
This document is copyright (C) Stanford Computer Science, Adam Keppler, and Joel Ramirez licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Nick Troccoli, Chris Gregg
1

CS107, Lecture 1
Welcome to CS107!

Reading:

Course Syllabus
Bryant & O’Hallaron, Ch. 1 (skim – available on Canvas)

Honor Code and Collaboration Page

https://web.stanford.edu/class/archive/cs/cs107/cs107.1258/syllabus.html
https://web.stanford.edu/class/archive/cs/cs107/cs107.1258/collaboration.html

Plan For Today

2

• Introduction + Syllabus
• Unix

• C 101 (please review the skipped slides)

• Bits and Bytes

Interactive Classes

• Please feel free to raise your hand at any time with a question!

• Questions and comments are encouraged and recommended!

3

Asynchronous Questions

• Have non-assignment related questions outside of class?

• Reach out on Ed

• NOTE: We will use Ed for class announcements so please check Ed

regularly.

Anonymous posts on ED are only Anonymous to other students

Visit Ed through the link on Canvas

Asynchronous Questions

• Have assignment related questions outside of class?

• Reach out on IntelliCopilot

• NOTE: We will be using IntelliCopilot as our main form of

communication for assignments

Visit through the link on Canvas

What is CS 107?
▪ The CS 106 series teaches you how to solve problems as a

programmer

▪ Many times CS 106 instructors had to say “just don’t worry about

that” or “it probably doesn’t make sense why that happens, but
ignore it for now” or “just type this to fix it”

▪ CS 107 finally takes you behind the scenes

▪ How do things really work in there?

> It’s not quite down to hardware or physics/

electromagnetism (those will have to stay even further

behind the scenes for now!)

> It’s how things work inside Python/C++ (we will explore from

C), and how your programs map onto the components of

computer systems

CS107 Learning

Goals▪ The goals for CS107 are for students to gain mastery of

› writing C programs with complex use of memory and pointers

› an accurate model of the address space

› strong understanding of the compile/runtime behavior of C

programs

▪ to achieve competence in

› translating C to/from assembly

› writing programs that respect the limitations of computer arithmetic

› identifying bottlenecks and improving runtime performance

› writing code that correctly ports to other architectures

› working effectively in UNIX development environment

▪ and have exposure to

› a working understanding of the basics of computer architecture

› understanding compilers and disassemblers

› understand the semantics of assembly with respect to stack layout

Meet the Instructors

Adam Keppler
(Co-Instructor)

akeppler@stanford.edu

Olayinka Adekola (Ola)
(Co-Instructor)

oadekola@stanford.edu

Ben Yan
(Course Assistant)

bbyan@stanford.edu

9

Textbook(s)

• Computer Systems: A Programmer’s Perspective
by Bryant & O’Hallaron, 3rd Edition

• 3rd edition matters – important updates to content

• Stanford Library has generously scanned all readings
for CS107 under “fair use” (private study, scholarship,
research). [Canvas -> Files]. Please do not distribute.

• If you want more context, you may want to purchase
a full copy

• A C programming reference of your choice
• The C Programming Language by Kernighan and

Ritchie (free link on course website Resources page)

• Other C programming books, websites, or reference
sheets

Full textbook

C Programming Language

For CS107-specific readings

The textbooks are a
very good resources

in this course!

Course Reader

There is a course reader, which condenses

much of the material for the course:

https://stanford.edu/~cgregg/cgi-bin/107-reader

• If you find typos, let us know!

CHRIS GREGG

CS 107

READER

S TANFORD COMPUTER SCIENCE DE PAR TMENT

21

Course Structure

• Lectures: understand concepts, see demos

• Assignments: build programming skills, synthesize lecture/lab
content

• Labs: learn tools, study code, discuss with peers Great preview of
homework!

13

Course Overview

1. Bits and Bytes - How can a computer represent integer numbers?

2. Chars and C-Strings - How can a computer represent and manipulate

more complex data like text?

3. Pointers, Stack and Heap – How can we effectively manage all types

of memory in our programs?

4. Generics - How can we use our knowledge of memory and

data representation to write code that works with any data

type?

5. Assembly - How does a computer interpret and execute C programs?

6. Heap Allocators - How do core memory-allocation

operations like malloc and free work?

Grading

**** 40% Assignments

* 10% Lab Participation

** 15% Midterm Exam (7/16)

* 10% Heap Allocator(Final Project)

** 15% Final Exam (8/15)

* 10% Lecture Participation

13

Grading

**** 40% Assignments

* 10% Lab Participation

** 15% Midterm Exam (7/16)

* 10% Heap Allocator(Final Project)

** 15% Final Exam (8/15)

* 10% Lecture Participation

14

Extra Credit

21

Late Days

• Due to the fast pace of this course, there are no late days

• Instead, you can submit late with an assignment cap

• assignment turned in 1 day late will receive a 95% cap

• assignment turned in 2 days late will receive a 90% cap

• we will not work that is more than 2 days late (unless OAE)

Exceptions:

• assign0 no cap on late submission

• assign6 no late submissions accepted

21

OAE Accommodations

If you have OAE accommodations, please fill out this form:

https://forms.gle/dDx2EdhaVYDz2ihq6

This is also on the course website and Ed!

Non-OAE accommodations – reach out via Email

Stanford Honor Code

17

• The Honor Code is an undertaking of the students, individually and collectively:

• that they will not give or receive aid in examinations; that they will not give or receive unpermitted aid in class

work, in the preparation of reports, or in any other work that is to be used by the instructor as the basis of grading;

• that they will do their share and take an active part in seeing to it that others as well as themselves uphold the

spirit and letter of the Honor Code.

• The faculty on its part manifests its confidence in the honor of its students by refraining from proctoring examinations
and from taking unusual and unreasonable precautions to prevent the forms of dishonesty mentioned above. The faculty
will also avoid, as far as practicable, academic procedures that create temptations to violate the Honor Code.

• While the faculty alone has the right and obligation to set academic requirements, the students and faculty will

work together to establish optimal conditions for honorable academic work.

see also: http://honorcode.stanford.edu/

It is your responsibility to ensure you have read and are familiar with the honor code guidelines posted on the main

page of the CS107 course website. Please read them and come talk to us if you have any questions or concerns.

http://honorcode.stanford.edu/

Honor Code and CS107

18

• Please help us ensure academic integrity:
• Indicate any assistance received on HW (books, friends, internet, ChatGPT, etc.).

• Do not look at other people's solution code or answers

• Do not give your solutions to others or post them on the web or our ED forum.

• Report any inappropriate activity you see performed by others.

• Assignments are checked regularly for similarity with help of software tools.

• If you need help, please contact us and we will help you.

• We do not want you to feel any pressure to violate the Honor Code in order to

succeed in this course.

• If you realize that you have made a mistake, you may retract your submission to

any assignment at any time, no questions asked.

https://cs107.stanford.edu/collaboration

Always Cite Your Sources

• The world has an increasing number of resources available from:

• Documentation

• Stack Overflow

• ChatGPT

• Medium

• IntelliCopilot

• And More

• Increasingly Important to Cite Sources!

• Please tag sources that you used either in the README or top of the relevant
file.

Lecture Participation

In-Class Attendance is required for all non-CGOE students

• During the lectures, there will be interactive questions

• Some of the questions may encourage you to work with your neighbor

• Lecture Attendance begins tomorrow but let’s do a trial run

Remote Participation (Non-CGOE)

• If you need to participate in CS 107 remotely, please fill out this form:
https://forms.gle/QmhtKd57moe3GQuz7

• Even if you have already reached out to the course staff, you MUST submit this
form

https://forms.gle/QmhtKd57moe3GQuz7

What is Unix?

• Unix: a set of standards and tools commonly used in software
development.

• macOS and Linux are operating systems built on top of Unix

• You can navigate a Unix system using the command line (“terminal”)

• Every Unix system works with the same tools and commands

22

What is the Command Line?

• The command-line is a text-based interface (i.e., terminal interface)

to navigate a computer, instead of a Graphical User Interface (GUI).

Graphical User Interface

23

Text-based

interface

45

Command Line Vs. GUI

Just like a GUI file explorer interface, a terminal interface:

• shows you a specific place on your computer at any given
time.

• lets you go into folders and out of folders.

• lets you create new files and edit files.

• lets you execute programs.

Graphical User Interface Command-line interface

Why Use Unix / the Command Line?

25

• You can navigate almost any device using the same tools and commands:
• Servers

• Laptops and desktops

• Embedded devices (Raspberry Pi, etc.)

• Mobile Devices (Android, etc.)

• Used frequently by software engineers:
• Web development: running servers and web tools on servers

• Machine learning: processing data on servers, running algorithms

• Systems: writing operating systems, networking code and embedded software

• Mobile Development: running tools, managing libraries
• And more…

• We’ll use Unix and the command line to implement and execute our
programs.

Unix Commands To Try

26

• cd – change directories (..)

• ls – list directory contents

• mkdir – make directory

• vim – open text editor

• rm – remove file or folder

• man – view manual pages

See the course website
for more commands and a
complete reference.

Learning Unix and the Command Line

27

• Using Unix and the command line can be intimidating at first:
• It looks retro!

• How do I know what to type?

• It’s like learning a new language:
• At first, you may have to constantly look things up (resources on course website!)

• It’s important to spend as much time as possible (during labs and assignments)

building muscle memory with the tools

Plan For Today

28

• Introduction + Syllabus
• Unix?

• C 101 (please review the skipped slides)

• Bits and Bytes

Programming Language Popularity

• C has consistently been the most or 2nd most popular language since 1988!

The C Language: History

and Background▪ Birthdate around 1970

▪ Created to make writing Unix (the OS itself) and tools for Unix easier

▪ Common Ancestor to most Programming Languages

▪ Especially C++/Java family of languages

▪ Design principles:

› Small, simple abstractions of hardware

› Minimalist aesthetic

› C Focuses on:

• Efficiency and minimalism

› C Sacrifices:

• Safety (unlike Java/Python)

• Convenient high-level services and abstractions (which are commonly found Java, Python,

C++)

▪ As the common ancestor, it inspired safer systems, increased abstraction, and higher level features

C vs. C++ and Java

They all share:

• Syntax

• Basic data types

• Arithmetic, relational, and

logical operators

C Limitations:

• No advanced features like operator overloading,
default arguments, pass by reference, classes and
objects, Abstract Data Types, etc.

• Standard Libraries offer core functionality rather
than nice wrappers or syntactic sugar.

• Small language means small footprint on a
system.

• No runtime checks (this may cause severe
security vulnerabilities and bugs !)

Programming Philosophies

Functional Programming (FP) – Programming Philosophy that seeks to avoid using state,
preferring functions with no side effect, data immutability, and thread-safe code.

C supports some functional elements, but is not a functional programming language (FPL).

Procedural Programming (PP) – About creating procedures or ‘scripts’ using functions to
setup a series of tasks or steps to complete.

C is consider the quintessential Procedural Programming Language.

Object Oriented Programing (OOP) – The idea that we can create objects that contain and
maintain both data and code in the form of fields (attributes/methods). There are also
interactions between the objects such as inheritance, encapsulation, abstraction, and
polymorphism.

Unlike Python/C++/Java, C is not an Object Oriented Language and does not have a notion of
objects.

Programming Language Philosophies

C is procedural: you write functions, rather than define new variable types

with classes and call methods on objects. C is small, fast and efficient.

Programming Philosophy is a Spectrum: Most major languages have

elements of multiple philosophies, while some occasionally epitomize a

specific philosophy.

Quintessential Examples:

LISP - Functional Programming

Java - Object Oriented Programming

C – Procedural Programming

Why C?

34

• Many tools (and even other languages, like Python!) are built with C.

• C is the language of choice for fast, highly efficient programs.

• C is popular for systems programming (operating systems, networking, etc.)

• C lets you work at a lower level to manipulate and understand the

underlying system.

• Modern alternatives to C are emerging (e.g., Rust), but they’re more

complicated and not quite ready for those new to systems programming

(but find me outside of class and I’m happy to talk about them :)

The Heart of C

• C helps those who help themselves

• C is meant to give fundamental tools that expose the computer’s internal workings as
much as possible, without becoming Assembly

• As such C is fundamentally about data, its storage, and its manipulation

• Every program is technically data itself, with C it is possible to write self-editing
programs

• There are no objects in C only data

• Types in C is an illusion meant to provide convenience to the user and help with
organization

Types in C: Static & Strong Typing

• A type in C defines how much memory is stored with the associated data

• It also defines whether the value is raw data or a ‘pointer’ to another location in memory

• We will talk extensively more about pointers in the coming weeks.

• For now, lets take a look at the fundamental non-pointer types:

• int – records an integer value (…, -3, -2, -1, 0, 1, 2, 3 , …) in binary

• float – records a decimal value (-0.3, 0, 0.3 , 1.0, 3.14, etc.) in binary

• If you are wondering how this happens, it is a great question! We will cover it in a later section

• char – Any English letter (uppercase, lowercase, numbers, and some control codes)

• bool – Technically as small as a single bit 0 or 1, compilers sometimes store it as a char due to restrictions on byte-alignment of memory

• While the above are the core types, they come in different flavors. Flavors are arranged by:

• How much room, you have to store the information (it takes more room to store 1024 than 4)

• Storage Format, is the value always positive? Do you need a negative? A Decimal?

• Does it hold data or point to data? (Pointers)

Your First C Program

Assign 0: out today and due Friday 6/27
Note: Short turn-around to make the rest of the quarter easier
Need more time?

Need help on C syntax or writing C code?

- Slides on website
- Lecture code on myth machines
- Office Hours
- IntelliCopilot

Your First C Program

38

/*

* hello.c

* This program prints a welcome message

* to the user.

*/

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {

printf("Hello, world!\n");

return 0;

}

Our First C Program

/*

* hello.c

* This program prints a welcome message

* to the user.

*/

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {

printf("Hello, world!\n");

return 0;

}
Program comments

You can write block or inline comments.

39

Our First C Program

/*

* hello.c

* This program prints a welcome message

* to the user.

*/

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {

printf("Hello, world!\n");

return 0;

}
Import statements

C libraries are written with angle brackets.

Local libraries have quotes:

#include "lib.h"
40

Our First C Program

/*

* hello.c

* This program prints a welcome message

* to the user.

*/

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {

printf("Hello, world!\n");

return 0;

}

Main function – entry point for the program

Should always return an integer (0 = success)
41

Our First C Program

/*

* hello.c

* This program prints a welcome message

* to the user.

*/

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {

printf("Hello, world!\n");

return 0;

}

Main parameters – main takes two
parameters, both relating to the command line
arguments used to execute the program.

argc is the number of arguments in argv

argv is an array of arguments (char * is C string)

62

Our First C Program

/*

* hello.c

* This program prints a welcome message

* to the user.

*/

#include <stdio.h> // for printf

int main(int argc, char *argv[]) {

printf("Hello, world!\n");

return 0;

}

printf – prints output to the screen

43

Console Output: printf

44

printf(text, arg1, arg2, arg3,...);

printf makes it easy to print out the values of variables or expressions.

If you include placeholders in your printed text, printf will replace each

placeholder in order with the values of the parameters passed after the

text.

%s (string) %d (integer) %f (double)

// Example

char *classPrefix = "CS";

int classNumber = 107;

printf("You are in %s%d", classPrefix, classNumber);
// You are in CS107

65

Familiar Syntax

int x = 42 + 7 * -5;

double pi = 3.14159;
char c = 'Q';

//

/*

variables, types

two comment styles */

for (int i = 0; i <
10; if (i % 2 == 0)
{

i++) { //
//

for loops
if statements

x += i;
}

}

while (x > 0 && c == 'Q' || b) {
x = x / 2;
if (x == 42) {

return 0;
}

}

// while loops, logic

binky(x, 17, c); // function call

66

Boolean Variables

To declare Booleans, (e.g. bool b =), you must include stdbool.h:

#include <stdio.h> // for printf
#include <stdbool.h> // for bool

int main(int argc, char *argv[]) {

bool x = 5 > 2 && binky(argc) > 0;

if (x) {

printf("Hello, world!\n");

} else {

printf("Howdy, world!\n");

}

return 0;

}

67

Boolean Expressions

C treats a nonzero value as true, and a zero value as
false:

#include <stdio.h>

int main(int argc, char *argv[]){

int x = 5;

if (x) { // true

printf("Hello, world!\n");

} else {

printf("Howdy, world!\n");

}

return 0;
}

Writing, Debugging and Compiling

We will use:

• the vim text editor to write our C programs

• the make tool to compile our C programs

• the gdb debugger to debug our programs

• the valgrind tools to debug memory errors

and measure program efficiency

Now

Next week

48

Working On C Programs

49

• ssh – remotely log in to Myth computers

• Vim – text editor to write and edit C programs
• Use the mouse to position cursor, scroll, and highlight text

• Ctl-x Ctl-s to save, Ctl-x Ctl-c to quit

• make – compile program using provided Makefile

• ./myprogram – run executable program (optionally with arguments)

• make clean – remove executables and other compiler files

• Lecture code is accessible at /afs/ir/class/cs107/lecture-
code/lect[N]

• Make your own copy: cp -r /afs/ir/class/cs107/lecture-code/lect[N] lect[N]

• See the website for even more commands, and a complete reference.

Assignment 0:

Unix!
Assignment page:

https://web.stanford.edu/class/cs107/assign0/

Assignment already released, due Friday, 6/27

Lab Sign Up

Preference form is now open

Labs will begin week this week!

Lab signup is based on submitted preferences, otherwise you’ll

be assigned. Please submit by this tomorrow.

Plan For Today

52

• Introduction + Syllabus
• Unix?

• C 101 (please review the skipped slides)

• Bits and Bytes

Bits

53

Computers are good at detecting "off" or "on"

We have lots of ways to tell the difference between two different states:

Clockwise / Counterclockwise

Lightbulb off /

on

Punchcard hole / no

hole

True or False

Yes or No

Electronic computers are built using transistors. A transistor can be set up to either be

"off" or "on" -- this gives us our 0 and 1!

Computers are built around the idea of two states: "on" and "off". Transistors

implement this in hardware, and bits represent this in software.

Computers are good at detecting "off" or "on"

One Bit At A Time

56

• We can combine bits, like with base-10 numbers, to represent more data.

8 bits = 1 byte.

• Computer memory is just a large array of bytes! It is byte-addressable; you can’t

address (store location of) a bit; only a byte.

• Computers still fundamentally operate on bits; we have just gotten more creative

about how to represent different data as bits!
• Images

• Audio

• Video

• Text

• And more…

How does a bit do so much?

• Information can be reshaped

• Numbers can have the same value but in different representations

• Typically, we use base 10 in everyday life (most people attribute this to humans having

10 fingers, but humans have used other # systems)

• Base 10 has ten digits: 0 1 2 3 4 5 6 7 8 9

• Base 2 has two digits: 0 1

• We can represent up to ten numbers with one digit in base 10

• We can represent up to two numbers with one digit in base 2

• If we want to represent more numbers, we add more digits regardless of the base.

Base 10

58

5 9 3 4
Digits 0-9 (base-10)

4 Columns

Base 10

5 9 3 4
tens ones

= 5*1000 + 9*100 + 3*10 + 4*1

59

Base 10

5 9 3 4
103 102 101 100

60

= 5*103 + 9*10 2 + 3*10 1 + 4*10 0

Base 10

61

5 9 3 4
3 2 1 0

10X:

Base 2

62

1 0 1 1
3 2 1 0

Digits 0-1 (base-2)

2X:

Base 2

63

1 0 1 1
23 22 21 20

= 1*23 + 0*22 + 1*21 + 1*20 = 1110

Base 2

Most significant bit (MSB) Least significant bit (LSB)

1 0 1 1
eights fours twos ones

= 1*8 + 0*4 + 1*2 + 1*1 = 1110

64

Base 10 to Base 2

65

Question: What is 6 in base 2?

• 2 Strategies:

1. Build the number from the left (Find the most significant bit first)

2. Build the number from the left (Find the least significant bit first)

Practice: Base 2 to Base 10

66

What is the base-2 value 1010 in base-10?

a) 20

b) 101

c) 10

d) 5

e) Other

Practice: Base 10 to Base 2

67

What is the base-10 value 14 in base 2?

a) 1111

b) 1110

c) 1010

d) Other

Byte Values

68

• What is the minimum and maximum base-10 value a single byte (8 bits)

can store?

• Please answer minimum first

Byte Values

69

• What is the minimum and maximum base-10 value a single byte (8 bits)

can store? minimum = 0 maximum = ?

Byte Values

70

• What is the minimum and maximum base-10 value a single byte (8 bits)

can store? minimum = 0 maximum = ?

11111111
7 6 5 4 3 2 1 0

2x:

Byte Values

71

• What is the minimum and maximum base-10 value a single byte (8 bits)

can store? minimum = 0 maximum = ?

• Strategy 1: 1*27 + 1*26 + 1*25 + 1*24 + 1*23+ 1*22 + 1*21 + 1*20 = 255

2x:
11111111

7 6 5 4 3 2 1 0

Byte Values

72

• What is the minimum and maximum base-10 value a single byte (8 bits)

can store? minimum = 0 maximum = 255

• Strategy 1: 1*27 + 1*26 + 1*25 + 1*24 + 1*23+ 1*22 + 1*21 + 1*20 = 255

• Strategy 2: 28 – 1 = 255

2x:
11111111

7 6 5 4 3 2 1 0

Byte Values

73

• How about minimum and maximum base-10 value for 16 bits?

minimum = 0 maximum = ?

Multiplying by Base

1450 x 10 = 14500

11002 x 2 = 11000
Key Idea: inserting 0 at the end multiplies by the base!

NOTE: Inverse is also true, multiplying by the base adds a 0

74

Dividing by Base

75

1450 / 10 = 145

11002 / 2 = 110

Key Idea: removing 0 at the end divides by the base!

NOTE: Inverse is also true, dividing by the base removes a column

Combinations of bits can encode anything and represent
everything

We can encode anything

we want with bits. E.g.,

the ASCII character set.

Questions?

	Slide 1: CS107, Lecture 1 Welcome to CS107!
	Slide 2: Plan For Today
	Slide 3: Interactive Classes
	Slide 4: Asynchronous Questions
	Slide 5: Asynchronous Questions
	Slide 6: What is CS 107?
	Slide 7: CS107 Learning Goals
	Slide 8: Meet the Instructors
	Slide 9: Textbook(s)
	Slide 10: Course Reader
	Slide 11: Course Structure
	Slide 12: Course Overview
	Slide 13: Grading
	Slide 14: Grading
	Slide 15: Late Days
	Slide 16: OAE Accommodations
	Slide 17: Stanford Honor Code
	Slide 18: Honor Code and CS107
	Slide 19: Always Cite Your Sources
	Slide 20: Lecture Participation
	Slide 21: Remote Participation (Non-CGOE)
	Slide 22: What is Unix?
	Slide 23: What is the Command Line?
	Slide 24: Command Line Vs. GUI
	Slide 25: Why Use Unix / the Command Line?
	Slide 26: Unix Commands To Try
	Slide 27: Learning Unix and the Command Line
	Slide 28: Plan For Today
	Slide 29: Programming Language Popularity
	Slide 30: The C Language: History and Background
	Slide 31: C vs. C++ and Java
	Slide 32: Programming Philosophies
	Slide 33: Programming Language Philosophies
	Slide 34: Why C?
	Slide 35: The Heart of C
	Slide 36: Types in C: Static & Strong Typing
	Slide 37: Your First C Program
	Slide 38: Your First C Program
	Slide 39: Our First C Program
	Slide 40: Our First C Program
	Slide 41: Our First C Program
	Slide 42: Our First C Program
	Slide 43: Our First C Program
	Slide 44: Console Output: printf
	Slide 45: Familiar Syntax
	Slide 46: Boolean Variables
	Slide 47: Boolean Expressions
	Slide 48: Writing, Debugging and Compiling
	Slide 49: Working On C Programs
	Slide 50: Assignment 0: Unix!
	Slide 51: Lab Sign Up
	Slide 52: Plan For Today
	Slide 53: Bits
	Slide 54: Computers are good at detecting "off" or "on"
	Slide 55: Computers are good at detecting "off" or "on"
	Slide 56: One Bit At A Time
	Slide 57: How does a bit do so much?
	Slide 58: Base 10
	Slide 59: Base 10
	Slide 60: Base 10
	Slide 61: Base 10
	Slide 62: Base 2
	Slide 63: Base 2
	Slide 64: Base 2
	Slide 65: Base 10 to Base 2
	Slide 66: Practice: Base 2 to Base 10
	Slide 67: Practice: Base 10 to Base 2
	Slide 68: Byte Values
	Slide 69: Byte Values
	Slide 70: Byte Values
	Slide 71: Byte Values
	Slide 72: Byte Values
	Slide 73: Byte Values
	Slide 74: Multiplying by Base
	Slide 75: Dividing by Base
	Slide 76: Combinations of bits can encode anything and represent everything
	Slide 77

