Microsoft Azure, Heroku…)
• Programming embedded devices (Raspberry Pi, etc.)

Our goal for CS107 was to help you become proficient in navigating Unix

23

Coding Style
• Writing clean, readable code is crucial for any computer science project
• Unfortunately, a fair amount of existing code is poorly-designed/documented

Our goal for CS107 was to help you write with good coding style and
read/understand/comment provided code.

24

Debugging (GDB)
• Debugging is a crucial skill for any computer scientist
• Our goal for CS107 was to help you become a better debugger

• narrow in on bugs
• diagnose the issue
• implement a fix

• Practically every project you work on will have debugging facilities
• Python: pdb
• IDEs: built-in debuggers (e.g., QT Creator, Eclipse, XCode, Visual Studio)
• Web development: in-browser debugger

25

Testing (sanitycheck)
• Testing is a crucial skill for any computer scientist
• Our goal for CS107 was to help you become a better tester

• Writing targeted tests to validate correctness
• Use tests to prevent or quickly identify and triage regressions
• Use tests to develop incrementally

26

Memory Validation and Profiling
• Memory checking and profiling are crucial for any computer scientist to

analyze program performance and increase efficiency.
• Many projects you work on will have profiling and memory analysis facilities:

• Mobile development: integrated tools (XCode Instruments, Android Profiler, etc.)
• Web development: in-browser tools

27

Tools
You’ll see manifestations of these tools throughout projects you work on. We
hope you can use your CS107 knowledge to take advantage of them!

28

Concepts
• C Language
• Bit-Level Representations
• Arrays and Pointers
• Memory Management
• Generics
• Assembly
• Allocators

29

Systems
How can we write programs to execute many tasks simultaneously? (take CS111!)
• Threads of execution
• Locks to prevent simultaneous access
How is a compiler implemented? (take CS143!)
• Lexical analysis
• Parsing
• Semantic Analysis
• Code Generation
How can applications communicate over a network? (take CS144!)
• How can we weigh different tradeoffs of network architecture design?
• How can we effectively transmit bits across a network?

30

Systems
How is an operating system implemented? (take CS111/CS112/CS212!)
• Threads
• User Programs
• Virtual Memory
• Filesystem

31

Machine Learning
Can we speed up machine learning training with reduced precision
computation?
• https://www.top500.org/news/ibm-takes-aim-at-reduced-precision-for-new-

generation-of-ai-chips/
• https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/

How can we implement performant machine learning libraries?
• Popular tools such as TensorFlow and PyTorch are implemented using C!
• https://pytorch.org/blog/a-tour-of-pytorch-internals-1/
• https://www.tensorflow.org/guide/extend/architecture

https://www.top500.org/news/ibm-takes-aim-at-reduced-precision-for-new-generation-of-ai-chips/
https://www.top500.org/news/ibm-takes-aim-at-reduced-precision-for-new-generation-of-ai-chips/
https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/
https://pytorch.org/blog/a-tour-of-pytorch-internals-1/
https://www.tensorflow.org/guide/extend/architecture

32

Web Development
How can we efficiently translate JavaScript code to machine code?
• The Chrome V8 JavaScript engine converts JavaScript into machine code for

computers to execute: https://medium.freecodecamp.org/understanding-the-
core-of-nodejs-the-powerful-chrome-v8-engine-79e7eb8af964
• The popular nodejs web server tool is built on top of Chrome V8

How can we compile programs into an efficient binary instruction format that
runs in a web browser?
• WebAssembly is an emerging standard instruction format that runs in

browsers: https://webassembly.org
• You can compile C/C++/other languages into WebAssembly for web execution

https://medium.freecodecamp.org/understanding-the-core-of-nodejs-the-powerful-chrome-v8-engine-79e7eb8af964
https://medium.freecodecamp.org/understanding-the-core-of-nodejs-the-powerful-chrome-v8-engine-79e7eb8af964
https://webassembly.org/
https://blog.chromium.org/2019/06/webassembly-brings-google-earth-to-more.html

33

Programming Languages / Runtimes
How can programming languages and runtimes efficiently manage memory?
• Manual memory management (C/C++)
• Reference Counting (Swift)
• Garbage Collection (Java)

How can we design programming languages to reduce the potential for
programmer error? (take CS242!)
• Haskell/Swift 'optionals'

How can we design portable programming languages?
• Java Bytecode: https://en.wikipedia.org/wiki/Java_bytecode

https://en.wikipedia.org/wiki/Java_bytecode

34

Theory
How can compilers output efficient
machine code instructions for
programs? (take CS143!)
• Languages can be represented as

regular expressions and context-free
grammars, and programs can be
represented as tree structures.
• We can model programs as control-

flow graphs for additional
optimization

35

Security
How can we find / fix vulnerabilities at various levels in our programs? (take
CS155!)
• Understand machine-level representation and data manipulation
• Understand how a computer executes programs
• macOS High Sierra Root Login Bug: https://objective-

see.com/blog/blog_0x24.html

How can we ensure that our systems and networks are secure? (take CS155!)
How can we design internet services worthy of our trust? (take CS152!)

https://objective-see.com/blog/blog_0x24.html
https://objective-see.com/blog/blog_0x24.html

36

Ethics, Privacy, Partiality and Trust
How can we recognize ethically important decisions as they arise? What
policies ought we to adopt to address these issues? (take CS 181!)

Why is privacy important? What technical and policy standards should we
strive for to protect privacy? (take CS 182!)

37

After CS107, you are
prepared to take a variety
of classes in various areas.

What are some options?

38

Where Are We?

CS 106B/X

Programming
Abstractions

CS 107/E

Computer
Organization and

Systems

CS 103

Mathematical
Foundations of

Computing

CS 109

Intro to Probability
for Computer

Scientists

CS 161

Design and Analysis
of Algorithms

Theory
Sy

st
em

s

We are here

CS 111

Operating Systems
Principles

39

CS 111
• How can programs perform multiple tasks

concurrently and share resources between those
tasks?
• How does every program think it has access to all

memory addresses if it needs them?
• How can we implement a filesystem to store

persistent data?

Jerry Cain David Mazieres

Nick Troccoli John Ousterhout

40

Other Courses
• CS112: Operating Systems Project
• CS212: Operating Systems
• CS143: Compilers
• CS144: Networking
• CS145: Databases
• CS149: Parallel Programming
• CS152: Trust and Safety Engineering
• CS155: Computer and Network Security

• CS181: Computers, Ethics, and Public Policy
• CS182: Ethics, Public Policy, and Technological

Change
• CS229S: Systems for Machine Learning
• CS246: Mining Massive Datasets
• EE108: Digital Systems Design
• EE180: Digital Systems Architecture

41

Thank you!

