
CS107  

Autumn 2022 December, 2022 

CS107 Final Exam Solution 
 

Solution 1: Linked Lists of Packed Character Nodes 

The solution is insultingly compact. 
 
char *array_to_list(char *strings[], size_t n) { 
 char *head = NULL; // could be left as a void * as well 
 for (ssize_t i = n - 1; i >= 0; i--) { // ssize_t can be negative! 
  char *node = malloc(strlen(strings[i]) + 1 + sizeof(char *)); 
  assert(node != NULL); // not necessary for solution 
  strcpy(node, strings[i]); 
  *(char **)(node + strlen(strings[i]) + 1) = head; 
  head = node; 
 } 
 return head; 
} 
 

Solution 2: Assembly Code Analysis 

The assembly code presented on the upper right was 
generated by compiling a function called ella without 
optimization—i.e., using -Og.  Here’s is the original 
function below. 
 

char *ella(char *aretha[], char *diana) { 
    char *vocalist = diana + 4; 
    if (strspn(aretha[0], diana) == 0) 
        return strstr(vocalist, vocalist); 
    if (diana[0] != '\0') 
        return ella(aretha, vocalist); 
    return vocalist; 
} 

 
Note that one could invert the tests and 
correspondingly rearrange the return statements for an 
equivalent answer. Perhaps the second if test is 
diana[0] == '\0' and the last two return statements 
are swapped. 
 
  

0x116d <+4>: push   %r12 
0x116f <+6>: push   %rbp 
0x1170 <+7>: push   %rbx 
0x1171 <+8>: mov    %rdi,%r12 
0x1174 <+11>: mov    %rsi,%rbx 
0x1177 <+14>: lea    0x4(%rsi),%rbp 
0x117b <+18>: mov    (%rdi),%rdi 
0x117e <+21>: callq  0x1060 <strspn@plt> 
0x1183 <+26>: test   %rax,%rax 
0x1186 <+29>: je     0x1195 <ella+44> 
0x1188 <+31>: cmpb   $0x0,(%rbx) 
0x118b <+34>: jne    0x11a5 <ella+60> 
0x118d <+36>: mov    %rbp,%rax 
0x1190 <+39>: pop    %rbx 
0x1191 <+40>: pop    %rbp 
0x1192 <+41>: pop    %r12 
0x1194 <+43>: retq    
0x1195 <+44>: mov    %rbp,%rsi 
0x1198 <+47>: mov    %rbp,%rdi 
0x119b <+50>: callq  0x1070 <strstr@plt> 
0x11a0 <+55>: mov    %rax,%rbp 
0x11a3 <+58>: jmp    0x118d <ella+36> 
0x11a5 <+60>: mov    %rbp,%rsi 
0x11a8 <+63>: mov    %r12,%rdi 
0x11ab <+66>: callq  0x1169 <ella> 
0x11b0 <+71>: mov    %rax,%rbp 
0x11b3 <+74>: jmp    0x118d <ella+36> 



  2  

The unoptimized version pushes three caller-owned registers to the stack, and the optimized 
version only pushes two. Why doesn’t the optimized version need to push %r12? 

 
The most straightforward answer is that the 
computation doesn’t use %r12 so that its incoming 
value gets clobbered, so there’s no reason to spill 
the contents of %r12 to be stack. 

 
The unoptimized version clearly makes a recursive call 
to ella, whereas the second version doesn’t. What is 
the second version doing instead, and why can it do it? 
 

Because the call to ella, when made, is tail 
recursive, the compiler can reframe the recursive 
call to execute iteratively and reuse the space set up 
for the original call to ella.  After all, the original 
call doesn’t need that space anymore.  

 
The unoptimized version uses callq to invoke the 
strstr function whereas the optimized version uses 
jmpq instead. What does callq do that jmpq doesn’t, and why can the optimized version use 
jmpq instead of callq? 
 

At the time that strstr is called, %rsp contains the address of the instruction immediately 
following the call to ella.  Because strstr’s return value is ella’s return value, execution 
can simply jump to the code for strstr, and when execution within hits some retq 
instruction, it can bypass the code for ella and return directly to the instruction 
immediately following the callq to ella, wherever that was. 

 
 

 
 
  

0x11b4 <+4>: push   %rbp 
0x11b5 <+5>: mov    %rsi,%rbp 
0x11b8 <+8>: push   %rbx 
0x11b9 <+9>: sub    $0x8,%rsp 
0x11bd <+13>: mov    (%rdi),%rbx 
0x11c0 <+16>: jmp    0x11ce <ella+30> 
0x11c2 <+18>: nopw   0x0(%rax,%rax,1) 
0x11c8 <+24>: cmpb   $0x0,-0x4(%rbp) 
0x11cc <+28>: je     0x11f8 <ella+72> 
0x11ce <+30>: mov    %rbp,%rsi 
0x11d1 <+33>: mov    %rbx,%rdi 
0x11d4 <+36>: add    $0x4,%rbp 
0x11d8 <+40>: callq  0x1060 <strspn@plt> 
0x11dd <+45>: test   %rax,%rax 
0x11e0 <+48>: jne    0x11c8 <ella+24> 
0x11e2 <+50>: add    $0x8,%rsp 
0x11e6 <+54>: mov    %rbp,%rsi 
0x11e9 <+57>: mov    %rbp,%rdi 
0x11ec <+60>: pop    %rbx 
0x11ed <+61>: pop    %rbp 
0x11ee <+62>: jmpq   0x1070 <strstr@plt> 
0x11f3 <+67>: nopl   0x0(%rax,%rax,1) 
0x11f8 <+72>: add    $0x8,%rsp 
0x11fc <+76>: mov    %rbp,%rax 
0x11ff <+79>: pop    %rbx 
0x1200 <+80>: pop    %rbp 
0x1201 <+81>: retq 



  3  

Solution 3: Ellipses and printf 

Here’s the partial implementation of myprintf. You’re to work through the code I provide you 
and complete the implementation. You can assume that args addresses a properly assembled 
array of manually packed bytes as described above. If there were no additional arguments, 
you can assume that args is NULL. You can also assume that every '%' in the control string 
will be following by either a 'd' or an 's'. 
 

void myprintf(const char *control, const void *args) { 
 while (true) { 
   const char *placeholder = strchr(control, '%'); 
     if (placeholder == NULL) placeholder = control + strlen(control); 
    char buffer[placeholder - control + 1]; 
     strncpy(buffer, control, placeholder - control); 
     buffer[placeholder - control] = '\0'; 
     print_string(buffer);      
  control = placeholder; 
   if (control[0] == '\0') break; 
   
  // here’s my own solution 

  if (placeholder[1] == 'd') { 
   print_int(*(int *)args); 
   args = (char *) args + sizeof(int); 
  } else { 
   print_string(*(char **)args); 
   args = (char *) args + sizeof(char *); 
  } 
  control += 2; // hop over placeholder and continue afresh 
 } 

 

Describe what would be printed by each of the following calls to printf if it just relies on the 
myprintf you’ve implemented above. If the call generates a segmentation fault, then say so. 
 

• printf("%s", 0, 0); 
 

This would crash, because those two 0’s would collectively be interpreted as an 
eight-byte NULL pointer, which would be passed to print_string, which would 
presumably deference the pointer and generate a segmentation fault.  (If you 
explicitly write that print_string would print (nil), we’ll accept that as well). 

 
• printf("%d", "107"); 

 

This would print four bytes of the eight-byte address as an integer.  What eight-
byte address? The address of the '1' at the beginning of that "107" string. 

 
• printf("%d %d", 555); 

 

This would print 555 followed by whatever random four-byte integer happens 
to come after it in stack memory.  Note that this would not crash, because the 
memory incorrectly accessed because of that second "%d" will still be memory 
accessible to the program—i.e., it’s still part of the stack frame of printf. 



  4  

 
• printf("lots of smoke and mirrors", "lots", "of", "them"); 

 

This just prints "lots of smoke and mirrors".  The three additional char *s 
reachable through the args parameter would just go ignored. 

 

Solution 4: Implicit Allocators with Headers and Footers 

Assume the following #define constants and global variables have already been set up: 
 

#define HEAD_SIZE sizeof(size_t) 
#define FOOT_SIZE HEAD_SIZE 
 
// flags used to isolate free and left-free bits from payload size 
#define FREE (1L << 63) 
#define LEFT (1L << 62) 
#define SIZE ______________ 
 
static size_t *heap_start; // base address of entire heap segment 
static size_t heap_size;  // number of bytes in the entire heap segment 

 
a) First off, note that the #define value for SIZE is blank!  What expression—which you must 

frame in terms of FREE and LEFT—should be used so that SIZE is a mask of 2 0’s followed 
by 62 1’s? (The SIZE mask can then be used to isolate the payload-size portion of a header 
or footer.) 
 

 #define SIZE (~(FREE | LEFT)) 
 // outer parentheses not needed for full credit, though needed in practice  

 
b) You wonder whether it make sense to #define FREE, LEFT, and SIZE to be 

0x8000000000000000, 0x4000000000000000, and 0x3FFFFFFFFFFFFFFF, respectively, so 
that repeated reevaluation of 1 << 63, 1 << 62, and your expression for SIZE doesn’t impact 
allocator throughput. After using callgrind to profile the number of instructions executed 
on test scripts, you note that it doesn’t seem to make a difference, even when your 
allocator is compiled at –Og? Give a reasonable explanation why that might be. 

 
The compiler would still evaluate 1L << 63 and 1L << 62 at compile time and insert their 
evaluations—0x8000000000000000, 0x4000000000000000, and 0x3FFFFFFFFFFFFFFF—
that directly into the assembly. Some optimizations are so obvious that they’re not 
even considered to be optimizations. 
 

  



  5  

c) Complete the implementation of the count_available_bytes function, which scans the 
heap from front to back and returns the total number of available payload bytes. Your 
implementation will need to examine all nodes—both free and allocated—to compute the 
answer, since the allocator is an implicit one. 

 
 size_t count_available_bytes() { 

   size_t count = 0; 
   size_t *curr = heap_start; 
   size_t *end = curr + heap_size/sizeof(size_t); 
   while (curr != end) { 
    size_t node_size = *curr & SIZE; 
    if (*curr & FREE) count += node_size – HEAD_SIZE; 
    curr += node_size/sizeof(size_t); 
   } 
 
   return count; 
  } 

 
   

d) Complete the implementation of coalesce_left, which accepts the address of a free node 
header and, if the node to its left is also free, merges the two into one larger node. If the 
node to the left isn’t free, then coalesce_left should simply return without doing 
anything. 
 

void coalesce_left(size_t *header) { 
  if (!(*header & LEFT)) return; 
  size_t right_node_size = *header & SIZE; 
  size_t *footer = header – 1; 
  size_t left_node_size = *footer & SIZE; 
  header -= left_node_size/sizeof(size_t); 
  *header += right_node_size; 
  footer += right_node_size/sizeof(size_t); 
  *footer = *header; 
 } 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 


