CS107, Lecture 1
Welcome to CS107!

Reading:
Course Syllabus
Bryant & O’Hallaron, Ch. 1 (skim — available on Canvas)
Honor Code and Collaboration Page

This document is copyright (C) Stanford Computer Science, Adam Keppler, and Joel Ramirez licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Nick Troccoli, Chris Gregg

https://web.stanford.edu/class/archive/cs/cs107/cs107.1258/syllabus.html
https://web.stanford.edu/class/archive/cs/cs107/cs107.1258/collaboration.html

Plan For Today

* |ntroduction + Syllabus

* Unix

e C101 (please review the skipped slides)
e Bits and Bytes

Interactive Classes

* Please feel free to raise your hand at any time with a question!

* Questions and comments are encouraged and recommended!

Asynchronous Questions

* Have non-assignment related questions outside of class?
* Reach out on Ed

* NOTE: We will use Ed for class announcements so please check Ed
regularly.
Anonymous posts on ED are only Anonymous to other students

m Visit Ed through the link on Canvas

Asynchronous Questions

* Have assignment related questions outside of class?

* Reach out on IntelliCopilot

* NOTE: We will be using IntelliCopilot as our main form of
communication for assignments

A

i l"“ - = L]
é ' |ntelllcop||0t Visit through the link on Canvas
2

What is CS 1077

= The CS 106 series teaches you how to solve problems as a

SResoUrce: s
a5 PI‘OgI‘am‘;:at programmer
M krade ‘ e LTS |
Fing ake \fa%t = Many times CS 106 instructors had to say “just don’t worry about
oeeE-‘ ll T“ Y that” or “it probably doesn’t make sense why that happens, but
- 111E) . S0 . .
- FunCtiohy: ignore it for now” or “just type this to fix it
eASS:
: AS Slg N = CS 107 finally takes you behind the scenes
C d I{ eed
omman our
Work \)Thdenf = How do things really work in there?
A
.)1rectoxl‘y Lype ack
X AN ane — Louru(e > It's not quite down to hardware or physics/

Ln}ﬁ Od More™ electromagnetism (those will have to stay even further

M th” behind the scenes for now!)
que t:l.on
R‘u_n > It's how things work inside Python/C++ (we will explore from
TLeO%{t C), and how your programs map onto the components of
iiEwer computer systems
Hel
orum -'xf-t Here

all

tput

esotirce

T ?rOgram
sdiile @i—?‘i?ﬁé
G db fxfffef\ SSl gn
commaiid Qg O @ lHour-
UOr'k Up
Dir eCT OI aclf :
LXAam: %
111e Ode ,OSI}; e
Myth
RUII
Test
Help

OI'LH" 7

CS107 Learning

The goals for CS107 are for students to gain mastery of

) writing C programs with complex use of memory and pointers
) an accurate model of the address space

) strong understanding of the compile/runtime behavior of C
programs

to achieve competence in

> translating C to/from assembly

) writing programs that respect the limitations of computer arithmetic
) identifying bottlenecks and improving runtime performance

) writing code that correctly ports to other architectures

) working effectively in UNIX development environment

and have exposure to
» a working understanding of the basics of computer architecture
» understanding compilers and disassemblers
» understand the semantics of assembly with respect to stack layout

Meet the Instructors

Adam Keppler Olayinka Adekola (Ola) Ben Yan
(Co-Instructor) (Co-Instructor) (Course Assistant)
akeppler@stanford.edu oadekola@stanford.edu bbyan@stanford.edu

Textbook(s)

 Computer Systems: A Programmer’s Perspective
by Bryant & O’Hallaron, 3™ Edition

3" edition matters — important updates to content

e Stanford Library has generously scanned all readings
for CS107 under “fair use” (private study, scholarship, —
research). [Canvas -> Files]. Please do not distribute.

* If you want more context, you may want to purchase Full textbook

a full copy {} For CS107-specific readings

* A C programming reference of your choice

* The C Programming Language by Kernighan and
Ritchie (free link on course website Resources page)

e Other C programming books, websites, or reference
sheets

The textbooks are a {HE

very good resources cG
. . |
in this course! PROCRAMMING

BRIAN W KERNCHAN
DENNES M RITOHE

C Programming Language
9

Course Reader

There iIs a course reader, which condenses
much of the material for the course:

https.//stanford.edu/~cgregg/cqgi-bin/107-reader

CS 107
READER

- If you find typos, let us know!

S TANFORD COMPUTER SCIENCE DE PAR TMENT

Course Structure

* Lectures: understand concepts, see demos

* Assignments: build programming skills, synthesize lecture/lab
content

* Labs: learn tools, study code, discuss with peers Great preview of
homework!

21

Course Overview

Bits and Bytes - How can a computer represent integer numbers?

Chars and C-Strings - How can a computer represent and manipulate
more complex data like text?

Pointers, Stack and Heap — How can we effectively manage all types
of memory in our programs?

Generics - How can we use our knowledge of memory and
data representation to write code that works with any data

type?

. Assembly - How does a computer interpret and execute C programs?

Heap Allocators - How do core memory-allocation
operations like malloc and free work? 13

ok 40% Assignments

* 10% Lab Participation

e 159, Midterm Exam (7/16)

* 10% Heap Allocator(Final Project)
3 15% Final Exam (8/15)

10% Lecture Participation

13

ok 40% Assignments

* 10% Lab Participation

e 159, Midterm Exam (7/16)

* 10% Heap Allocator(Final Project)
3 15% Final Exam (8/15)

10% Lecture Participatio

Late Days

 Due to the fast pace of this course, there are no late days
* |nstead, you can submit late with an assignment cap
 assignment turned in 1 day late will receive a 95% cap
e assignment turned in 2 days late will receive a 90% cap
 we will not work that is more than 2 days late (unless OAE)

Exceptions:
e assign0 no cap on late submission
e assignb no late submissions accepted

21

OAE Accommodations

If you have OAE accommodations, please fill out this form:
https://forms.gle/dDx2EdhaVYDz2ihq6

This Is also on the course website and Ed!

Non-OAE accommodations — reach out via Email

21

Stanford Honor Code

* The Honor Code is an undertaking of the students, individually and collectively:

* that they will not give or receive aid in examinations; that they will not give or receive unpermitted aid in class
work, in the preparation of reports, or in any other work that is to be used by the instructor as the basis of grading;

* that they will do their share and take an active part in seeing to it that others as well as themselves uphold the
spirit and letter of the Honor Code.

* The faculty on its part manifests its confidence in the honor of its students by refraining from proctoring examinations
and from taking unusual and unreasonable precautions to prevent the forms of dishonesty mentioned above. The faculty
will also avoid, as far as practicable, academic procedures that create temptations to violate the Honor Code.

* While the faculty alone has the right and obligation to set academic requirements, the students and faculty will
work together to establish optimal conditions for honorable academic work.

see also: http://honorcode.stanford.edu/

It is your responsibility to ensure you have read and are familiar with the honor code guidelines posted on the main

page of the CS107 course website. Please read them and come talk to us if you have any questions or concerns.
17

http://honorcode.stanford.edu/

Honor Code and CS107

* Please help us ensure academic integrity:
* Indicate any assistance received on HW (books, friends, internet, ChatGPT, etc.).
* Do not look at other people's solution code or answers
* Do not give your solutions to others or post them on the web or our ED forum.
* Report any inappropriate activity you see performed by others.

e Assignments are checked regularly for similarity with help of software tools.
* If you need help, please contact us and we will help you.

 We do not want you to feel any pressure to violate the Honor Code in order to
succeed in this course.

* |f you realize that you have made a mistake, you may retract your submission to
any assignment at any time, no questions asked.

https://cs107.stanford.edu/collaboration

18

Always Cite Your Sources

* The world has an increasing number of resources available from:
* Documentation

e Stack Overflow
e ChatGPT
e Medium

e IntelliCopilot
e And More

* Increasingly Important to Cite Sources!

* Please tag sources that you used either in the README or top of the relevant
file.

Lecture Participation

In-Class Attendance is required for all non-CGOE students

* During the lectures, there will be interactive questions

* Some of the questions may encourage you to work with your neighbor

* Lecture Attendance begins tomorrow but let’s do a trial run

Remote Participation (Non-CGOE)

* If you need to participate in CS 107 remotely, please fill out this form:
https://forms.gle/QmhtKd57moe3GQuz7

* Even if you have already reached out to the course staff, you MUST submit this
form

https://forms.gle/QmhtKd57moe3GQuz7

* Unix: a set of standards and tools commonly used in software

development.
* macOS and Linux are operating systems built on top of Unix

* You can navigate a Unix system using the command line (“terminal”)
* Every Unix system works with the same tools and commands

[] lectures — «bash — BOW24
T g=-2:~ nicktroccoli$ od Developer/CS107% Winter™ 18-19/
5 i B-19 ni colis cd W/ lectures)

(n e g

[f 17=lecture.pdf
ecture, pd 14-1 FE . pd F
15-lecture.
16-lecture.pdf

4

TE:EaEaaEETE
e R Ao =
Al o1

Bt XN

22

What is the Command Line?

* The command-line is a text-based interface (i.e., terminal interface)
to navigate a computer, instead of a Graphical User Interface (GUI).

» o lectures — -bash — B0x24
® o loctures Nick-Troccolis-MacBook-Pro-2:~ nicktroccolid cd Developer/C5187% Winterh 18-19/
¢ E ool @l Nick=Troccolis-MacBook-Pro-2:C51087 Winter 18-19 nicktroccolil cd WWW/lectures/

Nick-Troccolis-MacBook-Pro-2:lectures nicktroccolid ls

S el = . B = @1-lecture.pdf @5-lecture.pdf @9-lecture.pdf 13-lecture.pdf 17-lecture.pdf
A Aopications E R E E 5 E s E i @2-lecture.pdf @E—'Le-:tur‘e.pdf 18-lecture.pdf 14—'I.ectur'e.pdf

@3-lecture.pdf @7-lecture.pdf 11-lecture.pdf 15-lecture.pdf
© Downloads B4-lecture.pdf 68&-lecture.pdf 12-lecture.pdf 16-lecture,pdf

™ Developer Ol-lecture.pdf O2-lecture.pdf 03-lecture.pdf Od-lecture.pdf 05-lecture.pdf Wick-Troccolis-MacBook-Pro-2:lectures nicktroccolil

@) Airdrop

J7 Music E — E e E i E R E E
{7 Desktop
@ Pictures 06-lecture.pdf 07-lecture.pdf 08-lecture.pdf 09-lecture.pdf 10-lecture.pdf
H Movies
& Recents - - -
{3} nicktroccoli E - E o E —- E = E s

iCloud N-lecture.pdf 12-lecture.pdf 13-lecture.pdf 14-lecture.pdf 15-lecture.pdf
& iCloud D... @
%) Documents = =

17 fems, 386,51 GB avallable —

Graphical User Interface Text-based
interface 23

Command Line Vs. GUI

Just like a GUI file explorer interface, a terminal interface:

* shows you a specific place on your computer at any given
time.

* lets you go into folders and out of folders.
* |lets you create new files and edit files.

* lets you execute programs.

' (= - o-

A Acpicatioms t E E [!

© Dowricads

" Developer [y Foe——— N TP—— [5 powe—— 04- lecture pat 5 ectoe oot
13 e —_— — - — o
£ Deshtop E_' E—‘ E_' [— E—.
Pt 00-bex Ordectrepd! OBdecturepd! Of-lecturepdl ¥0decture pdl
1 vovies

& fecents - = o=l
) nickvoccon [[[l l
+ e 12 lechure pat 3 bechuore 0 18 Sechrn oot 16 Sechure ot

2 Kk Y

e t -— P

Graphical User Interface Command-line interface 45

Why Use Unix / the Command Line?

* You can navigate almost any device using the same tools and commands:
* Servers

* Laptops and desktops
 Embedded devices (Raspberry Pi, etc.)
* Mobile Devices (Android, etc.)

* Used frequently by software engineers:
* Web development: running servers and web tools on servers
* Machine learning: processing data on servers, running algorithms

* Systems: writing operating systems, networking code and embedded software
* Mobile Development: running tools, managing libraries
 And more...

 We'll use Unix and the command line to implement and execute our

programs. N

Unix Commands To Try

e cd — change directories (..)
* |Is — list directory contents
* mkdir — make directory

* vim — open text editor

* rm —remove file or folder
* man — view manual pages

See the course website
for more commands and a
complete reference.

26

Learning Unix and the Command Line

e Using Unix and the command line can be intimidating at first:
* It looks retro!
 How do | know what to type?

* It’s like learning a new language:
» At first, you may have to constantly look things up (resources on course website!)

 It's important to spend as much time as possible (during labs and assignments)
building muscle memory with the tools

27

Plan For Today

* [Introduction + Syllabus

* Unix?

e C101 (please review the skipped slides)
e Bits and Bytes

28

Programming Language Popularity

TIOBE Programming Community Index
Source: www .tiobe com

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022

we Python e= C w= C++ == Java == C# == VisualBasic == JavaScript == PHP SQL Assembly language

* C has consistently been the most or 2"d most popular language since 1988!

The C Language: History

Birthdate around 1970

Created to make writing Unix (the OS itself) and tools for Unix easier

Common Ancestor to most Programming Languages
2 Especially C++/Java family of languages

Design principles:

» Small, simple abstractions of hardware

» Minimalist aesthetic

» C Focuses on:
« Efficiency and minimalism
» C Sacrifices:

« Safety (unlike Java/Python)

« Convenient high-level services and abstractions (which are commonly found Java, Python, .,

C++)

Ac the common ance<tor it inenired eafar eveteme increaced ahetraction and hiaher level featiirec

C vs. C++ and Java

C Limitations:

They all share:

* Syntax * No advanced features like operator overloading,
* Basic data types default arguments, pass by reference, classes and

, , , objects, Abstract Data Types, etc.
e Arithmetic, relational, and

logical operators * Standard Libraries offer core functionality rather
than nice wrappers or syntactic sugar.

* Small language means small footprint on a
system.

* No runtime checks (this may cause severe
security vulnerabilities and bugs !)

Programming Philosophies

Functional Programming (FP) — Programming Philosophy that seeks to avoid using state,

preferring functions with no side effect, data immutability, and thread-safe code.
C supports some functional elements, but is not a functional programming language (FPL).

Procedural Programming (PP) — About creating procedures or ‘scripts’ using functions to

setup a series of tasks or steps to complete.
C is consider the quintessential Procedural Programming Language.

Object Oriented Programing (OOP) — The idea that we can create objects that contain and
maintain both data and code in the form of fields (attributes/methods). There are also
interactions between the objects such as inheritance, encapsulation, abstraction, and
polymorphism.
Unlike Python/C++/Java, Cis not an Object Oriented Language and does not have a notion of
objects.

Programming Language Philosophies

Cis procedural: you write functions, rather than define new variable types
with classes and call methods on objects.

Programming Philosophy is a Spectrum: Most major languages have
elements of multiple philosophies, while some occasionally epitomize a
specific philosophy.

Quintessential Examples:
LISP - Functional Programming
Java - Object Oriented Programming
C — Procedural Programming

* Many tools (and even other languages, like Python!) are built with C.

e Cis the language of choice for fast, highly efficient programes.
e Cis popular for systems programming (operating systems, networking, etc.)

* Clets you work at a lower level to manipulate and understand the
underlying system.

e Modern alternatives to C are emerging (e.g., Rust), but they’re more
complicated and not quite ready for those new to systems programming
(but find me outside of class and I’'m happy to talk about them :)

34

The Heart of C

* C helps those who help themselves

* Cis meant to give fundamental tools that expose the computer’s internal workings as
much as possible, without becoming Assembly

* Assuch Cis fundamentally about data, its storage, and its manipulation

* Every program is technically data itself, with C it is possible to write self-editing
programs

* There are no objects in C only data

* Types in Cis an illusion meant to provide convenience to the user and help with
organization

Types iIn C: Static & Strong Typing

* Atypein Cdefines how much memory is stored with the associated data

* Italso defines whether the value is raw data or a ‘pointer’ to another location in memory

* We will talk extensively more about pointers in the coming weeks.

* For now, lets take a look at the fundamental non-pointer types:
* int—recordsan integer value(...,-3,-2,-1,0, 1, 2,3, ...) in binary
* float —records a decimal value (-0.3, 0, 0.3, 1.0, 3.14, etc.) in binary
* If you are wondering how this happens, it is a great question! We will cover itin a later section
* char— Any English letter (uppercase, lowercase, numbers, and some control codes)

* bool —Technically as small as a single bit 0 or 1, compilers sometimes store it as a char due to restrictions on byte-alignment of memory

* While the above are the core types, they come in different flavors. Flavors are arranged by:
* How much room, you have to store the information (it takes more room to store 1024 than 4)
* Storage Format, is the value always positive? Do you need a negative? A Decimal?

* Does it hold data or point to data? (Pointers)

Your First C Program

Assign 0: out today and due Friday 6/27

Note: Short turn-around to make the rest of the quarter easier
Need more time?

Need help on C syntax or writing C code?

Slides on website

Lecture code on myth machines
Office Hours

IntelliCopilot

Your First C Program

/*
* hello.c
* This program prints a welcome message
* to the user.

*/
#include <stdio.h> // for printf

int main(int argc, char *argv[]) {

printf("Hello, world!\n");
return 0;

38

Our First C Program

7 A
* hello.c

* This program prints a welcome message
* to the user.

\/
#include <stdio.h>[// for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

Program comments
You can write block or inline comments.

39

Our First C Program

* hello.c
* This program prints a welcome message
* to the user.
*/
[#include <stdio.h>]/ for printf

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
return 0;

} Import statements
C libraries are written with angle brackets.

Local libraries have quotes:
#include "lib.h"

40

Our First C Program

* hello.c

* This program prints a welcome message

* to the user.
*/
#include <stdio.h> // for printf

printf("Hello, world!\n");
return 0;

/int main(int argc, char *argv[]) {)

J

Main function — entry point for the program

Should always return an integer (0 = success)

41

Our First C Program

* hello.c
* This program prints a welcome message
* to the user.

*/
#include <stdio.h> // for printf

int main(int argc, char *argv[]ﬂ {
printf("Hello, worldT\n");

return 0;

Main parameters — main takes two
parameters, both relating to the command line
¥ arguments used to execute the program.

argc is the number of arguments in argv
argv is an array of arguments (char * is C string)

62

Our First C Program

/*
* hello.c
* This program prints a welcome message
* to the user.
*/
#include <stdio.h> // for printf

int main(int argc, char *argv[]) {
[printf("Hello, world!\n");]
return 0;

printf — prints output to the screen

43

Console Output: printf

printf(text, argl, arg2, arg3,...);

printf makes it easy to print out the values of variables or expressions.

If you include placeholders in your printed text, printf will replace each
placeholder in order with the values of the parameters passed after the
text.

%s (string) %d (integer) %f (double)

// Example
char *classPrefix = "CS";

int classNumber = 107;
printf("You are in %s%d", classPrefix, classNumber);

// You are in (CS107

44

Familiar Syntax

int x =42 + 7 * -5; // variables, types
double pi = 3.14159;
char ¢ = 'Q’; /* two comment styles */
for (int i = ©; i< i++) { // for loops
10; if (1 % 2 == 0) // if statements
{ x += 1i;
}
}
while (x > @ & c == 'Q' || b) { // while loops, logic
X =X/ 2;
if (x == 42) {
return 0;
}
}

binky(x, 17, c); // function call 65

Boolean Variables

To declare Booleans, (e.g. bool b =), you must include stdbool.h:

#include <stdio.h> // for printf
#include <stdbool.h> // for bool

int main(int argc, char *argv[]) {
bool x = 5 > 2 & binky(argc) > 0;
if (x) {
printf("Hello, world!\n");
} else {
printf("Howdy, world!\n");

}

return 0;

Boolean Expressions

C treats a nonzero value as true, and a zero value as
false:

#include <stdio.h>

int main(int argc, char *argv[]){
int x = 5;
if (x) { // true

printf("Hello, world!\n");
} else {
printf("Howdy, world!\n");

¥

return 0; 67

Writing, Debugging and Compiling

We will use:

* the vim text editor to write our C programs

: — Now
* the make tool to compile our C programs

\

)

* the gdb debugger to debug our programs

* the valgrind tools to debug memory errors — Next week
and measure program efficiency

48

Working On C Programs

* ssh —remotely log in to Myth computers

* Vim — text editor to write and edit C programs

* Use the mouse to position cursor, scroll, and highlight text
e Ctl-x Ctl-s to save, Ctl-x Ctl-c to quit

* make — compile program using provided Makefile
 ./myprogram — run executable program (optionally with arguments)
* make clean — remove executables and other compiler files

* Lecture code is accessible at /afs/ir/class/cs107/lecture-

code/lect[N]

* Make your own copy: cp -r /afs/ir/class/cs107/lecture-code/lect[N] lect[N]
* See the website for even more commands, and a complete reference.

49

Assignment O:

Assignment page:
https://web.stanford.edu/class/cs107/assign0/

Assignment already released, due Friday, 6/27

Lab Sign Up

Preference form is now open

Labs will begin week this week!

Lab signup is based on submitted preferences, otherwise you'll
be assigned. Please submit by this tomorrow.

Plan For Today

* [Introduction + Syllabus

* Unix?

e C101 (please review the skipped slides)
e Bits and Bytes

52

g o 3 241
01100

LA) l)lO(')(ltlllt
AL LR 00 n:'||.|11r1
un"llxxub:xuxs'axlxx
OI3i0plinidnsl
ﬂO('lOl)Ol L)

01

l a1

ooy :le!xt.]ux
Ub!’ll‘)ll. 11siny

) 00 [

2119

ll.-‘ll

Jdl.
.

0313311330
OELLIEI01E300
(“"I 11

CILA

i)
(‘ll’llllllf'(|l'-f
0

23002910
lrl.ll
.1|(

LEL0d
Jl..l)(-)lt-lll(
19011990

53

Computers are good at detecting "off" or "on"

We have lots of ways to tell the difference between two different states:

Clockwise / Counterclockwise
True or False

_ Yes or No
Lightbulb off /

on

Punchcard hole / no
hole

Computers are good at detecting "off" or "on"

Electronic computers are built using transistors. A transistor can be set up to either be
"off" or "on" -- this gives us our 0 and 1!

G

Computers are built around the idea of two states: "on" and "off". Transistors
iImplement this in hardware, and bits represent this in software.

One Bit At A Time

* We can combine bits, like with base-10 numbers, to represent more data.
8 bits = 1 byte.

 Computer memory is just a large array of bytes! It is byte-addressable; you can’t
address (store location of) a bit; only a byte.

 Computers still fundamentally operate on bits; we have just gotten more creative

about how to represent different data as bits!
* Images
* Audio
* Video
* Text
* And more... 56

How does a bit do so much?

* Information can be reshaped
 Numbers can have the same value but in different representations

 Typically, we use base 10 in everyday life (most people attribute this to humans having
10 fingers, but humans have used other # systems)

« Base 10 hasten digits: 0123456789

« Base 2 has two digits: 0 1

« We can represent up to ten numbers with one digit in base 10
« We can represent up to two numbers with one digit in base 2

* If we want to represent more numbers, we add more digits regardless of the base.

5934

Digits 0-9 (base-10)
4 Columns

5934

t t+ t 1

e&’ tens ones

=5*1000 + 9*100 + 3*10 + 4*1

59

=5%10°+9*102+ 3*10 " + 4*10°

60

.

5934

10

2X

1011

Digits 0-1 (base-2)

62

1011

=123+ 022+ 12"+ 1*2° = 11,

63

Most significant bit (MSB) Least significant bit (LSB)

~. e
1011

eights fours twos ones

= 1*8 + 0*4 + 1*2 + 151 = 11,

64

Base 10 to Base 2

Question: What is 6 in base 2?
* 2 Strategies:
1. Build the number from the left (Find the most significant bit first)

2. Build the number from the left (Find the least significant bit first)

65

Practice: Base 2 to Base 10

What is the base-2 value 1010 in base-10?
a) 20

b) 101

c) 10

d) 5

e) Other

66

Practice: Base 10 to Base 2

What is the base-10 value 14 in base 2?
a) 1111
b) 1110
c) 1010
d) Other

67

Byte Values

* What is the minimum and maximum base-10 value a single byte (8 bits)
can store?

* Please answer minimum first

68

Byte Values

* What is the minimum and maximum base-10 value a single byte (8 bits)
can store? minimum =0 maximum = ?

69

Byte Values

* What is the minimum and maximum base-10 value a single byte (8 bits)
can store? minimum =0 maximum = ?

11111111

6 5 4 3 2

2%:

70

Byte Values

* What is the minimum and maximum base-10 value a single byte (8 bits)
can store? minimum =0 maximum = ?

11111111

6 5 4 3 2
e Strategy 1: 1*27+ 1%26+ 1%2>+ 1%24+ 1%23+ 1*22+ 1*21+ 1*20= 255

2%:

71

Byte Values

* What is the minimum and maximum base-10 value a single byte (8 bits)
can store? minimum =0 maximum = 255

11111111

6 5 4 3 2
o Strategy 1: 1*27+ 1%26+ 1*2°+ 1*24+ 1*23+ 1%22+ 1*21+ 1*20= 255
 Strategy 2: 28— 1 =255

2%:

72

Byte Values

* How about minimum and maximum base-10 value for 16 bits?
minimum =0 maximum-="?

73

Multiplying by Base

1450 x 10 = 14500
1100,x 2 =11000

Key Idea: inserting 0 at the end multiplies by the base!

NOTE: Inverse is also true, multiplying by the base addsa 0

Dividing by Base

1450/ 10 = 145
1100,/ 2 = 110

Key Idea: removing 0 at the end divides by the base!

NOTE: Inverse is also true, dividing by the base removes a column

75

Combinations of bits can encode anything and represent

everything

ASCII Code: Character to Binary

0 0011 0000 o 0100 1111 m 0110 1101

1 001l 0001 P 0101 0000 n 0110 1110

2 o011l 0010 0 0101 0001 o 0110 1111

3 0011 0011 R 0101 0010 P 0111 0000

4 0011 0100 S 0101 0011 o 0111 0001

We can enCOde anything 5 001l 0101 T 0101 0100 r 0111 0010
g 0011 0110 U 0101 0101 s 0111 0011

we Want W|th bItS E g 7 001l 0111 v 0101 0110 t 0111 0100
B 8 001l 1000 W 0101 0111 u 0111 0101

the ASC“ Character Set_ 9 0011 1001 X 0101 1000 v 0111 0110
A 0100 0001 Y 0101 1001 w 0111 0111

E 0100 0010 z 0101 1010 x 0111 1000

c 0100 0011 a 0110 0001 ¥ 0111 1001

D 0100 0100 b 0110 0010 z 0111 1010

E 0L00 0101 e 0110 0011 ; 0010 1110

F 0100 0110 d 0110 0100 " 0010 o111

G 0100 0111 e 0110 0101 : 0011 1010

H 0100 1000 £ 0110 0110 7 0011 1011

I 0100 1001 g 0110 0111 ? o011 1111

J 0100 1010 h 0110 1000 i 0010 0001

K 0100 1011 I 0110 1001 ' 0010 1100

3 0100 1100 j 0110 1010 " 0010 0010

M 0100 1101 k 0110 1011 { 0010 1000

N 0100 1110 i 0110 1100 } 0010 1001

space 0010 QQ00Q

Questions?

	Slide 1: CS107, Lecture 1 Welcome to CS107!
	Slide 2: Plan For Today
	Slide 3: Interactive Classes
	Slide 4: Asynchronous Questions
	Slide 5: Asynchronous Questions
	Slide 6: What is CS 107?
	Slide 7: CS107 Learning Goals
	Slide 8: Meet the Instructors
	Slide 9: Textbook(s)
	Slide 10: Course Reader
	Slide 11: Course Structure
	Slide 12: Course Overview
	Slide 13: Grading
	Slide 14: Grading
	Slide 15: Late Days
	Slide 16: OAE Accommodations
	Slide 17: Stanford Honor Code
	Slide 18: Honor Code and CS107
	Slide 19: Always Cite Your Sources
	Slide 20: Lecture Participation
	Slide 21: Remote Participation (Non-CGOE)
	Slide 22: What is Unix?
	Slide 23: What is the Command Line?
	Slide 24: Command Line Vs. GUI
	Slide 25: Why Use Unix / the Command Line?
	Slide 26: Unix Commands To Try
	Slide 27: Learning Unix and the Command Line
	Slide 28: Plan For Today
	Slide 29: Programming Language Popularity
	Slide 30: The C Language: History and Background
	Slide 31: C vs. C++ and Java
	Slide 32: Programming Philosophies
	Slide 33: Programming Language Philosophies
	Slide 34: Why C?
	Slide 35: The Heart of C
	Slide 36: Types in C: Static & Strong Typing
	Slide 37: Your First C Program
	Slide 38: Your First C Program
	Slide 39: Our First C Program
	Slide 40: Our First C Program
	Slide 41: Our First C Program
	Slide 42: Our First C Program
	Slide 43: Our First C Program
	Slide 44: Console Output: printf
	Slide 45: Familiar Syntax
	Slide 46: Boolean Variables
	Slide 47: Boolean Expressions
	Slide 48: Writing, Debugging and Compiling
	Slide 49: Working On C Programs
	Slide 50: Assignment 0: Unix!
	Slide 51: Lab Sign Up
	Slide 52: Plan For Today
	Slide 53: Bits
	Slide 54: Computers are good at detecting "off" or "on"
	Slide 55: Computers are good at detecting "off" or "on"
	Slide 56: One Bit At A Time
	Slide 57: How does a bit do so much?
	Slide 58: Base 10
	Slide 59: Base 10
	Slide 60: Base 10
	Slide 61: Base 10
	Slide 62: Base 2
	Slide 63: Base 2
	Slide 64: Base 2
	Slide 65: Base 10 to Base 2
	Slide 66: Practice: Base 2 to Base 10
	Slide 67: Practice: Base 10 to Base 2
	Slide 68: Byte Values
	Slide 69: Byte Values
	Slide 70: Byte Values
	Slide 71: Byte Values
	Slide 72: Byte Values
	Slide 73: Byte Values
	Slide 74: Multiplying by Base
	Slide 75: Dividing by Base
	Slide 76: Combinations of bits can encode anything and represent everything
	Slide 77

