CS107, Lecture 10

Introduction to Assembly

Reading: B&O 3.1-3.4

This document is copyright (C) Stanford Computer Science, Lisa Yan, and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Marty Stepp, Cynthia Lee, Chris Gregg, and others.

What is Assembly Code?

- Computers execute "machine code,” which is a
sequence of bytes that encode low-level operations for
manipulating data, managing memory, read and write
from storage, and communicate with networks.

- The "assembly code" for a computer is a textual
representation of the machine code giving the
individual instructions to the underlying machine.

What is Assembly Code?

- gcc generates assembly code from C code

- Assembly is raw — there is no type checking, and the
instructions are simple. It is unique to the type of
processor (e.g., the assembly for your computer cannot
run on your phone)

- Humans can write assembly (and, in fact, in the early days
of computing they had to write assembly), but it is more
productive to be able to read and understand what the
compiler produces, than to write it by hand.

- gcc is almost always going to produce better optimized
code than a human could, and understanding what the
compiler produces is important.

X806 Assembly

=peesb i,

ittt it

* The Intel-based computers we use are direct descendants of
Intel's 16-bit, 1978 processor with the name 8086.

* Intel has taken a strict backwards-compatibility approach to new
processors, and their 32- and 64-bit processors have built upon
the original 8086 Assembly code.

* These days, when we learn x86 assembly code, we have to keep
this history in mind. Naming of "registers," for example, has
historical roots, so bear with it.

Machine-Level Code

- Before we look at some assembly code, let's talk about
some things that have been hidden from us when writing
C code.

- Machine code is based on the "instruction set
architecture” (ISA), which defines the behavior and layout
of the system. Behavior is defined as if instructions are
run one after the other, and memory appears as a very
large byte array.

Machine-Level Code
- New things that have been hidden:

The program counter (PC), called "$rip" indicates the address of the next
instruction ("r"egister "i"nstruction "p"ointer". We cannot modify this directly.

The "register file" contains 16 named locations that store 64-bit values.

Registers are the fastest memory on your computer. They are not in main
memory, and do not have addresses. You cannot pass a pointer to a
register, but a pointer may hold a register as its value.
Registers can hold addresses, or integer data. Some registers are used to
keep track of your program's state, and others hold temporary data.
Registers are used for arithmetic, local variables, and return values for
functions.
The condition code registers hold status information about the most recently
executed arithmetic or logical instruction. These are used to control program
flow — e.qg., if the result of an addition is negative, exit a loop.
There are vector registers, which hold integer or floating point values.

Machine-Level Code

Unlike C, there is no model of different data types, and memory is simply a large,
byte-addressable array.

There is no distinction between signed and unsigned integers, between different
types of pointers, or even between pointers and integers.

A single machine instruction performs only a very elementary operation. For

example:
there is an instruction to add two numbers in registers. That's all the instruction

does.
there is an instruction that transfers data between a register and memory.
there is an instruction that conditionally branches to a new instruction address.

Often, one C statement generates multiple assembly code instructions.

Learning Goals

* Learn what assembly language is and why it is important
* Become familiar with the format of human-readable assembly and x86
* Learn the mov instruction and how data moves around at the assembly level

Lecture Plan

* Overview: GCC and Assembly

* Demo: Looking at an executable

e Registers and The Assembly Level of Abstraction

e The mov Instruction

e Live Session

cp -r /afs/ir/class/csl107/lecture-code/lectlo .

11
24
35
57

Lecture Plan

* Overview: GCC and Assembly

* Demo: Looking at an executable

e Registers and The Assembly Level of Abstraction

e The mov Instruction

e Live Session

cp -r /afs/ir/class/csl107/lecture-code/lectlo .

11
24
35
57

Bits all the way down

Data representation so far

* Integer (unsigned int, 2’s complement signed int)
e char (ASCIl)

* Address (unsigned long)

* Aggregates (arrays, structs)

The code itself is binary too!

* Instructions (machine encoding)

11

* GCCis the compiler that converts your human-readable code into machine-
readable instructions.

* C, and other languages, are high-level abstractions we use to write code
efficiently. But computers don’t really understand things like data structures,
variable types, etc. Compilers are the translator!

* Pure machine code is 1s and Os — everything is bits, even your programs! But
we can read it in a human-readable form called assembly. (Engineers used to
write code in assembly before C).

* There may be multiple assembly instructions needed to encode a single C
instruction.

* We're going to go behind the curtain to see what the assembly code for our
programs looks like.

12

Lecture Plan

* Overview: GCC and Assembly

* Demo: Looking at an executable

e Registers and The Assembly Level of Abstraction

e The mov Instruction

e Live Session

cp -r /afs/ir/class/csl107/lecture-code/lectlo .

11
24
35
57

13

Demo: Looking at an
Executable (objdump -d)

Our First Assembly

int sum_array(int arr[], int nelems) {
int sum = 0;
for (int 1 = @; i < nelems; i++) {
sum += arr[i];
}

return sum;

¥

What does this look like in assembly?

15

Our First Assembly

int sum_array(int arr[], int nelems) {
int sum = 0;
for (int 1 = 9; i < nelems; i++) {
sum += arr[i];

}
return sum;
} make
objdump -d sum
0000000000401136 <sum_array>:
401136: b8 00 00 00 00 mov $0x0, %eax
40113b: ba 00 00 00 00 mov $0x0, %edx
401140: 39 {0 cmp %esi,%eax
401142: 7d @b jge 40114f <sum_array+0x19>
401144: 48 63 8 movslq %eax,%rcx
401147 : 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 O o1 add $0x1, %eax
40114d: eb f1 jmp 401140 <sum_array+o0xa>
40114f: 89 do mov %edx, %eax

401151: c3 retq 13

Our First Assembly

0000000000401136
401136: b8 00
40113b: ba 00
401140: 39 f0o
401142: 7d @b
401144: 48 63
401147: 03 14
40114a: 83 cO
40114d: eb f1
40114f: 89 do
401151: c3

<sum_array>:

00 00 00
00 00 00

Cc8
8t
01

mov
mov
cmp
jge
movslq
add
add
jmp
mov
retqg

$0x0, %eax

$0x0, %edx

%esi,%eax

40114f <sum_array+0x19>
%eax, %rcx
(%rdi,%rcx,4),%edx
$0x1, %eax

401140 <sum_array+0xa>
%edXx, %eax

17

Our First Assembly

0000000000401136 <sum_array>:

This is the name of the function (same
as C) and the memory address where
the code for this function starts.

18

Our First Assembly

0000000000401136 <sum_array>:
401136:

40113b:
401140:
401142 ‘These are the memory addresses where

401144: each of the instructions live. Sequential

401147: . . S
401143 ‘ Instructions are sequentlal IN Memory.

40114d:
40114F:
401151:

19

Our First Assembly

0000000000401136 <sum_array>:

This is the assembly code:
“human-readable” versions of
each machine code instruction.

mov $0x0, %eax
mov $0x0, %edx
cmp %esi,%eax

jge 40114f <sum_array+0x19>
movslqg %eax,%rcx

add (%rdi,%rcx,4),%edx

add $0x1, %eax

jmp 401140 <sum_array+0xa>

mov %edX, %eax
etq

20

Our First Assembly

0000000000401136 <sum_array>:
b8 00 00 00 00

ba 00 00 00 00 ' This is the machine code: ray

;3 gg hexadecimal instructions,

418 63 8 representing binary as read by the

03 14 8f computer. Different instructions may
83 co a1 ' be different byte lengths.

eb f1 |

89 do

c3

21

Our First Assembly

0000000000401136
401136: b8 00
40113b: ba 00
401140: 39 f0o
401142: 7d @b
401144: 48 63
401147: 03 14
40114a: 83 cO
40114d: eb f1
40114f: 89 do
401151: c3

<sum_array>:

00 00 00
00 00 00

Cc8
8t
01

mov
mov
cmp
jge
movslq
add
add
jmp
mov
retqg

$0x0, %eax

$0x0, %edx

%esi,%eax

40114f <sum_array+0x19>
%eax, %rcx
(%rdi,%rcx,4),%edx
$0x1, %eax

401140 <sum_array+0xa>
%edXx, %eax

22

Our First Assembly

0000000000401136 <sum_array>:

40114a: 83 co 01 add $0x1, %eax

Each instruction has an
operation name (“opcode”).

23

Our First Assembly

0000000000401136 <sum_array>:

40114a: 83 c0O 01 add E@xl,%eax

Each instruction can also have
arguments (“operands”).

24

Our First Assembly

0000000000401136 <sum_array>:

40114a: 83 co 01 add $0x1, %eax

S[number] means a constant value,
or “immediate” (e.g. 1 here).

25

Our First Assembly

0000000000401136 <sum_array>:

40114a: 83 co o1 add $0x1, %eax

%[name] means a register, a storage
location on the CPU (e.g. edx here).

26

Lecture Plan

* Overview: GCC and Assembly 7
* Demo: Looking at an executable 11
* Registers and The Assembly Level of Abstraction 24
* The mov instruction 35

cp -r /afs/ir/class/csl107/lecture-code/lectlo .

27

Assembly Abstraction

e C abstracts away the low-level details of machine code. It lets us work using
variables, variable types, and other higher-level abstractions.

e C and other languages let us write code that works on most machines.
* Assembly code is just bytes! No variable types, no type checking, etc.
* Assembly/machine code is processor-specific.

 What is the level of abstraction for assembly code?

28

%rax

29

|
|
|
|

%rax

|
|
|
|

%rbx

|
|
|
|

%%rcx

|
|
|
|

%rdx

Registers

%%brsi

%rdi

Y%rbp

Y%rsp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

30

What is a register?

A register is a fast read/write memory
slot right on the CPU that can hold
variable values.

Registers are not located in memory.

Registers

* Aregister is a 64-bit space inside the processor.
* There are 16 registers available, each with a unique name.

* Registers are like “scratch paper” for the processor. Data being calculated or
manipulated is moved to registers first. Operations are performed on
registers.

* Registers also hold parameters and return values for functions.
* Registers are extremely fast memory!

* Processor instructions consist mostly of moving data into/out of registers and
performing arithmetic on them. This is the level of logic your program must be
in to execute!

32

Machine-Level Code

Assembly instructions manipulate these registers. For example:
* One instruction adds two numbers in registers

* One instruction transfers data from a register to memory

* One instruction transfers data from memory to a register

33

Computer architecture

registers accessed
by name

ALU is main
workhorse of CPU

Mamory bu ~\ memory needed

l

for program

Main hello, world\n execution

memory

1

Expansion slots for
other devices such

hello code | (stack, heap, etc.)
_/ accessed by address

Disk

| 1
. controller

as network adapters

CPU
4 Register file)
PC 'ALU
\ e <@ e %m bus
. | A /0
Bus interface | bridge
I/0O bus
USB Graphics 1
controller adapter
Mouse Keyboard Display

}

HED
Diskl

~
S —

hello executable disk/server stores program
storedondisk when not executing

34

GCC And Assembly

e GCC compiles your program — it lays out memory on the stack and heap and
generates assembly instructions to access and do calculations on those

memory locations.
* Here’s what the “assembly-level abstraction” of C code might look like:

C Assembly Abstraction

1) Copy x into register 1

1nt sum = X + y; 2) Copyy into register 2

3) Add register 2 to register 1
4) Write register 1 to memory for sum

35

Assembly

* We are going to learn the x86-64 instruction set architecture. This instruction
set is used by Intel and AMD processors.

* There are many other instruction sets: ARM, MIPS, etc.

36

Instruction set architecture (ISA)

A contract between program/compiler and hardware:
* Defines operations that the processor (CPU) can execute

e Data read/write/transfer operations

* Control mechanisms

Intel originally designed their instruction set back in 1978.
* Legacy support is a huge issue for x86-64

* Originally 16-bit processor, then 32 bit, now 64 bit.
These design choices dictated the register sizes
(and even register/instruction names).

Application program

Compiler OS
ISA
CPU design

Circuit design

Chip layout

37

Lecture Plan

* Overview: GCC and Assembly

* Demo: Looking at an executable

e Registers and The Assembly Level of Abstraction

* The mov Instruction

e Live Session

cp -r /afs/ir/class/csl107/lecture-code/lectlo .

11
24
35
57

38

The mov instruction copies bytes from one place to another;
it is similar to the assignment operator (=) in C.

mov src,dst

The src and dst can each be one of:

* Immediate (constant value, like a number) (only src) $9X194
o
* Register %rbx

Direct address exsees Ce

* Memory Location

(at most one of src, dst)
39

Operand Forms: Immediate

mov $0x104,

|

Copy the value
0x104 into some
destination.

40

Operand Forms: Registers

Copy the value in
register %rbx into
some destination.

mov %6rbx,

mov , %6rbx

Copy the value
from some source
into register %rbx.

41

Operand Forms: Absolute Addresses

Copy the value at
address 0x104 into
some destination.

mov 0x104,

mov , 0x104

\ Copy the value

from some source
into the memory at
address Ox104. so

Practice #1: Operand Forms

What are the results of the following move instructions (executed separately)?

For this problem, assume the value 5 is stored at address 0x42, and the value 8
is stored in %rbx.

1. mov $0x42,%rax
2. mov Ox42,%rax

3. mov %rbx, 0x55

40

Operand Forms: Indirect

Copy the value at the
address stored in register
%rbx into some destination.

/

mov (%rbx),
mov , (%rbx)

Copy the value from some source
into the memory at the address
stored in register %rbx. a1

Operand Forms: Base + Displacement

Copy the value at the
address (0x10 plus what is

stored in register %rax) into
some destination.

mov Ox10(%rax),
mov ,0x10(%rax)

Copy the value from some source
into the memory at the address (0x10
plus what is stored in register %rax).«

Operand Forms: Indexed

Copy the value at the address which is
(the sum of the values in registers %rax
and %rdx) into some destination.

mov (%rax,srdx),
mov , (%rax,%rdx)

Copy the value from some source into the
memory at the address which is (the sum of
the values in registers %rax and %rdx). 4

Operand Forms: Indexed

Copy the value at the address which is (the
sum of 0x10 plys the values in registers
%rax and %rdx) into some destination.

mov 0x10(%rax,%rdx),
mov ,0x10 (%rax, %»rdx)

Copy the value from some source into the
memory at the address which is (the sum of 0x10
plus the values in registers Y%rax and %rdx). 4

Practice #2: Operand Forms

What are the results of the following move instructions (executed separately)?
For this problem, assume the value Ox11 is stored at address Ox10C, OxAB is
stored at address 0x104, 0x100 is stored in register %rax and 0x3 is stored in

%rdx.

1. mov $0x42, (%rax)
2. mov 4(%rax),%rcx
3. mov 9(%rax,%rdx),%rcx

Imm(ry,, r;) isequivalenttoaddress Imm + R

[re] + R[ri]

__——
/]
Displacement: positive or Base: register Index: register
negative constant (if missing, = 0) (if missing, = 0) (if missing, =0) 4

Operand Forms: Scaled Indexed

Copy the value at the address which

Is (4. times the value in register
%rdx) into some destination.

mov (9 %de, 4) 9 The scaling factor

(e.g. 4 here) must
be hardcoded to
be either 1, 2, 4

mov » (5%rdx,4) ors

Copy the value from some source into the
memory at the address which is (4.times
the value in register %rdx). 46

Operand Forms: Scaled Indexed

Copy the value at the address which is
(4 times the value in register %rdx, plus
0x4), into some destination.

mov ox4(,%rdx,4),

mov ,0x4(,%rdx,4)

Copy the value from some source into the
memory at the address which is (4 times

the value in register %rdx, plus 0x4), <

Operand Forms: Scaled Indexed

Copy the value at the address which is (the
value in register %rax plus 2 times the value in

reqgister %rdx) into some destination.

mov (%rax,%rdx,2),
mov , (%rax,%rdx,2)

Copy the value from some source into the memory at

the address which is (the value in register %rax

plus 2 times the value in register %rdx). a8

Operand Forms: Scaled Indexed

Copy the value at the address which is (0x4 plus the
value in register %rax plus 2 times the value in
reqgister %rdx) into some destination.

mov Ox4(%rax,srdx,2),
mov ,0Xx4(%rax,%srdx, 2)

Copy the value from some source into the memory at
the address which is (Qx4 plus the value in register
Y%rax plus 2 times the value in register %rdx).

Most General Operand Form

Imm(r,,r;,s)
is equivalent to...

Imm + R[r,] + R[Pr;]*s

Most General Operand Form

Imm(r,, r;, S)isequivalentto
address Imm + R[r,] + Ru‘i]*s
/

7 \
L P
Displacement: Index: register
pos/neg constant (if missing, = 0)
(if missing, = 0) Base: regi if
a.se. register (i Scale must be
missing, = 0)

1,2,4, or 8
(if missing, = 1)

54

Operand Forms

Type Operand Value Name
Immediate $Imm Imm Immediate
Register T R[] Register
Memory Imm M[Imm] Absolute
Memory (1) MI[R[7:]] Indirect
Memory Imm(r-) M[Imm + R[r]] Base + displacement
Memory (r, 1) MI[R[r] + R[m#]] Indexed
Memory Imm(r~, 1) M[Imm + R[r] + R[r]] Indexed
Memory (1% S) M[R[r] . s] Scaled indexed
Memory Imm(, 13) M[Imm + R[] . s] Scaled indexed
Memory (r, 18, 5) M[R[r] + R[] . s] Scaled indexed
Memory Imm(r, 14, 5) M[Imm + R[r-] 4+ R[ry] .s] Scaled indexed

Figure 3.3 from the book: “Operand forms. Operands can denote immediate (constant) values, register values,

or values from memorv. The scaling factor s must be either. 1. 2. 4. or 8.

Practice #3: Operand Forms

What are the results of the following move instructions (executed separately)?
For this problem, assume the value Ox1 is stored in register %rcx, the value
Ox100 is stored in register %rax, the value 0x3 is stored in register %rdx, and
value Ox11 is stored at address Ox10C.

1. mov $0x42,0xfc(,%rcx,4)

2. mov (%rax,%rdx,4),%rbx
Imm(r,, rij, S)isequivalentto

address Imm + R[r,] + R[r;]*s

56

Goals of indirect addressing: C

Why are there so many forms of
indirect addressing?

We see these indirect addressing
paradigms in C as well!

Our First Assembly

int sum_array(int arr[], int nelems) { | We're 1/4t of the way to understanding assembly!

int sum = 0; What looks understandable right now?
for (int 1 = 9; i < nelems; i++) { Some notes:
sum += arr[i]; » Registers store addresses and values
} * mov src, dst copiesvalue into dst
return sum; e sizeof(int)is4
¥ * |nstructions executed sequentially
00000000004005b6 <sum_array>:
4005b6: ba 00 00 00 00 mov $0x0, %edx
4005bb: b8 00 00 00 00 mov $0x0, %eax
4005¢O: eb @9 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslqg %edx,%rcx
4005c5 : 03 04 8f add (%rdi,%rcx,4),%eax
ADOC R - Q2 2 N1 add $0x1, %edx A~
We’ll come back to this cmp %esi,%edx \‘?‘)
example in future lectures!]l 4005c2 <sum_array+exc>
repz retqg 55

Central Processing Units (CPUs)

Intel 8086, 16-bit
microprocessor
($86.65, 1978)

Raspberry Pi BCM2836
32-bit ARM microprocessor

($35 for everything, 2015)

Intel” Core™ jg

Intel Core i9-9900K 64-bit
8-core multi-core processor
(5449, 2018)

59

Assembly code in movies

Trinity saving the world by
hacking into the power grid
using Nmap Network
Scanning

The Matrix Reloaded, 2003

* Keep a resource guide handy ¥

* https://web.stanford.edu/class/cs107/resources/x86-64-reference.pdf

e B&O book:

e Canvas -> Files
-> Bryant_OHallaron_ch3.1-3.8.pdf

BING OVERSEAS
STUDIES PROGRAM

* It’s like study abroad:

 You took LANG 1A

* Your tools give too much/too little information
(a book reference, a rudimentary translator)

* No one expects you to speak the language

fluently...
e ...But the more you internalize,

180 Chapter 3 Machine-Level Representation of Programs

Vided |
ot ate-

(et Cen M,
[_Can tag,
M uf’ﬂ Ca"ee%
L Lo s,
) P
) .

H
L

M
§
i
‘o

Hid

]xm [%r10d I | [
[xru]Em [r11w [t J] cote
I%rﬂ ’;ma [#r12e [rran | catoe saes
[xﬁT _ [z:m [tex13w Caloo saeg

e [t e [e)] oo
i
@",4 D i i ! 'l%riSd Yix16u Calleo saved

Figure 3.2 Integer registers. The low-order portions of all 16 registers can be accessed
as byte, word (16-bit), double word (32-bit), and quad word (64-bit) quantities.

arguments, returning values from functions, and storing local a}nd tqmporap':;‘;
We will cover these conventions in our presentation, especially in Section >
where we describe the implementation of procedures.

3.4.1 Operand Specifiers
ce values 0%

Most instructions have one or more operands specifying the soure
in performing an operation and the destination location into whic!

h loplacelbf |

Type Form Operand value

mmediate $Imm Imm

Register Ta Rix,]

Memory Imm Milmm)

Memory (xg) MIR[z,]|

Memory Imm(x,) Mimm + Riz,)) s
Memory (o) MIR[xy) + Rz]| Indexed
Memory Imm(zy,x;) MiImm + R[z,) + Rix]) Indexed
Memory Grpys) MIR[z]- 5] Scaled indexed
Memory Imm(,x;,s) MImm + Riz] 5] Scaled indexed.
Memory (xp,7i,5) MR[z,] + Rlx;] 5] Scaled indexed
Memory Imm(zy,xi,s) MiImm+Riz;) + Rir/]-s] Scaledindexed

3.3 Op forms. Operand: d
values, or values from memory. The scaling factor s must be either 1, 2, 4, or 82

result. x86-64 supports a number of operand forms (see Figure 3.3). Source values
can be given as constants or read from registers or memory. Results can be stored
in either registers or memory. Thus, the different operand possibilities can be
classified into three types. The first type, immediate, is for constant values. In ATT-
format assembly code, these are written with a ‘$’ followed by an integer using
dard C ion—f ple, $-577 or $0x1F. Different instructions allow
different ranges of i diate values; the will select the
most compact way of encoding a value. The second type, register, denotes the
contents of a register, one of the sixteen 8-, 4-, 2-, or 1-byte low-order portions of
the registers for operands having 64, 32, 16, or 8 bits, respectively. In Figure 3.3,
we use the notation r, to denote an arbitrary register a and indicate its value with
the reference R[x,], viewing the set of registers as an array R indexed by register
identifiers. |
The third type of operand is a memory reference, in which we access some
memory locati ding to a d address, often called the effective ad-
dress. Since we view the memory as a large array of bytes, we use the notation
M,[Addr] to denote a reference to the b-byte value stored in memory starting at
address Addr. To simplify things, we will generally drop the subscript b. ;

As Figure 3.3 shows, there are many different addressing modes allowing dif-
ferent forms of memory references. The most general form is shown at the bottom
of the table with syntax Imm (z;,x;,s). Such a reference has four components: an
immediate offset /mm, a base register rp, an index register r;, and a mlc hdm
s, where s must be 1, 2, 4, or 8. Both the base and index must h? 64-bit registers.
The effective address is computed as Imm + R[z;) + R[x;] - s. This genqal formis

often seen when referencing elements of arrays. The other forms are.ﬂmP‘Y spe-
cial cases of this general form where some of the components are omitted. As we

Chapter 3, Figures 3.2-3.3 (p. 180-181)

the better you can use tools to read the language

61

Why are we reading assembly?

A bl
C code >>EMBLY Machine code
code

Programmer- gcc (compiler+assembler)
generated generated

Main goal: Information retrieval
* We will not be writing assembly! (that’s the compiler’s job)
e Rather, we want to translate the assembly back into our C code.

* Knowing how our C code is converted into machine instructions gives us
insight into how to write more efficient, cleaner code.

62

Extended warmup: Information Synthesis

Spend a few minutes thinking about the main paradigms of the mov instruction.

* What might be the equivalent C-like operation?
 Examples (note %r___ registers are 64-bit):

N w N R

. MOV
. MOV
. MOV
. MOV

$0x0, %rdx

%rdx, srcx
$0x42, (%rdi)

(%rax,srcx,8),%rax

»

)

!
<
_)

3

Extended warmup: Information Synthesis

Spend a few minutes thinking about the main paradigms of the mov instruction.

° i . -1 . ?
What might be the equivalent C-like operation: Indirect addressing

 Examples (note %r___ registers are 64-bit): is like pointer
mov $0x0,%rdx -> maybe long x = © arithmetic/deref!
mov srdx,%rcx -> maybe long x = y;
mov $0x42, (%rdi) -> maybe *ptr = 0x42;
mov (%rax,%rcx,8),%rax -> maybe long x = arr[i];

)

)

4

1. Extra Practice

Fill in the blank to complete the C code that 1. generates this assembly
2. has this register layout

int x = ...
int *ptr = malloc(..);

222 = ???

S — — . |

mov %ecX, (%rax)

(Pedantic: You should subin /5 =\
<val of ptr> <x>and <ptr> with actual k\—‘\)

%% eCX % rax values, like 4 and 0x7fff80)
65

1. Extra Practice

Fill in the blank to complete the C code that 1. generates this assembly
2. has this register layout

int x =
int *ptr = malloc(..);

PP = 2?27 ; *ptr = Xx;

S — — . |

mov %ecX, (%rax)

%ecx %rax
67

2. Extra Practice

Fill in the blank to complete the C code that 1. generates this assembly
2. results in this register layout

long arr[5];

long num = pP? ;

mov (%rdi, %rcx, 8),%rax

<val of num> <val of arr> k
|

%rax %%rcx %rdi

°)

®

(

2. Extra Practice

Fill in the blank to complete the C code that 1. generates this assembly
2. results in this register layout

long arr[5];
long num = arr[3];
long num = *(arr + 3);
long num = ____ 222 ; long num = *(arr + y);

(assume long y = 3;
declared earlier)

mov (%rdi, %rcx, 8),%rax

<val of num> <val of arr>

%rax %%rcx %rdi
68

3. Extra Practice

Fill in the blank to complete the C code that 1. generates this assembly
2. has this register layout

char str[5];

PP = 'C’;

— —_— J

mov $0x63, (%rcx,%rdx,1)

<

%%rcx %rdx

o)
W

)

¢

3. Extra Practice

Fill in the blank to complete the C code that 1. generates this assembly
2. has this register layout

char str[5];

. C str[2] = 'c’;
— T € (str + 2) = 'c';

mov $0x63, (%rcx,%rdx,1)

%%rcx %rdx
70

Coming Up Soon To A Slide Near You

* The below code is the objdump of a C function, foo.
* Y00 keeps its 15t and 2"d parameters are in registers %rdi and %rsi, respectively.

Ox4005b6 <foo> mov
Ox4005b9 <foo+3> mov
Ox4005bc <foo+6> mov
Ox4005bf <foo0+9> mov

(%rdi),%rax
(%rsi),%rdx
%rdx, (%rdi)
%rax, (%rsi)

1. What does this function do?
2. What C code could have

generated this assembly?

(Hints: make up C variable names as
needed, assume all regs 64-bit)

42
1000

‘ 8 bytes

@x7fffe868 @x7fffe87@

%rd| %rS|
Y%rax Yordx >\

4 A
0
W=

\‘

Coming Up Soon To A Slide Near You

* The below code is the objdump of a C function, foo.
* Y00 keeps its 15t and 2"d parameters are in registers %rdi and %rsi, respectively.

Ox4005b6 <foo> mov (%rdi),%rax 42

Ox4005b9 <foo+3> mov (%rsi),%rdx 1000

Ox4005bc <foo+6> mov %rdx, (%rdi)

Ox4005bf <foo+9> mov %rax, (%rsi) 8bytes ”
%rd| %rS|

1 []

%rax %rdx

72

Lecture Plan

* Recap: mov so far

* Data and Register Sizes

* The lea Instruction

* Logical and Arithmetic Operations
* Practice: Reverse Engineering

Reference Sheet: cs107.stanford. edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

11
24
30
38

Helpful Assembly Resources

* Course textbook (reminder: see relevant readings for each lecture on the
Schedule page, http://cs107.stanford.edu/schedule.html)

* CS107 Assembly Reference Sheet: http://cs107.stanford.edu/resources/x86-
64-reference.pdf

* CS107 Guide to x86-64: http://cs107.stanford.edu/guide/x86-64.html|

http://cs107.stanford.edu/schedule.html)
http://cs107.stanford.edu/schedule.html)
http://cs107.stanford.edu/resources/x86-
http://cs107.stanford.edu/resources/x86-
http://cs107.stanford.edu/guide/x86-64.html
http://cs107.stanford.edu/guide/x86-64.html
http://cs107.stanford.edu/guide/x86-64.html

References and Advanced Reading

- References:

. Stanford guide to x86-64: https://web.stanford.edu/class/cs107/guide/
x86-64.html

- CS107 one-page of x86-64: https://web.stanford.edu/class/cs107/resources/
onepage x86-64.pdf

- gdbtui: https://beej.us/guide/bggdb/

- More gdbtui: https://sourceware.org/gdb/onlinedocs/gdb/TUl.html
- Compiler explorer: https://gcc.godbolt.org

- Advanced Reading:

- X86-64 Intel Software Developer manual: https://software.intel.com/sites/
default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf

- history of x86 instructions: https://en.wikipedia.org/wiki/
X86_instruction_listings

- x86-64 Wikipedia: https://en.wikipedia.org/wiki/X86-64

Lecture Plan

* Recap: mov so far

* Data and Register Sizes

* The lea Instruction

* Logical and Arithmetic Operations
* Practice: Reverse Engineering

Reference Sheet: cs107.stanford. edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

11
24
30
38

The mov instruction copies bytes from one place to another;
it is similar to the assignment operator (=) in C.

mov src,dst

The src and dst can each be one of:
* Immediate (constant value, like a number) (only src)

* Register

* Memory Location
(at most one of src, dst)

Memory Location Syntax

Syntax Meaning
0x104 Address 0x104 (no S)
(%rax) What's in %rax
4(%rax) What’s in %rax, plus 4
(%rax, %rdx) Sum of what’s in %rax and %rdx
4(%rax, %rdx) Sum of values in %rax and %rdx, plus 4
What's in %rcx, times 4 (multiplier can be 1
(%rcx, 4) at’s in %rex, t 2(?slllé)utpeca be 1,
(%rax, %rcx, 2) What's in %rax, plus 2 times what’s in %rcx

What's in %rax, plus 2 times what’s in %rcx,

8(%rax, %rcx, 2) plus 8 9

Operand Forms

Type Operand Value Name
Immediate $Imm Imm Immediate
Register T R[] Register
Memory Imm M[Imm] Absolute
Memory (1) MI[R[7:]] Indirect
Memory Imm(r-) M[Imm + R[r]] Base + displacement
Memory (r, 1) MI[R[r] + R[m#]] Indexed
Memory Imm(r~, 1) M[Imm + R[r] + R[r]] Indexed
Memory (1% S) M[R[r] . s] Scaled indexed
Memory Imm(, 13) M[Imm + R[] . s] Scaled indexed
Memory (r, 18, 5) M[R[r] + R[] . s] Scaled indexed
Memory Imm(r, 14, 5) M[Imm + R[r-] 4+ R[ry] .s] Scaled indexed

Figure 3.3 from the book: “Operand forms. Operands can denote immediate (constant) values, register values,

or values from memorv. The scaling factor s must be either. 1. 2. 4. or 8.

Lecture Plan

* Recap: mov so far

* Data and Register Sizes

* The lea Instruction

* Logical and Arithmetic Operations
* Practice: Reverse Engineering

Reference Sheet: cs107.stanford. edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

11
24
30
38

11

Data Sizes

Data sizes in assembly have slightly different terminology to get used to:
* A byteis 1 byte.

 Aword is 2 bytes.

* A double word is 4 bytes.

* A quad word is 8 bytes.

Assembly instructions can have suffixes to refer to these sizes:

* b means byte

* W means word

* 1 means double word

* d means quad word -

Register Sizes

Bit: 63 31 15 7 %]
%rax %eax ‘ %A X Wl”
%rbx %ebx %bx |%b1 |
% CX %€ CX ‘%cx |%cl IH
%rdx %edx %dx | %d1 |
%rsi %esi ‘%si [%s11 |“
%rdi %edi %di [wdil]

82

Bit:

Register Sizes

63 31 15 7 0
%rbp %ebp ‘ %bp WH
%rsp %esp %sp | %spl |
%8 %r8d ‘ %6 8w | %r8b IH
%9 %r9od %6row |%r9b |
%r10 %r10d ‘ %riew [%rieb |“
%r11 %riid %ritw [%rilb |

83

Register Sizes

Bit 63 31 15 7 0
%12 %r12d ‘%rlZw [%r12b "‘
%r13 %r13d %r13w |%r13b |

%rla

%r14d ‘%r14w [%r140 "‘

%r15 %r15d %r15w |%r15b |

84

Register Responsibilities

Some registers take on special responsibilities during program execution.
* %rax stores the return value

* %rdi stores the first parameter to a function

* %rsi stores the second parameter to a function

* %rdx stores the third parameter to a function

* %rip stores the address of the next instruction to execute

* %rsp stores the address of the current top of the stack

Reference Sheet: cs107.stanford. edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website! 16

mov Variants

* mov can take an optional suffix (b,w,l,q) that specifies the size of data to move:
movb, movw, movl, movq

* mov only updates the specific register bytes or memory locations indicated.
* Exception: movl writing to a register will also set high order 4 bytes to 0.

86

Practice: mov And Data Sizes

For each of the following mov instructions, determine the appropriate suffix
based on the operands (e.g. movb, movw, movl or movq).

. mov___ %eax, (%rsp)

. mov___ (%rax), %dx

. mov__ $oxff, %bl

. mov__ (%rsp,%rdx,4),%dl
. mov__ (%rdx), %rax

o Ul A W N B

. mov__ %dx, (%rax)

87

Practice: mov And Data Sizes

For each of the following mov instructions, determine the appropriate suffix
based on the operands (e.g. movb, movw, movl or movq).

. movl %eax, (%rsp)

. movw (%rax), %dx

. movb $Oxff, %bl

. movb (%rsp,%rdx,4),%dl

. movq (%rdx), %rax

o Ul A W N B

. movw %dx, (%rax)

88

 The movabsq instruction is used to write a 64-bit Immediate (constant) value.

* The regular movq instruction can only take 32-bit immediates.
* 64-bit immediate as source, only register as destination.

movabsq $0x0011223344556677, %rax

89

movz and movs

* There are two mov instructions that can be used to copy a smaller source to a
larger destination: movz and movs.

* movz fills the remaining bytes with zeros

* movs fills the remaining bytes by sign-extending the most significant bit in the
source.

* The source must be from memory or a register, and the destination is a
register.

90

movz and movs

MOVZ S,R R « ZeroExtend(S)

Instruction Description

movzbw Move zero-extended byte to word
movzbl Move zero-extended byte to double word
movzwl Move zero-extended word to double word
movzbq Move zero-extended byte to quad word
movzwq Move zero-extended word to quad word

91

movz and movs

MOVS S, R R « SignExtend(S)

Instruction Description

movsbw Move sign-extended byte to word
movsbl Move sign-extended byte to double word
movswl Move sign-extended word to double word
movsbq Move sign-extended byte to quad word
movsw(g Move sign-extended word to quad word
movslq Move sign-extended double word to quad word
cltq Sign-extend %eax to %rax

%»rax <- SignExtend(%eax)

92

Lecture Plan

* Recap: mov so far

* Data and Register Sizes

* The lea Instruction

* Logical and Arithmetic Operations
* Practice: Reverse Engineering

Reference Sheet: cs107.stanford. edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

11
24
30
38

24

The lea instruction copies an “effective address” from one place to another.
lea src,dst

Unlike mov, which copies data at the address src to the destination, lea copies
the value of src itself to the destination.

The syntax for the destinations is the same as
mov. The difference is how it handles the src.

94

A Eere————

6 (%pax) , srdx Go to the address (6 + what’s in %rax), Copy 6 + what’s in %rax into %rdx.
and copy data there into %rdx

95

A Eere————

6(%rax), %rdx

(%rax, %rcx), %rdx

Go to the address (6 + what’s in %rax), Copy 6 + what’s in %rax into %rdx.
and copy data there into %rdx

Go to the address (what’s in %rax + Copy (what’s in %rax + what’s in %rcx)
what’s in %rcx) and copy data there into into %rdx.
%rdx

96

A Eere————

6(%rax), %rdx

(%rax, %rcx), %rdx

(%rax, %rcx, 4), %rdx

Go to the address (6 + what’s in %rax), Copy 6 + what’s in %rax into %rdx.
and copy data there into %rdx

Go to the address (what’s in %rax + Copy (what’s in %rax + what’s in %rcx)
what’s in %rcx) and copy data there into into %rdx.
%rdx

Go to the address (%rax + 4 * %rcx) and Copy (%rax + 4 * %rcx) into %rdx.
copy data there into %rdx.

97

6 (%pax) , srdx Go to the address (6 + what’s in %rax), Copy 6 + what’s in %rax into %rdx.
and copy data there into %rdx

(%r‘ax, %r-cx) , srdx Go to the address (what’s in %rax + Copy (what’s in %rax + what’s in %rcx)
what’s in %rcx) and copy data there into into %rdx.
%rdx

(%r'ax, %r'cx, 4) c %rdx Go to the address (%rax + 4 * %rcx) and Copy (%rax + 4 * %rcx) into %rdx.
copy data there into %rdx.

7 (%r\ax, %rax, 8) , %rdx Gototheaddress (7 +%rax+8* %rax) Copy (7 + %rax + 8 * %rax) into %rdx.
and copy data there into %rdx.

Unlike mov, which copies data gt the address
src to the destination, lea copies the value of
src itself to the destination.

98

Lecture Plan

* Recap: mov so far

* Data and Register Sizes

* The lea Instruction

* Logical and Arithmetic Operations
* Practice: Reverse Engineering

Reference Sheet: cs107.stanford. edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

11
24
30
38

30

Unary Instructions

The following instructions operate on a single operand (register or memory):

Instruction Effect Description
inc D De«<D+ 1 Increment
dec D De«D-1 Decrement
neg D D « -D Negate
not D D « ~D Complement
Examples:
incg 16(%rax)
dec %rdx

not %rcx

31

Binary Instructions

The following instructions operate on two operands (both can be register or
memory, source can also be immediate). Both cannot be memory locations.
Read it as, e.g. “Subtract S from D”:

Instruction Effect Description
add S, D D«D+ S Add

sub S, D De«<D-S Subtract
imul S, D D«<D*S Multiply
xor S, D D«<D~*S Exclusive-or
or S, D DD | S Or

and S, D D«<D&S And

Examples:

addq %rcx, (%rax)
xorqg $16, (%rax, %rdx, 8)
subqg %rdx, 8(%rax) 32

Large Multiplication

* Multiplying 64-bit numbers can produce a 128-bit result. How does x86-64
support this with only 64-bit registers?

* If you specify two operands to imul, it multiplies them together and truncates
until it fits in a 64-bit register.

imul S, D D«D*S

* If you specify one operand, it multiplies that by %rax, and splits the product
across 2 registers. It puts the high-order 64 bits in %rdx and the low-order 64
bits in %rax.

Instruction Effect Description
imulg S R[%rdx]:R[%rax] « S x R[%rax] Signed full multiply

mulg S R[%rdx]:R[%rax] « S x R[%rax] Unsigned full multiply

Division and Remainder

Instruction Effect Description

idivg S R[%rdx] < R[%rdx]:R[%rax] mod S; Signed divide
R[%rax] < R[%rdx]:R[%rax] = S

divg S R[%rdx] < R[%rdx]:R[%rax] mod S; Unsigned divide
R[%rax] <« R[%rdx]:R[%rax] = S

» Terminology: dividend / divisor = quotient + remainder

* x86-64 supports dividing up to a 128-bit value by a 64-bit value.

* The high-order 64 bits of the dividend are in %rdx, and the low-order 64 bits
are in %rax. The divisor is the operand to the instruction.

* The quotient is stored in %rax, and the remainder in %rdx.

Division and Remainder

Instruction Effect Description

idivg S R[%rdx] < R[%rdx]:R[%rax] mod S; Signed divide
R[%rax] < R[%rdx]:R[%rax] = S

divg S R[%rdx] < R[%rdx]:R[%rax] mod S; Unsigned divide
R[%rax] <« R[%rdx]:R[%rax] = S

cqgto R[%rdx]:R[%rax] <« SignExtend(R[%rax]) Convert to oct word

* Most division uses only 64-bit dividends. The cqto instruction sign-extends the
64-bit value in %rax into %rdx to fill both registers with the dividend, as the
division instruction expects.

The following instructions have two operands: the shift amount k and the

destination to shift, D. k can be either an immediate value, or the byte register
%cl (and only that register!)

Instruction Effect Description

sal k, D D« D << k Left shift

shl k, D D« D << k Left shift (same as sal)
sar k, D D «D >»a Kk Arithmetic right shift
shr k, D D«D > k Logical right shift

Examples:
shll $3, (%rax)
shrl %cl, (%rax,%rdx,8)
sarl $4,8(%rax)

Instruction Effect Description

sal k, D D« D << k Left shift

shl k, D D« D << k Left shift (same as sal)
sar k, D D« D >k Arithmetic right shift
shr k, D D« D > k Logical right shift

* When using %cl, the width of what you are shifting determines what portion

of %cl is used.

* For w bits of data, it looks at the low-order log2(w) bits of %cl to know how

much to shift.

* If %cl = Oxff, then: shlb shifts by 7 because it considers only the low-order log2(8) = 3
bits, which represent 7. shlw shifts by 15 because it considers only the low-order

log2(16) = 4 bits, which represent 15.

Lecture Plan

* Recap: mov so far

* Data and Register Sizes

* The lea Instruction

* Logical and Arithmetic Operations
* Practice: Reverse Engineering

Reference Sheet: cs107.stanford. edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

11
24
30
38

38

Assembly Exploration

* Let’s pull these commands together and see how some C code might be
translated to assembly.

 Compiler Explorer is a handy website that lets you quickly write C code and see
its assembly translation. Let’s check it out!

e https://godbolt.org/z/WPzz6G4a9

Code Reference: add _to first

// Returns the sum of x and the first element in
arr
int add _to first(int x, int arr[]) {

int sum = Xx;

sum += arr[0];

return sum;

add _to first:
movl %edi, %eax
addl (%rsi), %eax

ret

Code Reference: full divide

// Returns x/y, stores remainder in location stored in
remainder_ptr
long full divide(long x, long y, long *remainder_ptr) {
long quotient = x / vy;
long remainder = X % y;
*remainder ptr remainder;
return quotient;

full divide:
movq %rdi, 7%rax
movq %rdx, %rcx
cqgto
idivg %rsi
movqg %rdx, (%rcx)
ret 41

Assembly Exercise 1

00000000VV40116e <sum_examplel>:
40116e: 8d 04 37 lea (%rdi,%rsi,1),%eax

4901171: c3 retq

Which of the following is most likely to have generated the above assembly?

/] A)

void sum_examplel() { int sum_examplel(int x, int y) {
int x; return X + y;
int y;
int sum = x + y;

}

// C)

void sum_examplel(int x, int y) {
int sum = X + y;
}
42

Assembly Exercise 2

00000000VV401172 <sum_example2>:

401172: 8b 47 Oc mov O@xc(%rdi),%eax
401175: 03 07 add (%rdi),%eax
401177: 2b 47 18 sub Ox18(%rdi),%eax
49117a: c3 retqg
int sum_example2(int arr[]) { What location or value in the assembly above represents the
int sum = 0; C code’s sum variable?

sum += arr[0];
sum += arr[3];

sum -= arr[6]; %eaX

return sum;

Assembly Exercise 3

00000000VV401172 <sum_example2>:

401172: 8b 47 Oc mov ©Oxc(%rdi),%eax
401175: 03 07 add (%rdi),%eax
401177: 2b 47 18 sub Ox18(%rdi),%eax
49117a: c3 retqg
int sum_example2(int arr[]) { What location or value in the assembly code above
int sum = 0; represents the C code’s 6 (as in arr[6])?
sum += arr[0];
+= [31;
232 -= :::[6]; O0x18
return sum;
} 11

Our First Assembly

int sum_array(int arr[], int nelems) { |We’re 1/2 of the way to understanding assembly!
int sum = 0; What looks understandable right now?
for (int 1 = 9; i < nelems; i++) {
sum += arr[i];

}
return sum;
}
0000000000401136 <sum_array>:
401136: b8 00 00 00 00 mov $0x0, %eax
40113b: ba 00 00 00 00 mov $0x0, %edx
401140: 39 {0 cmp %esi,%eax
401142: 7d ©b jge 40114f <sum_array+0x19>
401144: 48 63 8 movslq %eax,%rcx
401147 : 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 c0 o1 add $0x1, %eax G D
40114d: eb f1 jmp 401140 <sum_array+0xa> QVE/)
40114f: 89 do mov %edx, %eax -
401151: c3 retq 45

A Note About Operand Forms

* Many instructions share the same address operand forms that mov uses.
e Eg. 7(%rax, %rcx, 2).

* These forms work the same way for other instructions, e.g. sub:
* sub 8(%rax,%rdx),%rcx -> Go to 8 + %rax + %rdx, subtract what’s there from %rcx

* The exception is lea:
* |tinterprets this form as just the calculation, not the dereferencing
* lea 8(%rax,%rdx),%rcx -> Calculate 8 + %rax + %rdx, put it in %rcx

Instruction Effect Description

sal k, D D« D << k Left shift

shl k, D D« D << k Left shift (same as sal)
sar k, D D« D >k Arithmetic right shift
shr k, D D« D > k Logical right shift

* When using %cl, the width of what you are shifting determines what portion

of %cl is used.

* For w bits of data, it looks at the low-order log2(w) bits of %cl to know how

much to shift.

* If %cl = Oxff, then: shlb shifts by 7 because it considers only the low-order log2(8) = 3
bits, which represent 7. shlw shifts by 15 because it considers only the low-order

log2(16) = 4 bits, which represent 15.

Division and Remainder

Instruction Effect Description

idivg S R[%rdx] < R[%rdx]:R[%rax] mod S; Signed divide
R[%rax] < R[%rdx]:R[%rax] = S

divg S R[%rdx] < R[%rdx]:R[%rax] mod S; Unsigned divide
R[%rax] <« R[%rdx]:R[%rax] = S

» Terminology: dividend / divisor = quotient + remainder

* x86-64 supports dividing up to a 128-bit value by a 64-bit value.

* The high-order 64 bits of the dividend are in %rdx, and the low-order 64 bits
are in %rax. The divisor is the operand to the instruction.

* The quotient is stored in %rax, and the remainder in %rdx.

Extra Practice

https://godbolt.org/z/hGKPWszg4

Reverse Engineering 1

int add_to(int x, int arr[], int i)

{ int sum = _? 5
sum += arr| ? 1;
return ? 5

}

add_to:

movslqg %edx, 7%rdx

movl %edi, %eax

addl (%rsi,%rdx,4), %eax
ret

Reverse Engineering 1

int add_to(int x, int arr[], int i)

{ int sum = _? 5
sum += arr| ? 1;
return ? 5

// X in %edi, arr in %rsi, 1 in
%edx add _to:

movslq %edx, %rdx // sign-extend i into full register
movl %edi, %eax // copy X into %eax

addl (%rsi,%rdx,4), %eax // add arr[i] to %eax
ret

Reverse Engineering 1

int add_to(int x, int arr[], int i)
{ int sum = Xx;
sum += arr[i];
return sum;

// X in %edi, arr in %rsi, 1 in
%edx add _to:

movslq %edx, %rdx // sign-extend i into full register
movl %edi, %eax // copy X into %eax

addl (%rsi,%rdx,4), %eax // add arr[i] to %eax
ret

Reverse Engineering 2

int elem _arithmetic(int nums[], int y)

{ int z = nums[_?] * ? 5
Z -= ? 5

Z >>= ? ;

return ? ;

elem arithmetic:
movl %esi, %eax
imull (%rdi), %eax
subl 4(%rdi), %eax
sarl $2, %eax
addl $2, %eax
ret

Reverse Engineering 2

int elem _arithmetic(int nums[], int y)

{ int z = nums[_?___]

Z -= ?)

Z >>= ? ;
return ? ;

// nums in %rdi, y in %esi
elem arithmetic:

movl %esi, %eax

imull (%rdi), %eax

subl 4(%rdi), %eax

sarl $2, %eax

addl $2, %eax

ret

X

//
//
//
//

//

?

J

copy y into %eax

multiply %eax by nums[0]
subtract nums[1] from Z%eax
shift %eax right by 2

add 2 to Z%eax

Reverse Engineering 2

int elem _arithmetic(int nums[], int y)

{ int z = nums[@] * y;
Zz -= nums[1];

Z >>= 2;

return z + 2;

// nums in %rdi, y in %esi
elem arithmetic:

movl %esi, %eax

imull (%rdi), %eax

subl 4(%rdi), %eax

sarl $2, %eax

addl $2, %eax

ret

//
//
//
//

//

copy y into %eax

multiply %eax by nums[0]
subtract nums[1] from Z%eax
shift %eax right by 2

add 2 to Z%eax

Reverse Engineering 3

long func(long x, long *ptr) {

*ptr = ? + 1;
long result = x % ? ;
return ? ;

}

func:

movq %rdi, %rax
leag 1(%rdi), %rcx
movq %rcx, (%rsi)
cgto

idivg %rcx

movq %rdx, %rax
ret

Reverse Engineering 3

long func(long x, long *ptr) {

*ptr = ? + 1;
long result = x % ? ;
return ? 5
}
// X in %rdi, ptr 1in %rsi
func:
movqg %rdi, %rax // copy X into %rax
leag 1(%rdi), %rcx // put x + 1 into %rcx
movqg %rcx, (%rsi) // copy %rcx into *ptr
cqto // sign-extend x into %rdx
idivg %rcx // calculate x / (x + 1)
movq %rdx, %rax // copy the remainder into Z%rax

ret

Reverse Engineering 3

long func(long x, long *ptr) {
*ptr = x + 1;
long result = x % *ptr; // or x +
1
return result;

R
// X in %rdi, ptr 1in %rsi
func:
movqg %rdi, %rax // copy X into %rax
leag 1(%rdi), %rcx // put x + 1 into %rcx
movqg %rcx, (%rsi) // copy %rcx into *ptr
cqto // sign-extend x into %rdx
idivg %rcx // calculate x / (x + 1)
movq %rdx, %rax // copy the remainder into Z%rax

ret

Side Note: Old GCC Output

long func(long x, long *ptr) {
*ptr = x + 1;
long result = x % *ptr; // or x +
1
return result;

R
// X in %rdi, ptr 1in %rsi
func:
leag 1(%rdi), %rcx // put x + 1 into %rcx
movqg %rcx, (%rsi) // copy %rcx into *ptr
movqg %rdi, %rax // copy x into %rax
cqgto // sign-extend x into %rdx
idivg %rcx // calculate x / (x + 1)
movq %rdx, %rax // copy the remainder into %rax

ret

Learning Goals

e Learn about how assembly stores comparison and operation results in
condition codes

* Understand how assembly implements loops and control flow

Lecture Plan

* Assembly Execution and %rip

e Control Flow Mechanics

* Condition Codes
* Assembly Instructions

e If statements
* Loops

* While loops
* Forloops

e Other Instructions That Depend On Condition Codes
* Live Session Slides

27

46

54
67

/3
31

Lecture Plan

* Assembly Execution and %rip

e Control Flow Mechanics

* Condition Codes
* Assembly Instructions

e If statements
* Loops

* While loops
* Forloops

e Other Instructions That Depend On Condition Codes
* Live Session Slides

27

46

54
67

/3
31

Executing Instructions

What does it mean for a program
to execute?

Executing Instructions &g

4004fc
4004fb | 01
S0 fa - 4004fa | fc
* Program values can be stored in memory or registers. 40049 | 45
 Assembly instructions read/write values back and forth 400478 | 83
between registers (on the CPU) and memory. 100417 | 00
400416 | 00
* Assembly instructions are also stored in memory. 40045 | 00
400414 | 00
400413 | fc
Today: 400412 | 45
* Who controls the instructions? 40041 | c7
How do we know what to do now or next? 4+ 40040 | e5
4004ef | g9
Answer: s004ce a5
* The program counter (PC), %rip. 4004ed | cc

Register Responsibilities

Some registers take on special responsibilities during program execution.

* %rip stores the address of the next instruction to execute

See the x86-64 Guide and Reference Sheet on the Resources webpage for more!

Instructions Are Just Bytes!

CPU

Register file

PC | ALU

— [System bus Memory bus

4 10 * l Main | “hello, world\n”
bridge memory| . ..o code

I/O bus] l:l D

Expansion slots for
- other devices such

Bus interface

USB Graphics | Disk as network adapters
controller adapter . controller
Mouse Keyboard Display \'_/ Sl axecutable
Disk | stored on disk

_/./

Memory bus

l

*hello, world\n

il hello code

Instructions Are Just Bytes!

Main Memory

Stack

Heap

e
Data

e ronc —
Instructions
0x0

13
=

00000000004004ed <loop>:

4004ed:

4004F1;
4004f18:
4004fc:

55

c7 45 fc 00 00 00 00
83 45 fc o1
eb fa

push

mov1l
addl
Jjmp

%rbp

$0x0, -0x4 (%rbp)
$0x1, -0x4 (%rbp)
400418 <loop+0xb>

4004fc

4004fb 21
4004fa fc
40049 45
40048 | 83
400417 00
400416 00
40045 00
400414 00
400413 fc
40042 45
400411 c7
4004ed 55

Main Memory

Stack

Heap

Data

Text (code)

1

(O8]

00000000004004ed <loop>:
W) 4004ed: 55

4004f1: c7 45 fc 90 00 0O 00
4004f8: 83 45 fc 01
4004fc: eb fa

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

push

mov 1l
addl
jmp

%rbp

$0x0, -0x4 (%rbp)
$0x1, -0x4(%rbp)
400418 <loop+0xb>

4004fd

4004fc

4004fb 01
4004fa fc
400419 45
400418 | 83
400417 00
400416 00
40045 00
400414 00
400413 fc
400412 45
400411 c7
4004ed 55

%rip

4004fd
4004fc
4004fb o1
00000P0R0B404ed <loop>: 4oe4fa | fc
4004ed: 55 push %rbp 4004f9 | 45
‘ 4004f8 | 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp) 4004f7 |00
40041f8: 83 45 fc 01 addl $0x1, -0x4(%rbp) 4004f6 | 00
4004fc: eb fa jmp 400418 <loop+0xb> 4004f5 | 00
4004f4 |00
400413 fc
4004f2 |45
The program counter (PC), roonfl | o7
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed. | 9x4004ce T ————————
4004ed 55

%Pip 14

00000000004004ed <loop>:
4004ed: 55

m) 4004f1l: c7 45 fc 00 00 00 00
4004f8: 83 45 fc ol
4004fc: eb fa

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

push %rbp

movl $0x0,-0x4(%rbp)
addl $0x1,-0x4(%rbp)
jmp 400418 <loop+0xb>
0x400411

%rip

4004fd

4004fc

4004fb 01
4004fa fc
400419 45
400418 | 83
400417 00
400416 00
40045 00
400414 00
400413 fc
400412 45
400411 c7
4004ed 55

15

4004fd

4004fc

4004fb o1
00000P0R0B404ed <loop>: 4oe4fa | fc
4004ed: 55 push %rbp 4004f9 | 45

400418 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp) 4004f7 |00

m) 4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp) 10046 | 00
4004fc: eb fa jmp 400418 <loop+0x 4004F5 | 00

400414 00

400413 fc

40042 45

The program counter (PC), roonfl | o7
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed. | 9x4004f8
4004ed 55

%rip 16

00000000004004ed <loop>:
4004ed: 55 push

4004f1: c7 45 fc 00 00 00 00 movl
400418:. 83 45 fc 01 addl
m) 4004fc: eb fa jmp

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the

%rbp

$0x0, -0x4 (%rbp
$0x1, -0x4(%rby)
400418 <loopfoxb>

next instruction to be executed. | 9x4004fcC

%rip

4004fd

4004fc

4004fb |01
4004fa fc
400419 45
400418 | 83
400417 00
400416 00
40045 00
400414 00
400413 fc
400412 45
400411 c7
4004ed 55

17

4004fd

4004fc
4004fb 01
00000P0R0B404ed <loop>: 4oe4fa | fc
4004ed: 55 push %rbp 4004f9 | 45
400418 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp 40047 |00
400418: 83 45 fc 01 addl $0x1, -0x4(%rby) 4004f6 | 00
m) 4004fc: eb fa jmp 400418 <loopfoxb> [100afs | oo
4004f4 |00
. 4004f3 | fc
Special hardware sets the program counter rooats | a5
to the next instruction: 10041 |7

%rip += size of bytes of current instruction
Ox4004FC

4004ed 55

%rip 18

Going In Circles

* How can we use this representation of execution to represent e.g. a loop?
* Key Idea: we can “interfere” with %rip and set it back to an earlier instruction!

19

00000000004004ed <loop>:
4004ed: 55 push

4004f1: c7 45 fc 00 00 00 00 movl
400418:. 83 45 fc 01 addl
m) 4004fc: eb fa jmp

The jmp instruction is an
unconditional jump that sets
the program counter to the

%rbp

$0x0, -0x4 (%rbp
$0x1, -0x4(%rby)
400418 <loopfoxb>

jump target (the operand). OxX4004F

%rip

4004fd

4004fc

4004fb |01
4004fa fc
400419 45
400418 | 83
400417 00
400416 00
40045 00
400414 00
400413 fc
400412 45
400411 c7
4004ed 55

4004fd

4004fc

4004fb 01
00000P0R0B404ed <loop>: 4oe4fa | fc
4004ed: 55 push %rbp 4004f9 | 45

400418 83
4004F1: c7 45 fc 00 00 00 00 movl $0x0, -0x4(%rbp) 4004f7 | 00

m) 4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp) 10046 | 00
4004fc: eb fa jmp 400418 <loop+0x 4004F5 | 00
4004f4 |00

400413 fc

4004f2 |45

The jmp instruction is an r00afl | v
unconditional jump that sets
the program counter to the
jump target (the operand). OxX4004F
4004ed 55

%Pip 14

00000000004004ed <loop>:
4004ed: 55 push

4004f1: c7 45 fc 00 00 00 00 movl
400418:. 83 45 fc 01 addl
m) 4004fc: eb fa jmp

The jmp instruction is an
unconditional jump that sets
the program counter to the

%rbp

$0x0, -0x4 (%rbp
$0x1, -0x4(%rby)
400418 <loopfoxb>

jump target (the operand). OxX4004F

%rip

4004fd

4004fc

4004fb |01
4004fa fc
400419 45
400418 | 83
400417 00
400416 00
40045 00
400414 00
400413 fc
400412 45
400411 c7
4004ed 55

4004fd

4004fc

4004fb 01
00000P0R0B404ed <loop>: 4oe4fa | fc
4004ed: 55 push %rbp 4004f9 | 45

400418 83
4004F1: c7 45 fc 00 00 00 00 movl $0x0, -0x4(%rbp) 4004f7 | 00

m) 4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp) 10046 | 00
4004fc: eb fa jmp 400418 <loop+0x 4004F5 | 00
4004f4 |00

400413 fc

4004f2 |45

The jmp instruction is an r00afl | v
unconditional jump that sets
the program counter to the
jump target (the operand). OxX4004F
4004ed 55

%Pip 14

4004fd

4004fc

4004fb o1
00000000RR4R04ed <10Op>: 4eeafa | fc
4004ed: 55 push %rbp 4004f9 | 45

400418 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp) 40047 |00

m) 4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp) 40046 | 00
4004fc: eb fa jmp 400418 <loop+0x 4004f5 | 00
400414 00
400413 fc
. 40042 45
Th{s gssembly represents an 1004f1 | 7
infinite loop in C!

, Ox4004fc
while (true) {..} rooaed o5

%rip 15

The jmp instruction jumps to another instruction in the assembly code
(“Unconditional Jump”).

jmp Label (Direct Jump)
jmp *Operand (Indirect Jump)

The destination can be hardcoded into the instruction (direct jump):
jmp 40418 <loop+@xb>

The destination can also be one of the usual operand forms (indirect jump):
jmp *%rax

“Interfering” with %rip

1. How do we repeat instructions in a loop?

jmp [target]
* A 1-step unconditional jump (always
jump when we execute this instruction)

What if we want a conditional jump?

Lecture Plan

* Assembly Execution and %rip

* Control Flow Mechanics

* Condition Codes
* Assembly Instructions

e If statements
* Loops

* While loops
* Forloops

e Other Instructions That Depend On Condition Codes

e Live Session Slides

27

46

54
67

/3
31

* In C, we have control flow statements like if, else, while, for, etc. to write
programs that are more expressive than just one instruction following another.

* This is conditional execution of statements: executing statements if one
condition is true, executing other statements if one condition is false, etc.

* How is this represented in assembly?

° 'F In Assembly:
1 (X > y) { 1. Calculate the condition result
/ / a 2. Based on theresult,gotoaorb

} else {
// b

* In assembly, it takes more than one instruction to do these two steps.

* Most often: 1 instruction to calculate the condition, 1 to conditionally jump

Common Pattern:

1. cmp S1, S2 //compare two values

2. je [target] or jne [target] or jl[target] or ... // conditionally jump

/ /\

“jump if “jump if

|II

equa not equa

/]

III

“jump if
less than”

There are also variants of jmp that jump only if certain conditions are true
(“Conditional Jump”). The jump location for these must be hardcoded into the

instruction.

Conditional Jumps

Instruction Synonym Set Condition

je Label jz Equal / zero

jne Label jnz Not equal / not zero

js Label Negative

jns Label Nonnegative

jg Label jnle Greater (signed >)

jge Label jnl Greater or equal (signed >=)
jl Label jnge Less (signed <)

jle Label jng Less or equal (signed <=)

ja Label jnbe Above (unsigned >)

jae Label jnb Above or equal (unsigned >=)
jb Label jnae Below (unsigned <)

jbe Label jna Below or equal (unsigned <=)

Read cmp $1,52 as “compare S2 to S1”:

// Jump 1if Z%edi > 2 // Jump 1if %edli == 4
cmp $2, %edi cmp $4, %edi

jg [target] je [target]

// Jump if %edi != 3 // Jump 1if Z%edi <=1
cmp $3, %edi cmp $1, %edi

jne [target] jle [target]

Read cmp $1,52 as “compare S2 to S1”:

// Jump if %edi > 2 // Jump 1if %edli == 4
cmp $2, Z%edi cmp $4, Z%edi

jg [target] je [target]

// Jump it Y%edl =2 [/ Timn i£ Yod]l <= 1

Wait a minute — how does the

jump instruction know anything

jne [target] about the compared values in
the earlier instruction?

cmp $3, %edi

* The CPU has special registers called condition codes that are like “global
variables”. They automatically keep track of information about the most
recent arithmetic or logical operation.

e cmp compares via calculation (subtraction) and info is stored in the condition codes
» conditional jump instructions look at these condition codes to know whether to jump

 What exactly are the condition codes? How do they store this information?

Condition Codes

Alongside normal registers, the CPU also has single-bit condition code registers.
They store the results of the most recent arithmetic or logical operation.

Most common condition codes:

* CF: Carry flag. The most recent operation generated a carry out of the most
significant bit. Used to detect overflow for unsigned operations.

e ZF: Zero flag. The most recent operation yielded zero.
* SF: Sign flag. The most recent operation yielded a negative value.

* OF: Overflow flag. The most recent operation caused a two’s-complement
overflow-either negative or positive.

Condition Codes

Alongside normal registers, the CPU also has single-bit condition code registers.
They store the results of the most recent arithmetic or logical operation.

Example: if we calculate t = a + b, condition codes are set according to:

e CF: Carry flag (Unsigned Overflow). (unsigned) t < (unsigned) a
* ZF: Zero flag (Zero). (t == 9)

* SF: Sign flag (Negative). (t < 9)

* OF: Overflow flag (Signed Overflow). (a<@ == b<@) && (t<o0 != a<0)

Setting Condition Codes

The cmp instruction is like the subtraction instruction, but it does not store the
result anywhere. It just sets condition codes. (Note the operand order!)

CMP S1, S2 S2 - S1

Instruction Description

cmpb Compare byte

cmpw Compare word

cmpl Compare double word
cmpq Compare quad word

Read cmp $1,52 as “compare S2 to S1”. It calculates S2 — S1 and updates the
condition codes with the result.

// Jump 1if %edi > 2 // Jump 1f %edl == 4
// calculates %edi - 2 // calculates %edi - 4
cmp $2, %edi cmp $4, %edi

jg [target] je [target]

// Jump 1f %edi != 3 // Jump 1if %edi <=1
// calculates %edi - 3 // calculates %edi - 1
cmp $3, %edi cmp $1, %edi

jne [target] jle [target]

Conditional Jumps

Conditional jumps can look at subsets of the condition codes in order to check
their condition of interest.

Instruction Synonym Set Condition

je Label jz Equal / zero (ZF = 1)

jne Label jnz Not equal / not zero (ZF = 0)

js Label Negative (SF = 1)

jns Label Nonnegative (SF = 0)

jg Label jnle Greater (signed >) (ZF = 0 and SF = OF)

jge Label jnl Greater or equal (signed >=) (SF = OF)

jl Label jnge Less (signed <) (SF != OF)

jle Label jng Less or equal (signed <=) (ZF = 1 or SF! = OF)
ja Label jnbe Above (unsigned >) (CF =0 and ZF = 0)

jae Label jnb Above or equal (unsigned >=) (CF = 0)

jb Label jnae Below (unsigned <) (CF =1)

jbe Label jna Below or equal (unsigned <=) (CF = 1 or ZF = 1) i6

Setting Condition Codes

The test instruction is like cmp, but for AND. It does not store the & result
anywhere. It just sets condition codes.

TEST S1, S2 S2 & S1

Instruction Description

testb Test byte

testw Test word

testl Test double word
testq Test quad word

Cool trick: if we pass the same value for both operands, we can check the sign
of that value using the Sign Flag and Zero Flag condition codes!

Condition Codes

* Previously-discussed arithmetic and logical instructions update these flags. lea
does not (it was intended only for address computations).

* Logical operations (xor, etc.) set carry and overflow flags to zero.

 Shift operations set the carry flag to the last bit shifted out and set the
overflow flag to zero.

* For more complicated reasons, inc and dec set the overflow and zero flags, but
leave the carry flag unchanged.

Exercise 1: Conditional jump

je target jump if ZF is 1

Let %ed1 store 0x10. Will we jump in the following cases? %edi

1. cmp $0x10,%edi
je 40056f
add $0x1,%edi

2. test $0x10,%edi
je 40056f
add $0x1,%edi \

o)

)

(

0 =

Exercise 1: Conditional jump

je target jump if ZF is 1

Let %ed1 store 0x10. Will we jump in the following cases? %edi

1. cmp $0x10,%edi ,
je 40056f S2-S51==0, sojump

add $0x1,%edi

2. test $0x10,%edi
je 40056f S2 & S1 =0, so don’t jump
add $0x1, %edi

Exercise 2: Conditional jump

00000000004004d6 <if then>:

4004d6: 83 ff 06 cmp $0x6,%edi roed 0X>

4004d9: 75 03 jne 4004de <if then+0x8>

400rdb: 83 c7 01 add $0x1, %edi

4004de: 8d 04 3f lea (%rdi,%rdi,1),%eax

4004el: c3 retq

1. Whatis the value of %rip after 2. What s the value of %eax

executing the jne instruction? when we hit the retq instruction?

A. 4004d9 A. 4004el

8. 4004db B. Ox2

C. 4004de C. Oxa .

D. Other D. OXC ({)
E. Other o

Exercise 2: Conditional jump

00000000004004d6 <if then>:

4004d6: 83 ff 06 cmp $0x6,%edi roed 0X>
4004d9: 75 03 jne 4004de <if then+0x8>
400rdb: 83 c7 01 add $0x1, %edi
4004de: 8d 04 3f lea (%rdi,%rdi,1),%eax
4004el: c3 retq
1. Whatis the value of %rip after 2. What s the value of %eax
executing the jne instruction? when we hit the retq instruction?
A. 4004d9 A. 4004el
8. 4004db B. Ox2
D. Other D. OXc

E. Other

Lecture Plan

* Assembly Execution and %rip

e Control Flow Mechanics

* Condition Codes
* Assembly Instructions

e |[f statements
* Loops

* While loops
* Forloops

e Other Instructions That Depend On Condition Codes
* Live Session Slides

27

46

54
67

/3
31

How can we use instructions like cmp and conditional jumps to implement if
statements in assembly?

Practice: Fill In The Blank

int if then(int paraml) { ©0000000000401126 <if_then>:

if (

) o

¥

return

401126
401129:
40112b:
40112e:
40112f:

401132:

cmp $@x6 %»edi

je 40112f

lea (%rdi,%rdi,1),%eax
retqg

add $0x1,%edi

jmp ~ 40112b

) ‘

)

Practice: Fill In The Blank

int if then(int paraml) { ©000000000401126 <if_then>:

}

if (paraml == 6) {
paraml++;
}

return paraml * 2;

401126
401129:
40112b:
40112e:
40112f:

401132:

cmp $@x6 %»edi

je 40112f

lea (%rdi,%rdi,1),%eax
retqg

add $0x1,%edi

jmp ~ 40112b

) ‘

)

Common If-Else Construction

If-Else In C If-Else In Assembly pseudocode
long absdiff(long x, long y) { Test
long result; Jump to else-body if test passes
1 (< y) o if-bogy t else-bod
result = y - X; ump to past else-body
Else-body
} else {

Past else body
result

X =Y,

}

return result;

Practice: Fill in the Blank

If-Else In C

long absdiff(long x, long y) {
long result;

if () {
} else { ”
} J

return result;

401134
401137
40113a
40113c
40113f
401140
401143

401146

<+0>: mov
<+3>: cmp
<+6>: jge
<+8>: sub
<+11>: retq
<+12>: sub
<+15>: mov

<+18>: retq

%rsi,srax
%rsi,srdi
0x401140 <absdiff+12>

%rdi, %rax

%rsi,%rdi
%rdi, %rax

If-Else In Assembly pseudocode

Test

Jump to else-body if test passes
If-body

Jump to past else-body A D\
Else-body Q;;)

Past else body .

Practice: Fill in the Blank

If-Else In C

long absdiff(long x, long y) {
long result;

if ((X <Y) {
} else { } ’
} J

return result;

401134
401137
40113a
40113c
40113f
401140
401143

401146

<+0>: mov
<+3>: cmp
<+6>: jge
<+8>: sub
<+11>: retq
<+12>: sub
<+15>: mov

<+18>: retq

%rsi,srax
%rsi,srdi
0x401140 <absdiff+12>

%rdi, %rax

%rsi,%rdi
%rdi, %rax

If-Else In Assembly pseudocode

Test

Jump to else-body if test passes

If-body

Jump to past else-body

Else-body

Past else body

If-Else Construction Variations

C Code Assembly
int test(int arg) { 401134 <+0>: cmp $0x3,%edi
int ret; 401137 <+3>: jle Ox401142 <test+14>
if (arg > 3) { 401139 <+5>: mov $0xa, %eax
ret = 10; 40113e <+10>: add $0x1, %eax
1 else { 401141 <+13>: retg
ret = 0; 401142 <+14>: mov $0x0, %eax
} 401147 <+19>: jmp Ox40113e <test+10>
ret++;

return ret;

Lecture Plan

* Assembly Execution and %rip

e Control Flow Mechanics

* Condition Codes
* Assembly Instructions

e If statements
* Loops

* While loops
* Forloops

e Other Instructions That Depend On Condition Codes
* Live Session Slides

27

46

54
67

/3
31

Loops and Control Flow

void]_oop() { 0x000000000040115¢C <+0>: mov $0x0, %eax
int i = 9: 0x0000000000401161 <+5>: cmp $0x63, %eax
. C? 0Xx0000000000401164 <+8>: jg Ox40116b <loop+15>
while (i < 100) { 0x0000000000401166 <+10>: add $0x1, %eax
j__|__|_; 0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
} 0Xx000000000040116b <+15>: retq

Loops and Control Flow

void loop() { 0x000000000040115C <+0>: mov $0x0,%eax
it 12 g 0x0000000000401161 <+5>: cmp $0x63,%eax
L 95 OX0000000000401164 <+8>: ig 0x40116b <1oop+15>
while (i < 100) { 0x0000000000401166 <+10>: add $0x1,%eax
it+; 0X0000000000401169 <+13>: jmp @x401161 <loop+5>
} 0Xx000000000040116b <+15>: retq

Set %eax (i) to 0.

Loops and Control Flow

void loop() { 0X000000000040115C <+0>: mov $0x0, %eax
int i = ©: 0Xx0000000000401161 <+5>: cmp $0x63, %eax
' J 0Xx0000000000401164 <+8>: Jg ©x40116b <loop+15>
while (i < 100) { 0x0000000000401166 <+10>: add $0x1,%eax
i++; 0X0000000000401169 <+13>: jmp 0x401161 <loop+5>
} 0Xx000000000040116b <+15>: retq

Compare %eax (i) to 0x63 (99)
by calculating %eax — 0x63.
This is 0 — 99 = -99, so it sets
the Sign Flag to 1.

Loops and Control Flow

void loop() { OX0000000PR40115Cc <+0>: mov $0x0, %eax
t 120 0x0000000000401161 <+5>: cmp $0x63,%eax
in 9> 0X0000000000401164 <+8>: jg 0x40116b <loop+15>
while (i < 100) { Ox0000000000401166 <+10>: add $0x1,%eax
P4+ 0X0000000000401169 <+13>: jmp @x481161 <lOOp+5>
} 0Xx000000000040116b <+15>: retq
}

jg means “jump if greater than”.
This jumps if %eax > 0x63. The
flags indicate this is false, so we do
not jump.

Loops and Control Flow

void loop() { OX0000000PR40115Cc <+0>: mov $0x0, %eax
it 12 o OXx0000000000401161 <+5>: cmp $0x63,%eax
1Nt 9, Ox0000000000401164 <+8>: ig 0x40116b <100p+15>
while (i < 100) { 0Xx0000000000401166 <+10>: add $0x1,%eax
P4+ 0x0000000000401169 <+13>: jmp Ox481161 <10Op+5>
} 0Xx000000000040116b <+15>: retq

Add 1 to %eax (i).

Loops and Control Flow

void loop() { OX0000000PR40115Cc <+0>: mov $0x0, %eax
int i = 0 PXx0000000000401161 <+5>: cmp $0x63 , %eax
. 9 OX0000000000401164 <+8>: jg 0x40116b <loop+15>
while (i < 100) { 0x0000000000401166 <+10>: add $0x1,%eax
i++; PXx0000000000401169 <+13>: jmp Ox401161 <loop+5>
} 0Xx000000000040116b <+15>: retq

Jump to another instruction.

Loops and Control Flow

void loop() { 0X000000000040115C <+0>: mov $0x0, %eax
int i = ©: 0Xx0000000000401161 <+5>: cmp $0x63, %eax
' J 0Xx0000000000401164 <+8>: Jg ©x40116b <loop+15>
while (i < 100) { 0x0000000000401166 <+10>: add $0x1,%eax
i++; 0X0000000000401169 <+13>: jmp 0x401161 <loop+5>
} 0Xx000000000040116b <+15>: retq

Compare %eax (i) to 0x63 (99)
by calculating %eax — 0x63.
Thisis 1 —99 =-98, so it sets
the Sign Flag to 1.

Loops and Control Flow

void loop() {
int 1 = ©;
while (i < 100) {
i++;
}

0x000000000040115Cc <+0>: mov $0x0, %eax
0x0000000000401161 <+5>: cmp $0x63, %eax
0x0000000000401164 <+8>: jg ox40116b <loop+15>

BXx00000V00VV401166 <+10>: add $0x1,%eax
0X0000000000401169 <+13>: jmp ©x401161 <loop+5>

OXx000000000040116b <+15>: retq

We continue in this pattern until
we make this conditional jump.
When will that be?

Loops and Control Flow

void loop() { 0X000000000040115C <+0>: mov $0x0, %eax
int i = ©: 0x0000000000401161 <+5>: cmp $0x63, %eax
i 0¥X0000000000401164 <+85: Jg Ox40116b <loop+15>
while (i < 100) { 0x0000000000401166 <+10>: add $0x1,%eax
i++; 0X0000000000401169 <+13>: jmp 0x401161 <loop+5>
} 0Xx000000000040116b <+15>: retq

We will stop looping when this
comparison says that %eax — 0x63 > 0!

Loops and Control Flow

void loop() { 0X000000000040115C <+0>: mov $0x0,%eax
int i = 0 0x0000000000401161 <+5>: cmp $0x63, %eax
)] J Ox000000VRVV401164 <+8>: Jg ©x40116b <loop+15>
while (i < 100) { 0x0000000000401166 <+10>: add $0x1,%eax
i++; 0X0000000000401169 <+13>: jmp 0x401161 <loop+5>
) 0x000000000040116b <+15>: retg

Then, we return from the function.

GCC Common While Loop Construction

C Assembly
while (test) { Test
body Skip loop if test passes
} Body
Jump back to test

From Previous Slide:

0xX0000000000401161 <+5>: cmp $0x63, %eax
0x0000000000401164 <+8>: jg Ox40116b <loop+15>

OXx0000000000401166 <+10>: add $0x1, %eax
0x0000000000401169 <+13>: jmp 0x401161 <loop+5>

GCC Other While Loop Construction

C Assembly
while (test) { Jump to test
body Body
} Test
Jump to body if test passes

From Previous Slide:

0x0000000000400575 <+5>: jmp Ox40057a <loop+10>
0x000000000400577 <+7>: add $0x1, %eax
0x000000000040057a <+10>: cmp $0x63, %eax

0x000000000040057d <+13>: jle Ox400577 <loop+7>

Lecture Plan

* Assembly Execution and %rip

e Control Flow Mechanics

* Condition Codes
* Assembly Instructions

e If statements
* Loops

* While loops
* For loops

e Other Instructions That Depend On Condition Codes
* Live Session Slides

27

46

54
67

/3
31

Common For Loop Construction

C For loop Assembly pseudocode
for (init; test; update) { m) Tnit
body Test
} Skip loop if test passes
Body
Update

Jump back to test

C Equivalent While Loop
init
while(test) { For loops and while loops are

Soggte treated (essentially) the same
1 g when compiled down to assembly.

Back to Our First Assembly

int sum_array(int arr[], int nelems) { |1 \Which registeris C code’s sum?

int sum = 0; : : :) s
for (int i = 0; i < nelems; i++) { |2 WhichregisterisCcode’s 17

} sum += arr[i]; 3. Which assembly instruction is C
return sum: code’s sum += arr[i]?
} 4. What are the cmp and jge

. , D
0000000P0R401136 <sum_arrays: Instructions doing:
401136 <+0>: mov $0x8,%eax (jge: signed jump greater than/equal)

40113b <+5>: mov $0x0, %edx
401140 <+10>: cmp %esi,neax
401142 <+12>: jge Ox40114f <sum_array+25>

401144 <+14>: movslg %eax,%rcx
401147 <+17>: add (%rdi,%rcx,4),%edx

40114a <+20>: add $0x1, %eax G D
40114d <+23>: jmp Ox401140 <sum_array+10> &\E;)
40114f <+25>: mov %edXx, seax -

401151 <+27>: retq 69

Demo: GDB and Assembly

.
sum_array.c

(ctrl-x a: exit,
ctrl-1: resize)

layout split
info reg

p $eax
p $eflags

b *0x400546
b *0x400550 if %$eax > 98

ni
si

View C, assembly, and gdb (lab5)
Print all registers

Print register value

Print all condition codes currently set

Set breakpoint at assembly instruction
Set conditional breakpoint

Next assembly instruction

Step into assembly instruction (will step
into function calls) 71

p/Xx $rdi
p/t $rsi

X $rdi
x/4bx $rdi
X/4wx $rdi

Print register value in hex

Print register value in binary

Examine the byte stored at this address
Examine 4 bytes starting at this address
Examine 4 ints starting at this address

Lecture Plan

* Assembly Execution and %rip

e Control Flow Mechanics

* Condition Codes
* Assembly Instructions

e If statements
* Loops

* While loops
* Forloops

e Other Instructions That Depend On Condition Codes
* Live Session Slides

27

46

54
67

/3
31

Condition Code-Dependent Instructions

There are three common instruction types that use condition codes:

* jmp instructions conditionally jump to a different next instruction
* set instructions conditionally set a bytetoOor 1

* new versions of mov instructions conditionally move data

set: Read condition codes

set instrucnons condinonally set a byte to O or 1.

e Reads current state of flags

* Desnnanon is a single-byte register (e.g., %al) or single-byte memory locanon
* Does not perturb other bytes of register

 Typically followed by movzbl to zero those bytes

cmp $0xf, %edi
setle %al

movzbl %al, %eax
) retqg

int small(int x) {
return X < 16;

set: Read condition codes

Instruction Synonym Set Condition (1 if true, O if false)
sete D setz Equal / zero

setne D setnz Not equal / not zero

sets D Negative

setns D Nonnegative

setg D setnle Greater (signed >)

setge D setnl Greater or equal (signed >=)
setl D setnge Less (signed <)

setle D setng Less or equal (signed <=)
seta D setnbe Above (unsigned >)

setae D setnb Above or equal (unsigned >=)
setb D setnae Below (unsigned <)

setbe D setna Below or equal (unsigned <=)

cmov: Conditional move

cmovx src,dst conditionally moves data in src to data in dst.

* Mov src to dst if condition X holds; no change otherwise

* src is memory address/register, dst is register

 May be more efficient than branch (i.e., jump)

e Often seen with C ternary operator: result = test ? then: else;

cmp nedi,%sesi
mov nedli, %eax
cmovge %esi, %eax
retqg

int max(int x, int y) {
return X >y ? X . VY;

}

cmov: Conditional move

Instruction Synonym Move Condition

cmove S,R cmovz Equal / zero (ZF =1)

cmovne S,R cmovnz Not equal / not zero (ZF = 0)

cmovs S,R Negative (SF =1)

cmovns S,R NonnegaOve (SF = 0)

cmovg S,R cmovnle Greater (signed >) (SF = 0 and SF = OF)
cmovge S,R cmovnl Greater or equal (signed >=) (SF = OF)
cmovl S,R cmovnge Less (signed <) (SF != OF)

cmovle S,R cmovng Less or equal (signed <=) (ZF = 1 or SF! = OF)
cmova S,R cmovnbe Above (unsigned >) (CF =0 and ZF = 0)
cmovae S,R cmovnb Above or equal (unsigned >=) (CF = 0)
cmovb S,R cmovnae Below (unsigned <) (CF = 1)

cmovbe S,R cmovna Below or equal (unsigned <=) (CF =1 or ZF = 1)

Last Lab: Conditional Move

int signed division(int x) {
return x / 4;

}
signed division:
leal 3(%rdi), %eax Put x + 3 into %eax
testl %edil, %edi Check the sign of x
cmovns %edi, %eax If X is positive, put x into %eax
sarl $2, %eax Divide %eax by 4

ret

Recap

* Assembly Execution and %rip

e Control Flow Mechanics

* Condition Codes
* Assembly Instructions

e If statements
* Loops

* While loops
* Forloops

e Other Instructions That Depend On Condition Codes

Next time: Function calls in assembly

* How to remember cmp/jmp

e CMP S1, S2isS2 - S1 (justsets condition codes). But generally:

cmp S1, S2
Jg

S2 > S1 S2 - 51 > 0

Instruction Synonym Jump condition Description
jmp Label 1 Direct jump
jmp *Operand 1 Indirect jump
. je Label jz ZF Equal / zero
* Much less important to remember PTG T S R ger:
143 js Label SF Negati
exact condition codes Ie; oo Lenis,
* Yes, they fully explain conditional jmp Jg Label jale ~GF-ORE-ZF Greater (signed>)
’ e jge Label jnl ~(SF ~ OF) Greater or equal (signed >=)
. jl1 Label jnge SF ~ OF Less (signed
e ..butmoreim pOrta nt to know how to jle Label jng (SF ~OF) | ZF Li:: E:rli::a:()signcd <=)
translate assembly back into C ja Label jmbe ~CFa-zF Above (unsigned >)
, J:e Il:a[[;eg J.nb ;ﬁF Above or equal (unsigned >=)
b . ape nae :
* If you're interested, B&O p. 206 has details e (R P A S s

Figure 3.15 The jump instructions. These instructions jump to a labeled destination
when the jump condition holds. Some instructions have “synonyms,” alternate names
for the same machine instruction. 83

* Remember test exists

« TEST S1, S2 isS2 & S1

test %edi, %edi
jns ..

snedli & %edi 1s nonnegative
%edi 1s nonnegative

Instruction Synonym Jump condition Description

jmp Label 1 Direct jump

jmp *Operand 1 Indirect jump

je Label jz ZF Equal / zero

jne Label jnz ~ZF Not equal / not zero

js Label SF Negative

jns Label ~SF Nonnegative

ig Label jnle ~(SF ~ OF) & ~ZF Greater (signed >)

jge Label jnl ~(SF ~ OF) Greater or equal (signed >=)

jl Label jnge SF ~ OF Less (signed <)

jle Label jng (SF~0OF) | ZF Less or equal (signed <=)

ja Label jnbe ~CF & ~ZF Above (unsigned >)

J:ae Label jnb ~CF Above or equal (unsigned >=)
jb Label jnae CF Below (unsigned <)

jbe Label jna CF | ZF Below or equal (unsigned <=)

Figure 3.15 The jump instructions. These instructions jump to a labeled destination

when the jump condition holds. Some instructions have “synonym:s,”
for the same machine instruction.

alternate names

Practice: Fill in the blanks

long loop(long a, long b) {

long result = __ (1) ;
while (____(2)___) {
result = (3) ;
a=__(4)—;
}
return result;
}
GCC hile | ruction:
Test
Jump past loop if fails
Body

Jump to test

<+0>:
<+5>:
<+8>:

<+10>:
<+14>:
<+18>:
<+22>:
<+24>:

mov $0x1, %eax
cmp %rsi,snrdi

jge ©x1151 <loop+24>
lea (%rdi,%rsi,1),%rdx
imul %rdx, %rax

add $0x1, %rdi

jmp Ox113e <loop+5>
retq

°)

¢

https://godbolt.ora/z/zr\WW6c5MGa 36

Practice: Fill in the blanks

long loop(long a, long b) {

long result = __ (1) ;
while (____(2)___) {
result = (3) ;
a=__(4)—;
}
return result;
}
GCC hile | ruction:
Test
Jump past loop if fails
Body

Jump to test

<+0>:
<+5>:
<+8>:

<+10>:
<+14>:
<+18>:
<+22>:
<+24>:

mov
cmp
jge
lea
imul
add
jmp
retq

$0x1, %eax
%rsi,%rdi

0x1151 <loop+24>
(%rdi,%rsi,1),%rdx
%rdx, %rax

$0x1, %rdi

Ox11l3e <loop+5>

Practice: Fill in the blanks

long loop(long a, long b) { <+0>: mov $0x1, %eax
long result = ; . .
while () { <+5>: cmp %rsi,%rdi
result = . <+8>: jge ©x1151 <loop+24>
a = : <+10>: lea (%rdi,%rsi,1),%rdx
¥ <+14>: 1imul %rdx, %rax
return result; <+18>: add $ox1,%rdi

<+22>: jmp Ox113e <loop+5>

<+24>: retq

Practice: Fill in the blanks

long loop(long a, long b) {
long result = _1_____;
while (_a.< b) {
result =rgsult*(a+b) ;
a=_a+1 ;
}

return result;

<+0>:

<+5>:
<+8>:

<+10>:
<+14>:
<+18>:
<+22>:

<+24>:

mov

cmp
jge
lea

imul
add

jmp

retqg

$0x1, %eax

%rsi,%nrdi
©x1151 <loop+24>

(%rdi,%rsi,1),%rdx
%rdx, %rax
$0x1, %rdi

Ox113e <loop+5>

test practice: What's the C code?

0x400546 <test func> test %edi,%edi

Ox400548 <test func+2> jns Ox400550 <test func+10>
Ox40054a <test func+4> mov $oxfeed, %eax

Ox40054f <test_func+9> retq

Ox400550 <test func+10> mov $0xaabbccdd, %eax
Ox400555 <test func+1l5> retq

»

)

1

test practice: What's the C code?

0x400546 <test func> test %edi,%edi

Ox400548 <test func+2> jns Ox400550 <test func+10>
Ox40054a <test func+4> mov $oxfeed, %eax

Ox40054f <test_func+9> retq

Ox400550 <test func+10> mov $0xaabbccdd, %eax
Ox400555 <test func+1l5> retq

int test _func(int x) {
if (x < 0) {
return Oxfeed;
}

return Oxaabbccdd; (or anything
} like this)

92

n

Practice: "Escape Room

<escape_room+0> lea (%rdi,%rdi,1),%eax
<escape_room+3> cmp $0x5, %eax
<escape_room+6> jg Ox114c <escape_room+19>
<escape_room+8> cmp $0x1, %edi
<escape_room+11> je Ox1152 <escape_room+25>
<escape_room+13> mov $0x0, %eax
<escape_room+18> retq

<escape_ room+19> mov $0x1, %eax
<escape_room+24> retqg

<escape_ room+25> mov $0x1, %eax
<escape_room+30> retqg

What must be passed to the You don’t have to reverse-engineer C

escapeRoom function such that it | | code exactly!
returns true (1) and not false (0)?

93

n

Practice: "Escape Room

<escape_room+0> lea (%rdi,%rdi,1),%eax
<escape_room+3> cmp $0x5, %eax
<escape_room+6> jg Ox114c <escape_room+19>
<escape_room+8> cmp $0x1, %edi
<escape_room+11> je Ox1152 <escape_room+25>
<escape_room+13> mov $0x0, %eax
<escape_room+18> retq

<escape_ room+19> mov $0x1, %eax
<escape_room+24> retqg

<escape_ room+25> mov $0x1, %eax
<escape_room+30> retqg

What must be passed to the
escapeRoom function such that it First param > 2 or == 1.
returns true (1) and not false (0)?

94

* Revisiting %rip

* Calling Functions
e The Stack
e Passing Control

* Passing Data
* Local Storage

Lecture Plan

* Register Restrictions

e Pulling it all together: recursion example

* Optimizations
e Live session slides

cp -r /afs/ir/class/csl107/lecture-code/lectl3 .

19

22
36
44
65

69
78
31
93

* Revisiting %rip

* Calling Functions
* The Stack
e Passing Control

* Passing Data
* Local Storage

Lecture Plan

* Register Restrictions

e Pulling it all together: recursion example

* Optimizations
e Live session slides

cp -r /afs/ir/class/csl107/lecture-code/lectl3 .

19

22
36
44
65

69
78
31
93

* %rip is a special register that points to the next instruction to execute.

* Let’s dive deeper into how %rip works, and how jumps modify it.

void loop() {
int 1 = 0;
while (i < 100) {
i++;
}

Ox40113f
0x401144
0x401147
0x401149
0x40114c
0x40114e

<+0>:
<+5>:
<+8>:
<+10>:
<+13>:
<+15>:

b8
83
7f
83
eb
c3

00 00 00 00
8 63

05

co 01

6

mov
cmp
Jg
add
Jjmp
retq

$0x0, %eax
$0x63, %eax
40114e <loop2+15>
$0x1, %eax
401144 <loop2+5>

void loop() {
int 1 = ©;
while (i < 100) {
i++;
}

0x40113f (<+0>: b8 00 00 00 0 mov $0x0,%eax

0x401144 [<+5>: 83 f8 63 cmp $0x63,%eax
Ox401147 <+8>: 7f 05 jg 40114e <loop2+15>
0x401149 <+10>: 83 cO 01 add $0x1,%eax
Ox40114c <+13>: eb f6 jmp 401144 <loop2+5>
Ox40114e <+15>: c3 retq

These are 0-based offsets in bytes
for each instruction relative to the
start of this function.

void loop() {
int 1 = ©;
while (i < 100) {
i++;
}

Ox40113f
0x401144
0x401147
0x401149
0x40114c
0x40114e

<+0>:
<+5>:

<+8>:

<+10>:
<+13>:
<+15>:

b8 00 00 00 00
83 8 63

7f 05

83 co 01

eb f6

c3

mov
cmp
Jg
add
Jjmp
retq

$0x0, %eax
$0x63, %eax
40114e <loop2+15>
$0x1, %eax
401144 <loop2+5>

These are bytes for the machine
code instructions.
variable length.

Instructions are

void loop() {
int 1 = 0;
while (i < 100) {
i++;
}

Ox40113f
0x401144
0x401147
0x401149
0x40114c
0x40114e

<+0>:
<+5>:
<+8>:
<+10>:
<+13>:
<+15>:

b8 00 00 00 00
83 8 63

7f 05

83 cO 01

eb f6

c3

mov
cmp
Jg
add
Jjmp
retq

$0x0, %eax
$0x63, %eax
40114e <loop2+15>
$0x1, %eax
401144 <loop2+5>

Ox40113f <+0>: b8 00 00 00 00 mov $0x0,%eax

0x401144 <+5>: 83 18 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
Ox401149 <+10>: 83 cO 01 add $0x1, %eax
Ox40114c <+13>: eb f6 jmp 401144 <loop2+5>

Ox40114e <+15>: c3 retq

Ox40113f <+0>: b8 00 00 00 00 mov $Ox0,%eax

0x401144 <+5>: 83 18 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
0x401149 add $0x1, %eax
Ox40114c jmp 401144 <loop2+5>
Ox40114e retqg

Ox7f means jg.

Ox40113f <+0>: b8 00 00 00 00 mov $Ox0,%eax
0x401144 <+5>: 83 18 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
Ox401149 <+10>: co 01 add $0x1, %eax

0x40114c <+13>: 6 jmp 401144 <loop2+5>
Ox40114e <+15. retq
0x05 is the number of With no jump, %rip would
instruction bytes to advance to the next line.
jump relative to %rip. This jg says to then go 5
bytes further!

Ox40113f <+0>: b8 00 00 00 00 mov $0x0,%eax
0x401144 <+5>: 83 8 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
Ox401149 <+10>: co 01 add $0x1, %eax
0x40114c <+13>: 6 jmp 401144 <loop2+5>

Ox40114e <+15>~ retq
0x05 is the number of With no jump, %rip would
instruction bytes to advance to the next line.
jump relative to %rip. This jg says to then go 5
bytes further!

Ox40113f <+0>: b8 00 00 00 00 mov $Ox0,%eax

0x401144 <+5>: 83 f8 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
Ox401149 <+10>: 83 cO 01 add $0x1, %eax
0x40114c <+13>: eb f6 jmp 401144 <loop2+5>

Ox40114e y'c?, retq

Oxeb means jmp.

Ox40113f <+0>: b8 00 00 00 00 mov $0x0,%eax

0x401144 <+5>: 83 8 63 cmp $0x63,%eax

0x401147 <+8>: 7f 05 jg 40114e <loop2+15>

Ox401149 <+10>: 83 cO 01 add $0x1,%eax

0x40114c <+13>: eb f6 jmp 401144 <loop2+5>

0x40114e <+1i:;/;2)' retq
0xf6 is the number of With no jump, %rip
instruction bytes to jump would advance to the
relative to %rip. Thisis -10 next line. This jmp says
(in two’s complement!). to then go 10 bytes back!

Ox40113f <+0>: b8 00 00 00 0O mov $Ox0,%eax

0x401144 <+5>: 83 {8 63 cmp $0x63,%eax

0x401147 <+8>: 7f 05 jg 40114e <loop2+15>

0x401149 <+10>: 83 cO 01 add $0x1, %eax

Ox40114c <+13>: eb f6 jmp 401144 <loop2+5>

Ox40114e <+1i:;/;2)' retq
0xf6 is the number of With no jump, %rip
instruction bytes to jump would advance to the
relative to %rip. This is -10 next line. This jmp says
(in two’s complement!). to then go 10 bytes back!

Summary: Instruction Pointer

* Machine code instructions live in main memory, just like stack and heap data.

* %rip is a register that stores a number (an address) of the next instruction to
execute. It marks our place in the program’s instructions.

* To advance to the next instruction, special hardware adds the size of the
current instruction in bytes.

* jmp instructions work by adjusting %rip by a specified amount.

* Revisiting %rip

* Calling Functions
* The Stack
e Passing Control

* Passing Data
* Local Storage

Lecture Plan

* Register Restrictions

e Pulling it all together: recursion example

* Optimizations
e Live session slides

cp -r /afs/ir/class/csl107/lecture-code/lectl13 .

19

22
36
44
65

69
78
31
93

How do we call functions In
assembly?

Calling Functions In Assembly

To call a function in assembly, we must do a few things:

* Pass Control — %rip must be adjusted to execute the callee’s instructions, and
then resume the caller’s instructions afterwards.

* Pass Data — we must pass any parameters and receive any return value.

* Manage Memory — we must handle any space needs of the callee on the
stack.

How does assembly
interact with the stack?

Terminology: caller function calls the callee function.

* Revisiting %rip

* Calling Functions
* The Stack
e Passing Control

* Passing Data
* Local Storage

Lecture Plan

* Register Restrictions

e Pulling it all together: recursion example

* Optimizations
e Live session slides

cp -r /afs/ir/class/csl107/lecture-code/lectl13 .

19

22
36
44
65

69
78
31
93

* %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

Main Memory

main()

myfunction()

%rsp

Heap

[
Data

Text (code)

N
(O8]

0x0

* %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

Main Memory

main()

myfunction()

%rsp foo()

Heap

Data

Text (code)

N
(O8]

0x0

* %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

Main Memory

main()

myfunction()

foo()

%rsp

foo2()

Heap

Data

Text (code)

N
(O8]

0x0

* %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

Main Memory

main()

myfunction()

%rsp foo()

Heap

Data

Text (code)

N
(O8]

0x0

* %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

%rsp

0x0

Main Memory

main()

myfunction()

Heap
[—
Data
[

Text (code)
_—

Key idea: %rsp must
point to the same place
before a function is
called and after that
function returns, since
stack frames go away

when a function finishes.

27

* The push instruction pushes the data at the specified source onto the top of
the stack, adjusting %rsp accordingly.

Instruction Effect

pushg S |R[%rsp] « R[%rsp] - 8;
M[R[%rsp]] < S

* The push instruction pushes the data at the specified source onto the top of
the stack, adjusting %rsp accordingly.

Instruction Effect
pushg S |R[%rsp] < R[%rsp] - 8;

* The push instruction pushes the data at the specified source onto the top of
the stack, adjusting %rsp accordingly.

Instruction Effect

pushqg S
M[R[%rsp]] < S

* The push instruction pushes the data at the specified source onto the top of
the stack, adjusting %rsp accordingly.

Instruction

Effect

pushqg S

R[%rsp] «— R[%rsp] - 8;
M[R[%rsp]] «<— S

* This behavior is equivalent to the following, but pushq is a shorter instruction:

subq $8, %rsp
movq S, (%rsp)

* Sometimes, you’ll see instructions just explicitly decrement the stack pointer
to make room for future data.

* The pop instruction pops the topmost data from the stack and stores it in the
specified destination, adjusting %rsp accordingly.

Instruction

Effect

popq D

D «— M[R[%rsp]]
R[%rsp] <« R[%rsp] + 8;

* Note: this does not remove/clear out the data! It just increments %rsp to
indicate the next push can overwrite that location.

* The pop instruction pops the topmost data from the stack and stores it in the
specified destination, adjusting %rsp accordingly.

Instruction

Effect

popq D

D «— M[R[%rsp]]
R[%rsp] <« R[%rsp] + 8;

* This behavior is equivalent to the following, but popq is a shorter instruction:

movq (%rsp), D
addq $8, %rsp

 Sometimes, you’ll see instructions just explicitly increment the stack pointer to

pop data.

Initially

%Brax Ox123

%Brdx (5]

%rsp 0x108

Stack “bottom”
Increasing
addresses
0x108

Stack “top”

Stack Example

pushqg 7%rax
%rax Ox123
%rdx %
%rsp Ox100
Stack “bottom”
Increasing
addresses
0x108 Ox123
0x100
Stack “top”

popq %rdx
%Brax Ox123
%Brdx Ox123
%rsp Ox108
Stack “bottom”
Increasing
addresses
0x108 Ox123
0x100

Stack “top’)

&

34

Calling Functions In Assembly

To call a function in assembly, we must do a few things:

* Pass Control — %rip must be adjusted to execute the callee’s instructions, and
then resume the caller’s instructions afterwards.

Terminology: caller function calls the callee function.

* Revisiting %rip

* Calling Functions
* The Stack
e Passing Control

* Passing Data
* Local Storage

Lecture Plan

* Register Restrictions

e Pulling it all together: recursion example

* Optimizations
e Live session slides

cp -r /afs/ir/class/csl107/lecture-code/lectl13 .

19

22
36
44
65

69
78
31
93

Remembering Where We Left Off

Problem: %rip points to the E.g. main() calls foo(): Stack
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.

Solution: push the next value of J{

main()

%rip onto the stack. Then call
the function. When itis
finished, put this value back
into %rip and continue
executing.

%rsp | O0xff20

%rip | 0x3021

Remembering Where We Left Off

Problem: %rip points to the E.g. main() calls foo(): Stack
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.

Solution: push the next value of
%rip onto the stack. Then call 0x3026
the function. When it is J{

main()

finished, put this value back
into %rip and continue
executing.

%rsp | Oxff18

%rip | 0x3021

Remembering Where We Left Off

Problem: %rip points to the E.g. main() calls foo(): Stack
next instruction to execute. To
call a function, we must
remember the next caller

: _ main()
instruction to resume at after.
Solution: push the next value of
%rip onto the stack. Then call 09X3026
the function. When itis
foo()

finished, put this value back
into %rip and continue

. %rsp | Oxff08
executing. J{

%rip | 0x4058

Remembering Where We Left Off

Problem: %rip points to the E.g. main() calls foo(): Stack
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.

Solution: push the next value of
%rip onto the stack. Then call 0x3026
the function. When it is J{

main()

finished, put this value back
into %rip and continue
executing.

%rsp | Oxff18

%rip | 0x4058

Remembering Where We Left Off

Problem: %rip points to the E.g. main() calls foo(): Stack
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.

Solution: push the next value of J{

main()

%rip onto the stack. Then call
the function. When itis
finished, put this value back
into %rip and continue
executing.

%rsp | O0xff20

%rip | 0x3026

Call And Return

The call instruction pushes the address of the instruction immediately following
the call instruction onto the stack and sets %rip to point to the beginning of the
specified function’s instructions.

call Label
call *Operand

The ret instruction pops this instruction address from the stack and stores it in
%rip.

ret

The stored %rip value for a function is called its return address. It is the address

of the instruction at which to resume the function’s execution. (not to be
confused with return value, which is the value returned from a function).

Calling Functions In Assembly

To call a function in assembly, we must do a few things:

* Pass Data — we must pass any parameters and receive any return value.

Terminology: caller function calls the callee function.

* Revisiting %rip

* Calling Functions
* The Stack
e Passing Control

* Passing Data
* Local Storage

Lecture Plan

* Register Restrictions

e Pulling it all together: recursion example

* Optimizations
e Live session slides

cp -r /afs/ir/class/csl107/lecture-code/lectl13 .

19

22
36
44
65

69
78
31
93

Parameters and Return

* There are special registers that store parameters and the return value.

* To call a function, we must put any parameters we are passing into the correct
registers. (%rdi, %rsi, %rdx, %rcx, %r8, %r9, in that order)

* Parameters beyond the first 6 are put on the stack.

* If the caller expects a return value, it looks in %rax after the callee completes.

Parameters and Return

int main(int argc, char *argv[]) { rna]}1() t:: -
int i1 = 1; \L
int i2 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&il, &i2, &i3, &i4,
il, i2, i3, i4);

}

int func(int *p1, int *p2, int *p3, int *p4,
int vl, int v2, int v3, int v4) {

Parameters and Return

int main(int argc, char *argv[]) { rna111() t::
int i1 = 1; \L
int i2 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&il, &i2, &i3, &i4,
il, i2, i3, i4);

} o %rsp
Oxffea08

int func(int *pl1l, int *p2, int *p3, int *p4,

int vl, int v2, int v3, int v4) { o/
%rip

} 0x40054f

0x40054f <+0>: sub $0x18,%rsp

Ox400553 <+4>: movl $0x1,0xc(%rsp)
Ox40055b <+12>: movl $0x2,0x8(%rsp)
Ox400563 <+20>: movl $0x3,0x4(%rsp)

Ox40056b <+28> - mov] $Ox4(%rsp) 47

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1;
int i2 = 2;
int i3 = 3; rnajj1()
int i4 = 4;

int result = func(&il, &i2, &i3, &i4,
il, i2, i3, i4);

Oxffeofo
} \L %rsp
Oxffe9f0
int func(int *pl1l, int *p2, int *p3, int *p4,
int vl, int v2, int v3, int v4) { o/
%rip
} 0x400553

0x40054f <+0>: sub $0x18,%rsp

0x400553 <+4>: movl $0x1,0xc(%rsp)
Ox40055b <+12>: movl $0x2,0x8(%rsp)
Ox400563 <+20>: movl $0x3,0x4(%rsp)

O0OLCENh vzl ¢tovaA (Yncn) 26
UV JIVUU nmouv .y .PUI\“I', \IOI DlJ}

Ov
UAN

N\
+
N
00
\'%
3

A
4

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1; Oxffe9fc 1
int i2 = 2;

int i3 = 3; maj_n()

int i4 = 4;

int result = func(&il, &i2, &i3, &i4,
il, i2, i3, i4);

Oxffeofo
) \L %rsp
Oxffe9fo
int func(int *pl1l, int *p2, int *p3, int *p4,
int vl, int v2, int v3, int v4) { o/
%rip
} 0x40055b

0x40054f <+0>: sub $0x18,%rsp

0x400553 <+4>: movl $0x1,0xc(%rsp)
Ox40055b <+12>: movl $0x2,0x8(%rsp)
Ox400563 <+20>: movl $0x3,0x4(%rsp)

O0OLCENh vzl ¢tovaA (Yncn) 26
UV JIVUU nmouv .y .PUI\“I', \IOI DlJ}

Ov
UAN

N\
+
N
00
\'%
3

A
4

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1; Oxffeofc 1
int i2 = 2;
int i3 = 3; rnajj1() Oxffeof8 2
int i4 = 4;

int result = func(&il, &i2, &i3, &i4,
il, i2, i3, i4);

Oxffeofo
) \L %rsp
Oxffe9f0
int func(int *pl1l, int *p2, int *p3, int *p4,
int vl, int v2, int v3, int v4) { o/
%rip
} 0x400563

0x40054f <+0>: sub $0x18,%rsp

0x400553 <+4>: movl $0x1,0xc(%rsp)
Ox40055b <+12>: movl $0x2,0x8(%rsp)
Ox400563 <+20>: movl $0x3,0x4(%rsp)

O0OLCENh vzl ¢tovaA (Yncn) 26
UV JIVUU nmouv .y .PUI\“I', \IOI DlJ}

Ov
UAN

N\
+
N
00
\'%
3

A
4

Parameters and Return

int main(int argc, char *argv[]) {
int il = 1; Oxffeofc 1
int i2 = 2;
int i3 = 3; maj_n() Oxffeof8
int i4 = 4; 3
int result = func(&il, &i2, &i3, &i4, oxffeofs
i1, 12, 13, 14); Oxffe9fo
} \l, %rsp
Oxffe9fo
int func(int *pl1l, int *p2, int *p3, int *p4,
int vl, int v2, int v3, int v4) { %rip
o
} 0x40056b
0x400563 <+20>: movl $0x3,0x4(%rsp)
Ox40056b <+28>: movl $0x4, (%rsp)
Ox400572 <+35>: pushg $0x4 26
A

Parameters and Return

int main(int argc, char *argv[]) {

int il = 1; OxFffe9fc 1
int i2 = 2;
int i3 = 3; maj_n() Oxffeof8 2
int i4 = 4; 3
int result = func(&il, &i2, &i3, &i4, oxffedf4
11, 12, 13, 14); oxffeofo 4
) \l, %rsp
Oxffe9fo
int func(int *p1, int *p2, int *p3, int *p4,
int vl, int v2, int v3, int v4) { %rip
o
} 0x400572

0x40056b <+28>: movl $0x4, (%rsp)
Ox400572 <+35>: pushg $0x4

OO0 L7 nucha tov? 52
UV J7 PUDII\.1 PYUAI

Ov
UAN

N\
+
w
N
\'%

A A
“ i

Parameters and Return

int main(int argc, char *argv[]) {
int i1 = 1; oxffeofc 1
int i2 = 2;
int i3 = 3; main() oxffeofs 2
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4, Oxftfe9ta 3
11, 12, 13, i4); Oxffeofo 4
} %rsp
4 Oxffe9e8
int func(int *pl1l, int *p2, int *p3, int *p4, oxffe9e8
int vl, int v2, int v3, int v4) { \L %rip
o
} 0x400574
0x400572 <+35>: pushqg $0x4
Ox400574 <+37>: pushqg $0x3
©x400576 <+39>: mov $0x2,%rad 53

Parameters and Return

int main(int argc, char *argv[]) {
int il = 1; oxffeofc 1
int i2 = 2;
int i3 = 3; main() oxffeofs 2
int i4 = 4; 3
int result = func(&i1, &i2, &i3, &i4, Oxftfe9ta
11, 12, 13, i4); Oxffeofo 4
} %rsp
4 Oxffe9e0
int func(int *pl1l, int *p2, int *p3, int *p4, oxffe9e8
int vl, int v2, int v3, int v4) { %rip
o
} 3 0x400576
Oxffe9e0
0x400574 <+37>: pushq $06x3
Ox400576 <+39>: mov $0x2,%r9d
Ox40057c <+45>: mov $0x1,%r8d >4

Parameters and Return

int main(int argc, char *argv[]) {
int i1 = 1; oxffeofc 1
int i2 = 2;
int i3 = 3; main() oxffeofs 2
int i4 = 4; 3
int result = func(&il, &i2, &i3, &i4, Oxtte9fa
i1, 12, 13, 14); oxffeofo 4
} %rsp
4 Oxffe9e0
int func(int *pl1l, int *p2, int *p3, int *p4, oxFfe9e8
int vl, int v2, int v3, int v4) { %rip
(o]
} 3 0x40057¢
Oxffe9e0
0x400576 <+39>: mov $0x2,%rod
Ox40057Cc <+45>: mov $0x1,%r8d
Ox400582 <+51>: lea 0x10(%rsp),%rcx 2>

Parameters and Return

int main(int argc, char *argv[]) {
int i1 = 1; oxffeofc 1
int i2 = 2;
int i3 = 3; main() oxffeofs 2
int i4 = 4; 3
int result = func(&i1, &i2, &i3, &i4, Oxftfe9ta
11, 12, 13, i4); Oxffeofo 4
}
4
int func(int *pl1l, int *p2, int *p3, int *p4, oxffe9e8
int vl, int v2, int v3, int v4) {
} 3 %rsp
Oxffe9e0 Oxffe9e0
\!/ %rip
0x400576 <+39>: mov $0x2,%rod
0x40057
Ox40057Cc <+45>: mov $0x1,%r8d X ¢
OYAOOERD <¢4+51S len ox10(%r<n) Yrex ‘ 56
UATUUVUI0O L NTJL/ L C A UI\J.U\/OI DIJ},/OI CA

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&il, &i2, &i3, &i4,

i1, i2, i3, i4);
}

int func(int *pl1l, int *p2, int *p3, int *p4,
int vl, int v2, int v3, int v4) {

0x400576 <+39>: mov $0x2,%rod
Ox40057Cc <+45>: mov $0x1,%r8d

QD ADNAEQYD) ,a3 01\ . T1an OvIDL(Yrnen Yn-v

main()

Oxffe9fc

OxffeofS8

oxffeoft4

Oxffeofo

Oxffe9e8

Oxffe9ed

~rIWIN|PF

%r9od

2

%rsp

Oxffe9e0

%rip

0x40057c

‘fz7
N

Parameters and Return

int main(int argc, char *argv[]) {
int i1 = 1; oxffeofc 1
int i2 = 2;
int i3 = 3; main() oxffeofs 2
int i4 = 4; 3
int result = func(&il, &i2, &i3, &i4, oxffedf4
il: iZ, i3: 14)3 OxFfe9fo 4 %r8d
} q !
(o)
int func(int *pl1l, int *p2, int *p3, int *p4, oxffe9e8 %r9d
int v1, int v2, int v3, int v4) { 2
} 3 %rsp
Oxffe9e0 Oxffe9e0
\!/ %rip
Ox40057c <+45>: mov $0x1, %rsd
0x400582
Ox400582 <+51>: lea 0x10(%rsp),%rcx X
DVvANDNDEQ7 ,1CEN . 1aa OvANLY nen YnAdvw ‘ 27
1

Parameters and Return

int main(int argc, char *argv[]) {
int i1 = 1; oxffeofc 1
int i2 = 2;
int i3 = 3; main() | oxffeofs 2 %rcx
int i4 = 4;
Oxffe9f0
int result = func(&il, &i2, &i3, &ia, oxffedf4 3 X
11, 12, 13, 14); oxffeofo 4 %r8d
} 1
| | . | | 4 %rod
int func(int *pl, int *p2, int *p3, int *p4, oxffe9e8
int v1, int v2, int v3, int v4) { 2
} 3 %rsp
Oxffe9e0 OxFfe9e0
\!/ %rip
0x400582 <+51>: lea 0x10(%rsp),%rcx 0x400587
Ox400587 <+56>: lea Ox14(%rsp) ,%rdx
Ox40058c <+61>: lea Ox18(%rsp),%rsi ‘ >9

Parameters and Return

int main(int argc, char *argv[]) { - %rdx
int 11 = 1; Oxffe9ofc 1 Oxffe9fa
int i2 = 2;
int i3 = 3; main() | oxffeofs 2 %rcx
int i4 = 4;
Oxffe9f0
int result = func(&il, &i2, &i3, &i4, oxffeofs 3 X
11, 12, 13, 14); oxffeofe 4 %r8d
} 1
| | | | | 4 %r9d
int func(int *pl1, int *p2, int *p3, int *p4, OxFfe9e8
int v1, int v2, int v3, int v4) { 2
} 3 %rsp
Oxffe9e0 Oxffe9e0
\!/ %rip
Ox400587 <+56>: lea 0x14(frsp),frd¥ 0x40058c
Ox40058c <+61>: lea Ox18(%rsp),%rsi
Ox400591 <+66>: lea Oxlc(%rsp),%rdi ‘ 60

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&il, &i2, &i3, &i4,

i1, i2, i3, i4);
}

int func(int *p1, int *p2, int *p3, int *p4,
int vl, int v2, int v3, int v4) {

0x40058c <+61>: lea
Ox400591 <+66>: lea
. |

O0P506 <¢47
YooIJO ST/

Ox18(%rsp),%rsi
Ox1c(%rsp),%rdi

6 <fFun

Ov /A
UAN TV N T Ul

o)
v

A
4

main()

%rsi

Oxffe9f8

Oxffe9fc

OxffeofS8

oxffeoft4

Oxffeofo

Oxffe9e8

Oxffe9ed

%rdx

Oxffe9f4

hrcx

Oxffe9f0

~rIWIN|PF

%r8d

1

%r9od

2

%rsp

Oxffe9e0

%rip

0x400591

‘T61

Parameters and Return

int main(int argc, char *argv[]) { - %1 dx
int i1 = 1; OxfFfe9fc 1 Oxffeofd
int i2 = 2;
int i3 = 3; main() | oxffeofs 2 %rcx
int i4 = 4;
Oxffe9f0
int result = func(&il, &i2, &i3, &i4, oxffedf4 3 X
11, 12, i3, 14); oxffeofe 4 %r8d
} 1
. 4 %rod
int func(int *pl1, int *p2, int *p3, int *p4, oxffe9e8
int v1, int v2, int v3, int v4) { 2
} 3 %rsp
Oxffe9e0 OxFfe9e0
%rsi %rdi \L %r‘ip
0x400591 <+66>: lea oxl1lc(%rsp),%srdi Oxffeofs Oxffe9fc 0x400596
Ox400596 <+71>: callg ©x400546 <func>
Ox40059b <+76>: add $0x10,%rsp ‘ 62

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&il, &i2, &i3, &i4,

i1, i2, i3, i4);
}

int func(int *p1, int *p2, int *p3, int *p4,
int vl, int v2, int v3, int v4) {

0x400596 <+71>: callqg 0©x400546 <func>
9x40059b <+76>: add $0x10,%rsp

main()

%rsi

Oxffe9fc
OxffeofS8
Oxffeof4

Oxffeofo

Oxffe9e8

Oxffe9ed

%rdi

Oxffe9f8

Oxffe9fc

%rdx

Oxffe9f4

hrcx

Oxffe9f0

~rIWIN|PF

%r8d

1

%r9od

2

%rsp

Oxffe9e0

%rip

0x400596

‘fz7
A

Parameters and Return

int main(int argc, char *argv[]) { %rdx
int i1 = 1; oxffeofc 1 Oxffe9f4
int i2 = 2;
int i3 = 3; maj_n() Oxffeofs8 2 % cX
int i4 = 4;
5 Oxffe9f0
int result = func(&il, &i2, &i3, &i4, oxffeofs 3 Xe
il, i2, i3, i4); OxFfaofo 4 %r8d
} 1
. 4 %r9d
int func(int *pl1l, int *p2, int *p3, int *p4, oxffe9e8
int v1, int v2, int v3, int v4) { 2
} 3 %rsp
Oxffe9e0
Oxffe9d8
0, : (o) 2
Arsi | #rdl | @x4@@59b |f %rip
0x400596 <+71>: callg ©0x400546 <func> Oxffe9ofs Oxffe9fc 0x400596
9x40059b <+76>: add $0x10,%rsp \L
2
¥

* Revisiting %rip

* Calling Functions
* The Stack
e Passing Control

* Passing Data
* Local Storage

Lecture Plan

* Register Restrictions

e Pulling it all together: recursion example

* Optimizations
e Live session slides

cp -r /afs/ir/class/csl107/lecture-code/lectl13 .

19

22
36
44
65

69
78
31
93

Calling Functions In Assembly

To call a function in assembly, we must do a few things:

* Manage Memory — we must handle any space needs of the callee on the
stack.

Terminology: caller function calls the callee function.

Local Storage

 So far, we’ve often seen local variables stored directly in registers, rather than
on the stack as we’d expect. This is for optimization reasons.

* There are three common reasons that local data must be in memory:
* We've run out of registers
 The ‘&’ operator is used on it, so we must generate an address for it
* They are arrays or structs (need to use address arithmetic)

Local Storage

long caller() {
long argl = 534;
long arg2 = 1057,
long sum = swap_add(&argl, &arg2);

}
caller:
sub $0x10, %rsp // 16 bytes for stack frame
movqg $0x216, ox8(%rsp) // store 534 in argl
movq $0x421, (%rsp) // store 1057 in arg2
mov %rsp, %rsi // compute &arg2 as second arg

lea Ox8(%rsp), %rdi // compute &argl as first arg
callg swap add // call swap_add(&argl, &arg2)

28
)

* Revisiting %rip

* Calling Functions
e The Stack
e Passing Control

* Passing Data
* Local Storage

Lecture Plan

* Register Restrictions

e Pulling it all together: recursion example

* Optimizations

cp -r /afs/ir/class/csl107/lecture-code/lectl13 .

19

22
36
44
65

69
78
31

Register Restrictions

There is only one copy of registers for all programs and functions.

* Problem: what if funcA is building up a value in register %r10, and calls funcB
in the middle, which also has instructions that modify %r10? funcA’s value will
be overwritten!

e Solution: make some “rules of the road” that callers and callees must follow
when using registers so they do not interfere with one another.

* These rules define two types of registers: caller-owned and callee-owned

Caller/Callee

Caller/callee is
terminology that
refers to a pair of
functions. A single
function may be
both a caller and functionl
callee
simultaneously (e.g.
functionl at right).

main is the caller,
and functionl is
the callee.

functionl Is

: the caller, and
function2 function2 is

the callee.

Register Restrictions

Caller-Owned Callee-Owned

* Callee must save the existing value * Callee does not need to save the
and restore it when done. existing value.

e Caller can store values and assume Caller’s values could be overwritten
they will be preserved across by a callee! The caller may consider
function calls. saving values elsewhere before

calling functions.

Caller-Owned Registers

main can use caller-owned

registers and know that
functionl will not permanently

modify their values.

If function1 wants to use any
caller-owned registers, it must
save the existing values and
restore them before returning.

Caller-Owned Registers

functionl:
push %rbp
push %rbx

pop 7%rbx
pop %rbp
retqg

Callee-Owned Registers

main can use callee-owned
registers but calling functionl
may permanently modify their
values.

If function1 wants to use any
callee-owned registers, it can do
so without saving the existing
values.

Callee-Owned Registers

main:

push %rlo

push %rll

callg functionl
pop %rll

pop 7%rl@

A Day In the Life of functioni

functionl

function2

Caller-owned registers:
 functionl must save/restore existing values

of any it wants to use.

 functionl can assume that calling
function2 will not permanently change their
values.

Callee-owned registers:
* functionl does not need to save/restore

existing values of any it wants to use.
« calling function2 may permanently change
their values.

* Revisiting %rip

* Calling Functions
e The Stack
e Passing Control

* Passing Data
* Local Storage

Lecture Plan

* Register Restrictions

* Pulling it all together: recursion example

* Optimizations
e Live session slides

cp -r /afs/ir/class/csl107/lecture-code/lectl13 .

19

22
36
44
65

69
78
31
93

Example: Recursion

* Let’s look at an example of recursion at the assembly level.

 We’ll use everything we’ve learned about registers, the stack, function calls,
parameters, and assembly instructions!

 We’ll also see how helpful GDB can be when tracing through assembly.

>

factorial.c and factorial 79

Our First Assembly

int sum_array(int arr[], int nelems) { |We're done with all our assembly lectures! Now we
int sum = 0; can fully understand what’s going on in the
for (int 1 = 9; i < nelems; i++) { assembly below, including how someone would call
sum += arr[i]; sum_array in assembly and what the ret instruction
} does.

return sum;

¥

0000000000401136 <sum_array>:
401136 <+0>: mov $0x0, %eax
40113b <+5>: mov $0x0, %hedx
401140 <+10>: cmp %esi,xeax
401142 <+12>: jge Ox40114f <sum_array+25>
401144 <+14>: movslqg %eax,%rcx
401147 <+17>: add (%rdi,%rcx,4) ,%edx
40114a <+20>: add $0x1, %eax
40114d <+23>: jmp 0x401140 <sum_array+10>
40114f <+25>: mov %edx, seax
401151 <+27>: retq 80

* Revisiting %rip

* Calling Functions
e The Stack
e Passing Control

* Passing Data
* Local Storage

Lecture Plan

* Register Restrictions

e Pulling it all together: recursion example

* Optimizations
e Live session slides

cp -r /afs/ir/class/csl107/lecture-code/lectl13 .

19

22
36
44
65

69
78
31
93

81

Optimizations you'll see

nop
* nop/nopl are “no-op” instructions — they do nothing!
* Intent: Make functions align on address boundaries that are nice multiples of 8.

* “Sometimes, doing nothing is how to be most productive” — Philosopher Nick

mov %ebx, %ebx

e Zeros out the top 32 register bits (because a mov on an e-register zeros out rest
of 64 bits).

xor %ebx, %ebx

* Optimizes for performance as well as code size (read more here):

b8 00 00 00 00 mov $0x0, %eax
31 co Xor %eax, seax 82

GCC For Loop Output

GCC Common For Loop Output Possible Alternative
Initialization Initialization
Test Jump to test
Jump past loop if success Body

Body Update

Update Test

Jump to test Jump to body if success

GCC For Loop Output

for (inti=0;i<n;it++) // n=100

GCC Common For Loop Output

Initialization

Test

Jump past loop if success
Body

Update

Jump to test

GCC For Loop Output

GCC Common For Loop Output

Initialization

Test

Jump past loop if success
Body

Update

Jump to test

for (inti=0;i<n;i++)

Initialization
Test

No jump

Body

Update

Jump to test
Test

No jump

Body

Update

Jump to test

// n=100

GCC For Loop Output

for (inti=0;i<n;i+t) // n=100
GCC Common For Loop Output
Initialization Test
Test . No jump
Jump past loop if success Body
Body Update
Update Jump to test

Jump to test

Body
Update
Jump to test

GCC For Loop Output

for (inti=0;i<n;i++) // n=100

Initialization
Jump to test
Test

Jump to body
Body

Update

Test

Jump to body
Body

Update

Test

Jump to body

Possible Alternative

Initialization

Jump to test

Body

Update

Test

Jump to body if success

87

GCC For Loop Output

for (inti=0;i<n;i++) // n =100
Possible Alternative
Initialization
Jump to test
Body
Body Update
Update Test
Test Jump to body if success

Jump to body

88

GCC For Loop Output

GCC Common For Loop Output Possible Alternative
Initialization Initialization

Test Jump to test

Jump past loop if passes Body

Body Update

Update Test

Jump to test Jump to body if success

Which instructions are better when n =0? n = 10007

for (inti=0;i<n;i++)

Optimizing

Instruction Counts

* Both versions have the same static instruction count (# of written instructions).

e But they have different dynamic instruction counts (# of executed instructions

when program is run).

* If n=0, left (GCC common output) is best b/c fewer instructions
* If nis large, right (alternative) is best b/c fewer instructions

* The compiler may emit a static instruction count that is several times longer
than an alternative, but it may be more efficient if loop executes many times.

* Does the compiler know that a

* So what if our code had loops t
How do we know when gcc ma

oop will execute many times? (in general, no)

hat always execute a small number of times?

kes a bad decision?

* (take EE108, EE180, CS316 for more!)

Optimizations

e Conditional Moves can sometimes eliminate “branches” (jumps), which are
particularly inefficient on modern computer hardware.

* Processors try to predict the future execution of instructions for maximum
performance. This is difficult to do with jumps.

* Revisiting %rip

* Calling Functions
The Stack
Passing Control
Passing Data
Local Storage

* Register Restrictions
e Pulling it all together: recursion example
* Optimizations

That’s it for assembly! Next time: managing the heap

Key GDB Tips For Assembly

 Examine 4 giant words (8 bytes) on the stack:
(gdb) x/4g $rsp
OX7fffffffe870: 0Ox0000000000000005 0X0000000000400559
OX7fffffffe880: 0Ox0000000000000000 0X000000000040057/5

e display/undisplay (prints out things every time you step/next)
(gdb) display/4w $rsp
1: x/4xw $rsp
Ox7ftffffffe8a8:
Oxf7a2d830 Ox00007fff 0X00000000 0Xx00000000

Key GDB Tips For Assembly

e stepi/finish: stepinto current function call/return to caller:
(gdb) finish
* Set register values during the run
(gdb) p $rdi = $rdi + 1
(Might be useful to write down the original value of Srdi somewhere)
* Tui things
* refresh

 focus cmd — use up/down arrows on gdb command line (vs focus asm, focus
regs)
 layout regs, layout asm

Extra Practice — Escape
Room 2

https://godbolt.org/z/8e31fG4r5

Escape room assembly code

00000PLPPOA115b <escape room>:

115b: 48 83 ec 08 sub $0x8, %rsp

115f: ba ©a 00 00 00 mov $0xa, %edx

1164: be 00 00 00 00 mov $0x0, %esi

1169: e8 d2 fe ff ff callg 1040 <strtol@plt>
116e: 48 89 c7 mov %rax, nrdi

1171: e8 d3 ff ff ff callg 1149 <transform>
1176: a8 01 test $0x1,%al

1178: 74 0@a je 1184 <escape_room+0x29>
117a: b8 00 00 00 00 mov $0x0, %eax

117f: 48 83 c4 08 add $0x8, %rsp

1183: c3 retqg

1184: b8 01 00 0O 00O mov $0x1, %eax

1189: eb f4 jmp 117f <escape_room+0x24>

100

Escape room assembly code

00000V 1149 <transform>:
1149: 8d 04 bd 00 00 00 00 lea ox0(,%rdi,4),%eax

1150: 8d 50 01 lea Ox1(%rax) ,%edx

1153: 83 fa 32 cmp $0x32,%edx

1156: 71 02 jg 115a <transform+0x11>
1158: 89 do mov %edXx, %eax

115a: c3 retqg

101

Array Allocation and Access

- Arrays in C map in a fairly straightforward way to X86 assembly code, thanks to
the addressing modes available in instructions.

- When we perform pointer arithmetic, the assembly code that is produced will have
address computations built into them.

- Optimizing compilers are very good at simplifying the address computations (in lab
you will see another optimizing compiler benefit in the form of division — if the
compiler can avoid dividing, it will!). Because of the transformations, compiler-
generated assembly for arrays often doesn't look like what you are expecting.

- Consider the following form of a data type T and integer constant N:

T AN

- The starting location is designated as xa
- The declaration allocates N * sizeof (T) bytes, and gives us an identifier that
we can use as a pointer (but it isn't a pointer!), with a value of xa.

Array Allocation and Access

- Example:

Array Element Size Total Size Start address Element |
char All2]; & 1 12 XA XA + |
char *B[8]; B 8 64 XB XB + 8i
int Clo]; C 4 24 XC Xc + 4i
double *D[5] D 8 40 XD XD + 8i

- The memory referencing operations in x86-64 are designed to simplify array
access. Suppose we wanted to access C [3] above. If the address of C is in
register $rdx, and 3 is in register $rcx

- The following copies C[3] into %eax,

movl (%rdx,%rcx,4), %eax

- C allows arithmetic on pointers, where the computed value is calculated according

to the size of the data type referenced by the pointer.
- The array reference A[1i] is identical to * (A+1)
- Example: if the address of array E is in $rdx, and the integer index, i, is in $rcx,

the following are some expressions involving E:

Expression Type Value Code

E[O0] int MIXE] movl (%rdx), %eax

E[i] int M[xe+4i] movl (%rdx,%rcx,4) %eax
SE[2] int * XE+8 leag 8 (%rdx), $%$rax

E+i-1 int * Xe+4i-4 leag -4 (%rdx,%rcx,4), %$rax
& (E+1-3) iﬁf* QQXE+4F mogéﬂﬂilgﬂ§£gx%%£§x,4) Teax

12]

SE[1]-E long | movqg %$rcx, srax

- Practice: xs is the address of a short integer array, S, stored in $rdx, and a long
Integer index, i, is stored in register $rcx.

- For each of the following expressions, give its type, a formula for its value, and an
assembly-code implementation. The result should be stored in $rax ifitis a
pointer, and the result should be in register $ax if it has a data type short.

Expression Type Value Assembly Code

S+1

S[4*1i+1]

S+1-5

- Practice: xs is the address of a short integer array, S, stored in $rdx, and a long
Integer index, i, is stored in register $rcx.

- For each of the following expressions, give its type, a formula for its value, and an
assembly-code implementation. The result should be stored in $rax ifitis a
pointer, and the result should be in register $ax if it has a data type short.

Expression Type Value Assembly
Code

S+1 short * Xs + 2 leag 2 (%rdx), %rax

S[3] short M[xs + 0] movw 6 (%rdx), sax

&S [1] short * Xs + 21 leag (%rdx, %rcx,2),%rax

S[4*1+1] short M[xs + 81 + 2] movw 2 (%rdx,%rcx,8), %ax

S+1-5 short * xXs + 21 - 10 leag -10(%rdx, 3rcx,2),%rax

- The C struct declaration is used to group objects of different types into a single
unit.

- Each "field" is referenced by a name, and can be accessed using dot (.) or (if
there is a pointer to the struct) arrow (—>) notation.

- Structures are kept in contiguous memory

- A pointer to a struct is to its first byte, and the compiler maintains the byte offset
information for each field.

- In assembly, the references to the fields are via the byte offsets.

- Example:

struct rec {

int 1i;
int j;

int al[2];

. .
int 7p; Offset

Contents

0

4

16

al0]

- This structure has four fields: two 4-byte values of type int, a
two-element array of type int, and an 8-byte int pointer, for a
total of 24 bytes:

24

- The numbers along the top of the diagram are the byte offsets of the fields from

the beginning of the structure.
- Note that the array is embedded in the structure.

- To access the fields, the compiler generates code that adds the field offset to the

address of the structure.

- Example:
struct rec { - This structure has four fields: two 4-byte values of type int, a
tnt o two-element array of type int, and an 8-byte int pointer, for a
int 77
int ; total of 24 bytes:
int Tp; Offset 0 4 8 16 24
Contents i j al0] all] P

- Example: Variable r of type struct rec * is in register $rdi. The following copies
element r->1 to element r->7:
movl (%rdi), %eax // get r->i
movl $Seax, 4(%rdi) // store in r->]

.........

- The offsetof i is 0, so i's field is $rdi. The offset of j is 4, so the offset of 4 |s,
added to the address of $rdi to store into J. '

- Example:
struct rec { - This structure has four fields: two 4-byte values of type int, a
tnt o two-element array of type int, and an 8-byte int pointer, for a
int 77
int ; total of 24 bytes:
int Tp; Offset 0 4 8 16 24
Contents i j al0] all] P

- We can generate a pointer to a field by adding the field's offset to the struct
address. To generate & (r->a[1]) we add offset 8 + 4 = 12. Fora pointer r

In register $rdi andlong int variable i in $rsi, we can generate the pointer
value & (r->a[i]) with one instruction:

leaqg 8(%rdi, %rsi,4), %rax // set %rax to &r->al[i]

- Example:
struct rec { - This structure has four fields: two 4-byte values of type int, a
tnt o two-element array of type int, and an 8-byte int pointer, for a
int 7j;
int a[2]; total of 24 bytes:
int *p; Offset 0 4 8 16 24
Contents i j al0] all] P

. The following code implements r->p = &r->a[r->1 + r->7j];
// r in %rdi

movl 4 (%rdi), %eax // get r—->j
addl (%rdi), 3eax // add r->i
teaqg 8(5rdi,srax,4), %rax // compané %eaxatcs-8ibytesy]brasm,
movqg %rax, 16 (%rdi) // store in r->p X

- Example:

struct rec { - This structure has four fields: two 4-byte values of type int, a
tnt o two-element array of type int, and an 8-byte int pointer, for a

int j;

int a[2]; total of 24 bytes:

ot o
ot 7p Offset 0 4 8 16 24

Contents i j al0] all] P

 Notice that all struct manipulation is handled at compile time, and the machine
code doesn't contain any information about the field declarations or the names of
the fields.

- The compiler does all the work, keeping track as it produces the assembly code.

- BTW, if you're curious about how the compiler actually does the transformation
from C to assembly, take a compilers class, e.g., CS143.

Data Alignment

- Computer systems often put restrictions on the allowable addresses for primitive
data types, requiring that the address for some objects must be a multiple of
some value K (normally 2, 4, or 8).

- These alignment restrictions simplify the design of the hardware.

- For example, suppose that a processor always fetches 8 bytes from the memory
system, and an address must be a multiple of 8. If we can guarantee that any
double will be aligned to have its address as a multiple of 8, then we can read or

write the values with a single memory access.
- For x86-64, Intel recommends the following alignments for best performance:

K Type
S

1 char

2 shor

t
4 int, float

O i J ~aad~ T ~ T~~~ =~ o~ -

Data Alignment

- The compiler enforces alignment by making sure that every data type is organized
iIn such a way that every field within the struct satisfies the alignment restrictions.
For example, let's look at the following struct:

struct S1 {

int 1i;
char c;
int 737
Offset 0 4 5 9
b
Contents i c .

If the compiler used a minimal allocation:
- This would make it impossible to align fields i (offset 0) and ; (offset 5). Instead,

the compiler inserts a 3-byte gap between fields ¢ and 7:
Offset 0 4 5 8 12

Contents i c .

. So, don't be surprised if your structs have a sizeof () thatis larger than you expect! (1 2

Function Pointers

- Let's look at the following code:

void *gfind max(void *arr, int n, size t elemsz,
int (*compar) (const void *, const void *))
{
void *pmax = arr;
for (int 1 = 1; 1 < n; 1++) {
void *ith = (char *)arr + i*elemsz;
if (compar (ith, pmax) > 0)
pmax = ith;
}

return pmax;

cmp_alpha (const void *p, const void *q)
const char *first = * (const char **)p;

const char *second = * (const char **)qg;
return strcmp(first, second);

main(int argc, char *argvl[])

char **pmax = gfind max (argv+l, argc-1, sizeof (argv[0]), cmp alpha);
printf ("max %s\n", *pmax) ;
return 0;

Function Pointers

- Let's look at the following code:

void *gfind max(void *arr, int n, size t elemsz,

{

int (*compar) (const void *, const void *))

void *pmax = arr;
for (int 1 = 1; i < n; 1++) {
void *ith = (char *)arr + i*elemsz;
if (compar (ith, pmax) > 0)
pmax = ith;
}

return pmax;

cmp_alpha (const void *p, const void *q)
const char *first = * (const char **)p;

const char *second = * (const char **)qg;
return strcmp(first, second);

main(int argc, char *argvl[])

char **pmax = gfind max(argv+l, argc-1l, sizeof (argvI[0]),
printf ("max = %$s\n", *pmax);
return O;

cmp_ alpha) ;

Because compar is a function
pointer, the compiler calls the
function via the address that is
iIn the compar variable.

Let's take a look at this in gdb.

References and

- References:

- Stanford guide to x86-64: https://web.stanford.edu/class/cs107/guide/
x86-64.html

- CS107 one-page of x86-64: https://web.stanford.edu/class/cs107/resources/
onepage_x86-64.pdf

- gdbtui: https://beej.us/quide/bggdb/

- More gdbtui: https://sourceware.org/gdb/onlinedocs/gdb/TUl.html
- Compiler explorer: https://gcc.godbolt.org

- Advanced Reading:

. Stack frame layout on x86-64: https://eli.thegreenplace.net/2011/09/06/stack-
frame-layout-on-x86-64

- x86-64 Intel Software Developer manual: https://software.intel.com/sites/
default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf

- history of x86 instructions: https://en.wikipedia.org/wiki/X86 _instruction I|st|n;;g53;;;___.

- x86-64 Wikipedia: https://en.wikipedia.org/wiki/X86-64

	Slide 1: CS107, Lecture 10 Introduction to Assembly
	Slide 2: What is Assembly Code?
	Slide 3: What is Assembly Code?
	Slide 4: x86 Assembly
	Slide 5: Machine-Level Code
	Slide 6: Machine-Level Code
	Slide 7: Machine-Level Code
	Slide 8: Learning Goals
	Slide 9: Lecture Plan
	Slide 10: Lecture Plan
	Slide 11: Bits all the way down
	Slide 12: GCC
	Slide 13: Lecture Plan
	Slide 14: Demo: Looking at an Executable (objdump -d)
	Slide 15: Our First Assembly
	Slide 16: Our First Assembly
	Slide 17: Our First Assembly
	Slide 18: Our First Assembly
	Slide 19: Our First Assembly
	Slide 20: Our First Assembly
	Slide 21: Our First Assembly
	Slide 22: Our First Assembly
	Slide 23: Our First Assembly
	Slide 24: Our First Assembly
	Slide 25: Our First Assembly
	Slide 26: Our First Assembly
	Slide 27: Lecture Plan
	Slide 28: Assembly Abstraction
	Slide 29: Registers
	Slide 30: Registers
	Slide 31: What is a register?
	Slide 32: Registers
	Slide 33: Machine-Level Code
	Slide 34: Computer architecture
	Slide 35: GCC And Assembly
	Slide 36: Assembly
	Slide 37: Instruction set architecture (ISA)
	Slide 38: Lecture Plan
	Slide 39: mov
	Slide 40: Operand Forms: Immediate
	Slide 41: Operand Forms: Registers
	Slide 42: Operand Forms: Absolute Addresses
	Slide 43: Practice #1: Operand Forms
	Slide 44: Operand Forms: Indirect
	Slide 45: Operand Forms: Base + Displacement
	Slide 46: Operand Forms: Indexed
	Slide 47: Operand Forms: Indexed
	Slide 48: Practice #2: Operand Forms
	Slide 49: Operand Forms: Scaled Indexed
	Slide 50: Operand Forms: Scaled Indexed
	Slide 51: Operand Forms: Scaled Indexed
	Slide 52: Operand Forms: Scaled Indexed
	Slide 53: Most General Operand Form
	Slide 54: Most General Operand Form
	Slide 55: Operand Forms
	Slide 56: Practice #3: Operand Forms
	Slide 57: Why are there so many forms of indirect addressing?
	Slide 58: Our First Assembly
	Slide 59: Central Processing Units (CPUs)
	Slide 60: Assembly code in movies
	Slide 61: Keep a resource guide handy
	Slide 62: Why are we reading assembly?
	Slide 63: Extended warmup: Information Synthesis
	Slide 64: Extended warmup: Information Synthesis
	Slide 65: 1. Extra Practice
	Slide 66: 1. Extra Practice
	Slide 67: 2. Extra Practice
	Slide 68: 2. Extra Practice
	Slide 69: 3. Extra Practice
	Slide 70: 3. Extra Practice
	Slide 71: Coming Up Soon To A Slide Near You
	Slide 72: Coming Up Soon To A Slide Near You
	Slide 73: Lecture Plan
	Slide 74: Helpful Assembly Resources
	Slide 75: References and Advanced Reading
	Slide 76: Lecture Plan
	Slide 77: mov
	Slide 78: Memory Location Syntax
	Slide 79: Operand Forms
	Slide 80: Lecture Plan
	Slide 81: Data Sizes
	Slide 82: Register Sizes
	Slide 83: Register Sizes
	Slide 84: Register Sizes
	Slide 85: Register Responsibilities
	Slide 86: mov Variants
	Slide 87: Practice: mov And Data Sizes
	Slide 88: Practice: mov And Data Sizes
	Slide 89: mov
	Slide 90: movz and movs
	Slide 91: movz and movs
	Slide 92: movz and movs
	Slide 93: Lecture Plan
	Slide 94: lea
	Slide 95: lea vs. mov
	Slide 96: lea vs. mov
	Slide 97: lea vs. mov
	Slide 98: lea vs. mov
	Slide 99: Lecture Plan
	Slide 100: Unary Instructions
	Slide 101: Binary Instructions
	Slide 102: Large Multiplication
	Slide 103: Division and Remainder
	Slide 104: Division and Remainder
	Slide 105: Shift Instructions
	Slide 106: Shift Amount
	Slide 107: Lecture Plan
	Slide 108: Assembly Exploration
	Slide 109: Code Reference: add_to_first
	Slide 110: Code Reference: full_divide
	Slide 111: Assembly Exercise 1
	Slide 112: Assembly Exercise 2
	Slide 113: Assembly Exercise 3
	Slide 114: Our First Assembly
	Slide 115: A Note About Operand Forms
	Slide 116: Shift Amount
	Slide 117: Division and Remainder
	Slide 118: Extra Practice
	Slide 119: Reverse Engineering 1
	Slide 120: Reverse Engineering 1
	Slide 121: Reverse Engineering 1
	Slide 122: Reverse Engineering 2
	Slide 123: Reverse Engineering 2
	Slide 124: Reverse Engineering 2
	Slide 125: Reverse Engineering 3
	Slide 126: Reverse Engineering 3
	Slide 127: Reverse Engineering 3
	Slide 128: Side Note: Old GCC Output
	Slide 129: Learning Goals
	Slide 130: Lecture Plan
	Slide 131: Lecture Plan
	Slide 132: Executing Instructions
	Slide 133: Executing Instructions
	Slide 134: Register Responsibilities
	Slide 135: Instructions Are Just Bytes!
	Slide 136: Instructions Are Just Bytes!
	Slide 137: Instructions Are Just Bytes!
	Slide 138: %ri4004fd
	Slide 139: %rip
	Slide 140: %rip
	Slide 141: %rip
	Slide 142: %rip
	Slide 143: %rip
	Slide 144: %rip
	Slide 145: Going In Circles
	Slide 146: Jump!
	Slide 147: Jump!
	Slide 148: Jump!
	Slide 149: Jump!
	Slide 150: Jump!
	Slide 151: jmp
	Slide 152: “Interfering” with %rip
	Slide 153: Lecture Plan
	Slide 154: Control
	Slide 155: Control
	Slide 156: Control
	Slide 157: Conditional Jumps
	Slide 158: Control
	Slide 159: Control
	Slide 160: Control
	Slide 161: Condition Codes
	Slide 162: Condition Codes
	Slide 163: Setting Condition Codes
	Slide 164: Control
	Slide 165: Conditional Jumps
	Slide 166: Setting Condition Codes
	Slide 167: Condition Codes
	Slide 168: Exercise 1: Conditional jump
	Slide 169: Exercise 1: Conditional jump
	Slide 170: Exercise 2: Conditional jump
	Slide 171: Exercise 2: Conditional jump
	Slide 172: Lecture Plan
	Slide 173: If Statements
	Slide 174: Practice: Fill In The Blank
	Slide 175: Practice: Fill In The Blank
	Slide 176: Common If-Else Construction
	Slide 177: Practice: Fill in the Blank
	Slide 178: Practice: Fill in the Blank
	Slide 179: If-Else Construction Variations
	Slide 180: Lecture Plan
	Slide 181: Loops and Control Flow
	Slide 182: Loops and Control Flow
	Slide 183: Loops and Control Flow
	Slide 184: Loops and Control Flow
	Slide 185: Loops and Control Flow
	Slide 186: Loops and Control Flow
	Slide 187: Loops and Control Flow
	Slide 188: Loops and Control Flow
	Slide 189: Loops and Control Flow
	Slide 190: Loops and Control Flow
	Slide 191: GCC Common While Loop Construction
	Slide 192: GCC Other While Loop Construction
	Slide 193: Lecture Plan
	Slide 194: Common For Loop Construction
	Slide 195: Back to Our First Assembly
	Slide 196: Demo: GDB and Assembly
	Slide 197: gdb tips
	Slide 198: gdb tips
	Slide 199: Lecture Plan
	Slide 200: Condition Code-Dependent Instructions
	Slide 201: set: Read condition codes
	Slide 202: set: Read condition codes
	Slide 203: cmov: Conditional move
	Slide 204: cmov: Conditional move
	Slide 205: Last Lab: Conditional Move
	Slide 206: Recap
	Slide 207: How to remember cmp/jmp
	Slide 208: Remember test exists
	Slide 209: Practice: Fill in the blanks
	Slide 210: Practice: Fill in the blanks
	Slide 211: Practice: Fill in the blanks
	Slide 212: Practice: Fill in the blanks
	Slide 213: test practice: What’s the C code?
	Slide 214: test practice: What’s the C code?
	Slide 215: Practice: “Escape Room”
	Slide 216: Practice: “Escape Room”
	Slide 217: Lecture Plan
	Slide 218: Lecture Plan
	Slide 219: %rip
	Slide 220: %rip
	Slide 221: %rip
	Slide 222: %rip
	Slide 223: %rip
	Slide 224: %rip
	Slide 225: %rip
	Slide 226: %rip
	Slide 227: %rip
	Slide 228: %rip
	Slide 229: %rip
	Slide 230: %rip
	Slide 231: Summary: Instruction Pointer
	Slide 232: Lecture Plan
	Slide 233: How do we call functions in assembly?
	Slide 234: Calling Functions In Assembly
	Slide 235: Lecture Plan
	Slide 236: %rsp
	Slide 237: %rsp
	Slide 238: %rsp
	Slide 239: %rsp
	Slide 240: %rsp
	Slide 241: push
	Slide 242: push
	Slide 243: push
	Slide 244: push
	Slide 245: pop
	Slide 246: pop
	Slide 247: Stack Example
	Slide 248: Calling Functions In Assembly
	Slide 249: Lecture Plan
	Slide 250: Remembering Where We Left Off
	Slide 251: Remembering Where We Left Off
	Slide 252: Remembering Where We Left Off
	Slide 253: Remembering Where We Left Off
	Slide 254: Remembering Where We Left Off
	Slide 255: Call And Return
	Slide 256: Calling Functions In Assembly
	Slide 257: Lecture Plan
	Slide 258: Parameters and Return
	Slide 259: Parameters and Return
	Slide 260: Parameters and Return
	Slide 261: Parameters and Return
	Slide 262: Parameters and Return
	Slide 263: Parameters and Return
	Slide 264: Parameters and Return
	Slide 265: Parameters and Return
	Slide 266: Parameters and Return
	Slide 267: Parameters and Return
	Slide 268: Parameters and Return
	Slide 269: Parameters and Return
	Slide 270: Parameters and Return
	Slide 271: Parameters and Return
	Slide 272: Parameters and Return
	Slide 273: Parameters and Return
	Slide 274: Parameters and Return
	Slide 275: Parameters and Return
	Slide 276: Parameters and Return
	Slide 277: Parameters and Return
	Slide 278: Lecture Plan
	Slide 279: Calling Functions In Assembly
	Slide 280: Local Storage
	Slide 281: Local Storage
	Slide 282: Lecture Plan
	Slide 283: Register Restrictions
	Slide 284: Caller/Callee
	Slide 285: Register Restrictions
	Slide 286: Caller-Owned Registers
	Slide 287: Caller-Owned Registers
	Slide 288: Callee-Owned Registers
	Slide 289: Callee-Owned Registers
	Slide 290: A Day In the Life of function1
	Slide 291: Lecture Plan
	Slide 292: Example: Recursion
	Slide 293: Our First Assembly
	Slide 294: Lecture Plan
	Slide 295: Optimizations you’ll see
	Slide 296: GCC For Loop Output
	Slide 297: GCC For Loop Output
	Slide 298: GCC For Loop Output
	Slide 299: GCC For Loop Output
	Slide 300: GCC For Loop Output
	Slide 301: GCC For Loop Output
	Slide 302: GCC For Loop Output
	Slide 303: Optimizing Instruction Counts
	Slide 304: Optimizations
	Slide 305: Recap
	Slide 306: Key GDB Tips For Assembly
	Slide 307: Key GDB Tips For Assembly
	Slide 308: Extra Practice – Escape Room 2
	Slide 309: Escape room assembly code
	Slide 310: Escape room assembly code
	Slide 311: Array Allocation and Access
	Slide 312: Array Allocation and Access
	Slide 313: Pointer Arithmetic
	Slide 314: Pointer Arithmetic
	Slide 315: Pointer Arithmetic
	Slide 316: Structures
	Slide 317: Structures
	Slide 318: Structures
	Slide 319: Structures
	Slide 320: Structures
	Slide 321: Structures
	Slide 322: Data Alignment
	Slide 323: Data Alignment
	Slide 324: Function Pointers in Assembly
	Slide 325: Function Pointers in Assembly
	Slide 326: References and Advanced Reading

