
This document is copyright (C) Stanford Computer Science, Lisa Yan, and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Marty Stepp, Cynthia Lee, Chris Gregg, and others.
1

CS107, Lecture 10
Introduction to Assembly

Reading: B&O 3.1-3.4

What is Assembly Code?

• Computers execute "machine code," which is a

sequence of bytes that encode low-level operations for

manipulating data, managing memory, read and write

from storage, and communicate with networks.

• The "assembly code" for a computer is a textual

representation of the machine code giving the

individual instructions to the underlying machine.

What is Assembly Code?

•

•

gcc generates assembly code from C code

Assembly is raw — there is no type checking, and the

instructions are simple. It is unique to the type of

processor (e.g., the assembly for your computer cannot

run on your phone)

Humans can write assembly (and, in fact, in the early days

of computing they had to write assembly), but it is more

productive to be able to read and understand what the

compiler produces, than to write it by hand.

gcc is almost always going to produce better optimized

code than a human could, and understanding what the

compiler produces is important.

•

•

x86 Assembly

• The Intel-based computers we use are direct descendants of

Intel's 16-bit, 1978 processor with the name 8086.

• Intel has taken a strict backwards-compatibility approach to new

processors, and their 32- and 64-bit processors have built upon

the original 8086 Assembly code.

• These days, when we learn x86 assembly code, we have to keep

this history in mind. Naming of "registers," for example, has

historical roots, so bear with it.

Machine-Level Code

• Before we look at some assembly code, let's talk about

some things that have been hidden from us when writing

C code.

Machine code is based on the "instruction set

architecture" (ISA), which defines the behavior and layout

of the system. Behavior is defined as if instructions are

run one after the other, and memory appears as a very

large byte array.

•

Machine-Level Code

• New things that have been hidden:

• The program counter (PC), called "%rip" indicates the address of the next

instruction ("r"egister "i"nstruction "p"ointer". We cannot modify this directly.

The "register file" contains 16 named locations that store 64-bit values.

Registers are the fastest memory on your computer. They are not in main

memory, and do not have addresses. You cannot pass a pointer to a

register, but a pointer may hold a register as its value.

•

• Registers can hold addresses, or integer data. Some registers are used to

keep track of your program's state, and others hold temporary data.

Registers are used for arithmetic, local variables, and return values for

functions.

•

• The condition code registers hold status information about the most recently

executed arithmetic or logical instruction. These are used to control program

flow — e.g., if the result of an addition is negative, exit a loop.
There are vector registers, which hold integer or floating point values.•

Machine-Level Code

• Unlike C, there is no model of different data types, and memory is simply a large,

byte-addressable array.

• There is no distinction between signed and unsigned integers, between different

types of pointers, or even between pointers and integers.

• A single machine instruction performs only a very elementary operation. For

example:
• there is an instruction to add two numbers in registers. That's all the instruction

does.

there is an instruction that transfers data between a register and memory.

there is an instruction that conditionally branches to a new instruction address.

•

•

• Often, one C statement generates multiple assembly code instructions.

Learning Goals

8

• Learn what assembly language is and why it is important

• Become familiar with the format of human-readable assembly and x86

• Learn the mov instruction and how data moves around at the assembly level

Lecture Plan

• Overview: GCC and Assembly

• Demo: Looking at an executable

• Registers and The Assembly Level of Abstraction

• The mov Instruction

• Live Session

7

11

24

35

57

cp -r /afs/ir/class/cs107/lecture-code/lect10 .
9

Lecture Plan

• Overview: GCC and Assembly

• Demo: Looking at an executable

• Registers and The Assembly Level of Abstraction

• The mov Instruction

• Live Session

7

11

24

35

57

cp -r /afs/ir/class/cs107/lecture-code/lect10 .
1
0

Bits all the way down

11

Data representation so far

• Integer (unsigned int, 2’s complement signed int)

• char (ASCII)

• Address (unsigned long)

• Aggregates (arrays, structs)

The code itself is binary too!

• Instructions (machine encoding)

GCC

12

• GCC is the compiler that converts your human-readable code into machine-
readable instructions.

• C, and other languages, are high-level abstractions we use to write code
efficiently. But computers don’t really understand things like data structures,
variable types, etc. Compilers are the translator!

• Pure machine code is 1s and 0s – everything is bits, even your programs! But
we can read it in a human-readable form called assembly. (Engineers used to
write code in assembly before C).

• There may be multiple assembly instructions needed to encode a single C
instruction.

• We’re going to go behind the curtain to see what the assembly code for our
programs looks like.

Lecture Plan

13

• Overview: GCC and Assembly

• Demo: Looking at an executable

• Registers and The Assembly Level of Abstraction

• The mov Instruction

• Live Session

7

11

24

35

57

cp -r /afs/ir/class/cs107/lecture-code/lect10 .

Demo: Looking at an
Executable (objdump -d)

14

Our First Assembly

15

int sum = 0;
for (int i = 0; i < nelems; i++) {

int sum_array(int arr[], int nelems) {

sum += arr[i];
}
return sum;

}

What does this look like in assembly?

13

Our First Assembly

int sum_array(int arr[], int nelems) {
int sum = 0;
for (int i = 0; i < nelems; i++) {

sum += arr[i];
}
return sum;

}

0000000000401136 <sum_array>:
401136: b8 00 00 00 00 mov $0x0,%eax
40113b:
401140:

ba
39

00
f0

00 00 00 mov
cmp

$0x0,%edx
%esi,%eax

401142: 7d 0b jge 40114f <sum_array+0x19>
401144: 48 63 c8 movslq %eax,%rcx
401147: 03 14 8f add (%rdi,%rcx,4),%edx
40114a:
40114d:

83
eb

c0
f1

01 add
jmp

$0x1,%eax
401140 <sum_array+0xa>

40114f: 89 d0 mov %edx,%eax
401151: c3 retq

make
objdump -d sum

Our First Assembly

17

0000000000401136 <sum_array>:
401136: b8 00 00 00 00 mov $0x0,%eax
40113b: ba 00 00 00 00 mov $0x0,%edx
401140:
401142:

39
7d

f0
0b

cmp
jge

%esi,%eax
40114f <sum_array+0x19>

401144: 48 63 c8 movslq %eax,%rcx
401147: 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 c0 01 add $0x1,%eax
40114d: eb f1 jmp 401140 <sum_array+0xa>
40114f: 89 d0 mov %edx,%eax
401151: c3 retq

Our First Assembly

0000000000401136 <sum_array>:
401136: b8 00 00 00 00 mov $0x0,%eax
40113b: ba 00 00 00 00 mov $0x0,%edx

p
e

%esi,%eax
40114f <sum_array+0x19>

vslq %eax,%rcx
d

401140: 39 f0 cm
401142: 7d 0b jg
401144: 48 63 c8 mo
401147: 03 14 8f ad (%rdi,%rcx,4),%edx

$0x1,%eax
401140 <sum_array+0xa>
%edx,%eax

40114a:
40114d:
40114f:
401151:

83 c0 01
eb f1
89 d0
c3

add
jmp
mov
retq

This is the name of the function (same
as C) and the memory address where
the code for this function starts.

18

Our First Assembly

0000000000401136 <sum_array>:
401136: b8 00 00 00 00 mov $0x0,%eax
40113b: ba 00 00 00 00 mov $0x0,%edx

_array+0x19>

4),%edx

f0 cmp %esi,%eax
0b jge 40114f <sum
63 c8 movslq %eax,%rcx
14 8f add (%rdi,%rcx,
c0 01 add $0x1,%eax

401140 <sum_array+0xa>
%edx,%eax

401140: 39
401142: 7d
401144: 48
401147: 03
40114a: 83
40114d: eb f1
40114f: 89 d0
401151: c3

jmp
mov
retq

These are the memory addresses where
each of the instructions live. Sequential
instructions are sequential in memory.

19

Our First Assembly

0000000000401136 <sum_array>:
401136: b8 00 00 00 00 mov $0x0,%eax
40113b: ba 00 00 00 00 mov $0x0,%edx

cmp
jge

401140: 39 f0
401142: 7d 0b
401144: 48 63 c8
401147: 03 14 8f
40114a: 83 c0 01

%esi,%eax
40114f <sum_array+0x19>

movslq %eax,%rcx
(%rdi,%rcx,4),%edx
$0x1,%eax
401140 <sum_array+0xa>
%edx,%eax

40114d: eb f1
40114f: 89 d0
401151: c3

add
add
jmp
mov
retq

This is the assembly code:
“human-readable” versions of
each machine code instruction.

20

Our First Assembly

0000000000401136 <sum_array>:

j

ov $0x0,%edx
mp %esi,%eax
ge 40114f <sum_array+0x19>
ovslq %eax,%rcx
dd (%rdi,%rcx,4),%edx
dd $0x1,%eax
mp 401140 <sum_array+0xa>

w
401136: b8 00 00 00 00 mov $0x0,%eax
40113b: ba 00 00 00 00 mThis is the machine code: ra
401140:
401142:

39
7d

f0
0b

chexadecimal instructions,

401144: 48 63 c8 mrepresenting binary as read
401147: 03 14 8f acomputer. Different instruct

by the
ions may

40114a:
40114d:

83
eb

c0 01
f1

abe different byte lengths.
j

40114f:
401151:

89
c3

d0 mov
retq

%edx,%eax

21

Our First Assembly

22

0000000000401136 <sum_array>:
401136: b8 00 00 00 00 mov $0x0,%eax
40113b: ba 00 00 00 00 mov $0x0,%edx
401140:
401142:

39
7d

f0
0b

cmp
jge

%esi,%eax
40114f <sum_array+0x19>

401144: 48 63 c8 movslq %eax,%rcx
401147: 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 c0 01 add $0x1,%eax
40114d: eb f1 jmp 401140 <sum_array+0xa>
40114f: 89 d0 mov %edx,%eax
401151: c3 retq

Our First Assembly

0000000000401136 <sum_array>:
401136: b8 00 00 00 00 mov $0x0,%eax
40113b: ba 00 00 00 00 mov $0x0,%edx
401140:
401142:

39
7d

f0
0b

cmp
jge

%esi,%eax
40114f <sum_array+0x19>

401144: 48 63 c8 movslq %eax,%rcx
401147: 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 c0 01 add $0x1,%eax
40114d: eb f1 jmp 401140 <sum_array+0xa>
40114f: 89 d0 mov %edx,%eax
401151: c3 retq

Each instruction has an
operation name (“opcode”).

23

Our First Assembly

0000000000401136 <sum_array>:
401136:
40113b:
401140:
401142:
401144:
401147:
40114a:
40114d:
40114f:
401151:

b8 00 00 00 00
ba 00 00 00 00
39 f0
7d 0b
48 63 c8
03 14 8f
83 c0 01
eb f1
89 d0
c3

mov
mov
cmp
jge

$0x0,%eax
$0x0,%edx
%esi,%eax
40114f <sum_array+0x19>

movslq %eax,%rcx
add
add
jmp

(%rdi,%rcx,4),%edx
$0x1,%eax
401140 <sum_array+0xa>

mov %edx,%eax
retqEach instruction can also have

arguments (“operands”).

24

Our First Assembly

0000000000401136 <sum_array>:
401136: b8 00 00 00 00 mov $0x0,%eax
40113b: ba 00 00 00 00 mov $0x0,%edx
401140:
401142:

39
7d

f0
0b

cmp
jge

%esi,%eax
40114f <sum_array+0x19>

401144: 48 63 c8 movslq %eax,%rcx
401147: 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 c0 01 add $0x1,%eax
40114d: eb f1 jmp 401140 <sum_array+0xa>
40114f: 89 d0 mov %edx,%eax
401151: c3 retq

$[number] means a constant value,
or “immediate” (e.g. 1 here).

25

Our First Assembly

0000000000401136 <sum_array>:
401136:
40113b:
401140:
401142:
401144:
401147:
40114a:
40114d:
40114f:
401151:

b8 00 00 00 00
ba 00 00 00 00
39 f0
7d 0b
48 63 c8
03 14 8f
83 c0 01
eb f1
89 d0
c3

mov
mov
cmp
jge

$0x0,%eax
$0x0,%edx
%esi,%eax
40114f <sum_array+0x19>

movslq %eax,%rcx
(%rdi,%rcx,4),%edx
$0x1,%eax
401140 <sum_array+0xa>
%edx,%eax

add
add
jmp
mov
retq

%[name] means a register, a storage
location on the CPU (e.g. edx here).

26

Lecture Plan

27

• Overview: GCC and Assembly

• Demo: Looking at an executable

• Registers and The Assembly Level of Abstraction

• The mov instruction

7

11

24

35

cp -r /afs/ir/class/cs107/lecture-code/lect10 .

Assembly Abstraction

28

• C abstracts away the low-level details of machine code. It lets us work using
variables, variable types, and other higher-level abstractions.

• C and other languages let us write code that works on most machines.

• Assembly code is just bytes! No variable types, no type checking, etc.

• Assembly/machine code is processor-specific.

• What is the level of abstraction for assembly code?

Registers

%rax

29

Registers

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

%rsp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

30

Registers

What is a register?

A register is a fast read/write memory
slot right on the CPU that can hold

variable values.
Registers are not located in memory.

31

Registers

32

• A register is a 64-bit space inside the processor.

• There are 16 registers available, each with a unique name.

• Registers are like “scratch paper” for the processor. Data being calculated or
manipulated is moved to registers first. Operations are performed on
registers.

• Registers also hold parameters and return values for functions.

• Registers are extremely fast memory!

• Processor instructions consist mostly of moving data into/out of registers and
performing arithmetic on them. This is the level of logic your program must be
in to execute!

Machine-Level Code

33

Assembly instructions manipulate these registers. For example:

• One instruction adds two numbers in registers

• One instruction transfers data from a register to memory

• One instruction transfers data from memory to a register

Computer architecture

memory needed

for program
execution
(stack, heap, etc.)

accessed by address

34

registers accessed
by name

ALU is main
workhorse of CPU

disk/server stores program
when not executing

GCC And Assembly

• GCC compiles your program – it lays out memory on the stack and heap and
generates assembly instructions to access and do calculations on those
memory locations.

• Here’s what the “assembly-level abstraction” of C code might look like:

C Assembly Abstraction

35

int sum = x + y; 1) Copy x into register 1
2) Copy y into register 2
3) Add register 2 to register 1
4) Write register 1 to memory for sum

Assembly

• We are going to learn the x86-64 instruction set architecture. This instruction
set is used by Intel and AMD processors.

• There are many other instruction sets: ARM, MIPS, etc.

36

Instruction set architecture (ISA)

A contract between program/compiler and hardware:
• Defines operations that the processor (CPU) can execute

• Data read/write/transfer operations

• Control mechanisms

Intel originally designed their instruction set back in 1978.
• Legacy support is a huge issue for x86-64

• Originally 16-bit processor, then 32 bit, now 64 bit.
These design choices dictated the register sizes
(and even register/instruction names).

Application program

Compiler OS

ISA

CPU design

Circuit design

Chip layout

37

Lecture Plan

38

• Overview: GCC and Assembly

• Demo: Looking at an executable

• Registers and The Assembly Level of Abstraction

• The mov Instruction

• Live Session

7

11

24

35

57

cp -r /afs/ir/class/cs107/lecture-code/lect10 .

mov

39

The mov instruction copies bytes from one place to another;
it is similar to the assignment operator (=) in C.

mov src,dst

The src and dst can each be one of:

• Immediate (constant value, like a number) (only src)

• Register

• Memory Location
(at most one of src, dst)

$0x104

%rbx

0x6005c0Direct address

Operand Forms: Immediate

mov $0x104,

Copy the value

0x104 into some

destination.

40

Operand Forms: Registers

mov %rbx,

mov ,%rbx

Copy the value in

register %rbx into

some destination.

Copy the value

from some source

into register %rbx.
41

39

Operand Forms: Absolute Addresses

mov 0x104,

mov

Copy the value at

address 0x104 into

some destination.

,0x104
Copy the value

from some source

into the memory at

address 0x104.

40

Practice #1: Operand Forms

What are the results of the following move instructions (executed separately)?
For this problem, assume the value 5 is stored at address 0x42, and the value 8
is stored in %rbx.

1. mov $0x42,%rax

2. mov 0x42,%rax

3. mov %rbx,0x55

41

Operand Forms: Indirect

mov (%rbx),

mov ,(%rbx)

Copy the value at the

address stored in register

%rbx into some destination.

Copy the value from some source

into the memory at the address

stored in register %rbx.

Operand Forms: Base + Displacement

mov 0x10(%rax),

mov ,0x10(%rax)

Copy the value at the

address (0x10 plus what is

stored in register %rax) into

some destination.

Copy the value from some source

into the memory at the address (0x10

plus what is stored in register %rax).42

43

Operand Forms: Indexed

mov

mov ,(%rax,%rdx)

Copy the value at the address which is

(the sum of the values in registers %rax

and %rdx) into some destination.

(%rax,%rdx),

Copy the value from some source into the

memory at the address which is (the sum of

the values in registers %rax and %rdx).

44

Operand Forms: Indexed

mov

mov ,0x10(%rax,%rdx)

Copy the value at the address which is (the

sum of 0x10 plus the values in registers

%rax and %rdx) into some destination.

0x10(%rax,%rdx),

Copy the value from some source into the

memory at the address which is (the sum of 0x10

plus the values in registers %rax and %rdx).

Practice #2: Operand Forms

What are the results of the following move instructions (executed separately)?
For this problem, assume the value 0x11 is stored at address 0x10C, 0xAB is
stored at address 0x104, 0x100 is stored in register %rax and 0x3 is stored in
%rdx.

1. mov

2. mov

3. mov

$0x42,(%rax)

4(%rax),%rcx

9(%rax,%rdx),%rcx

Imm(rb, ri) is equivalent to address Imm + R[rb] + R[ri]

Displacement: positive or
negative constant (if missing, = 0)

Base: register
(if missing, = 0)

Index: register
(if missing, = 0) 45

46

Operand Forms: Scaled Indexed

mov (,%rdx,4),

mov ,(,%rdx,4)

Copy the value at the address which

is (4 times the value in register

%rdx) into some destination.

Copy the value from some source into the

memory at the address which is (4 times

the value in register %rdx).

The scaling factor
(e.g. 4 here) must
be hardcoded to
be either 1, 2, 4
or 8.

47

Operand Forms: Scaled Indexed

mov 0x4(,%rdx,4),

mov ,0x4(,%rdx,4)

Copy the value at the address which is

(4 times the value in register %rdx, plus

0x4), into some destination.

Copy the value from some source into the

memory at the address which is (4 times

the value in register %rdx, plus 0x4).

48

Operand Forms: Scaled Indexed

mov (%rax,%rdx,2),

mov ,(%rax,%rdx,2)

Copy the value at the address which is (the

value in register %rax plus 2 times the value in

register %rdx) into some destination.

Copy the value from some source into the memory at

the address which is (the value in register %rax

plus 2 times the value in register %rdx).

49

Operand Forms: Scaled Indexed

mov 0x4(%rax,%rdx,2),

mov ,0x4(%rax,%rdx,2)

Copy the value at the address which is (0x4 plus the

value in register %rax plus 2 times the value in

register %rdx) into some destination.

Copy the value from some source into the memory at

the address which is (0x4 plus the value in register

%rax plus 2 times the value in register %rdx).

Most General Operand Form

53

Imm(rb,ri,s)

is equivalent to…

Imm + R[rb] + R[ri]*s

Most General Operand Form

Imm(rb, ri, s) is equivalent to
address Imm + R[rb] + R[ri]*s

Displacement:
pos/neg constant
(if missing, = 0)

Index: register
(if missing, = 0)

Scale must be
1,2,4, or 8
(if missing, = 1)

Base: register (if
missing, = 0)

54

52

Operand Forms

Type Form Operand Value Name

Immediate $𝐼𝑚𝑚 𝐼𝑚𝑚 Immediate

Register 𝑟! R[𝑟!] Register

Memory 𝐼𝑚𝑚 M[𝐼𝑚𝑚] Absolute

Memory (𝑟!) M[R 𝑟!] Indirect

Memory 𝐼𝑚𝑚(𝑟") M[𝐼𝑚𝑚 + R 𝑟"] Base + displacement

Memory (𝑟", 𝑟#) M[R 𝑟" + R 𝑟#] Indexed

Memory 𝐼𝑚𝑚(𝑟", 𝑟#) M[𝐼𝑚𝑚 + R 𝑟" + R 𝑟#] Indexed

Memory (, 𝑟#, 𝑠) M[R 𝑟# . 𝑠] Scaled indexed

Memory 𝐼𝑚𝑚(, 𝑟#, 𝑠) M[𝐼𝑚𝑚 + R 𝑟# . 𝑠] Scaled indexed

Memory (𝑟", 𝑟#, 𝑠) M[R 𝑟" + R 𝑟# . 𝑠] Scaled indexed

Memory 𝐼𝑚𝑚(𝑟", 𝑟#, 𝑠) M[𝐼𝑚𝑚 + R 𝑟" + R 𝑟# . 𝑠] Scaled indexed

Figure 3.3 from the book: “Operand forms. Operands can denote immediate (constant) values, register values,
or values from memory. The scaling factor s must be either. 1, 2, 4, or 8.”

Practice #3: Operand Forms

What are the results of the following move instructions (executed separately)?
For this problem, assume the value 0x1 is stored in register %rcx, the value
0x100 is stored in register %rax, the value 0x3 is stored in register %rdx, and
value 0x11 is stored at address 0x10C.

1. mov $0x42,0xfc(,%rcx,4)

2. mov (%rax,%rdx,4),%rbx
Imm(rb, ri, s) is equivalent to
address Imm + R[rb] + R[ri]*s

56

Displacement Base Index Scale
(1,2,4,8)

Goals of indirect addressing: C

57

Why are there so many forms of
indirect addressing?

We see these indirect addressing
paradigms in C as well!

55

Our First Assembly

int sum_array(int arr[], int nelems) {
int sum = 0;
for (int i = 0; i < nelems; i++) {

sum += arr[i];
}
return sum;

}

00000000004005b6 <sum_array>:
4005b6: ba 00 00 00 00 mov $0x0,%edx
4005bb: b8 00 00 00 00 mov $0x0,%eax
4005c0: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslq %edx,%rcx
4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
4005c8: 83 c2 01 add

cmp
jl

$0x1,%edx
%esi,%edx
4005c2 <sum_array+0xc>

4005cb: 39 f2
4005cd: 7c f3
4005cf: f3 c3 repz retq

We’re 1/4th of the way to understanding assembly!
What looks understandable right now?

Some notes:
• Registers store addresses and values
• mov src, dst copies value into dst
• sizeof(int) is 4
• Instructions executed sequentially

We’ll come back to this
example in future lectures!

Central Processing Units (CPUs)

Intel 8086, 16-bit

microprocessor
($86.65, 1978)

59

Raspberry Pi BCM2836
32-bit ARM microprocessor

($35 for everything, 2015)

Intel Core i9-9900K 64-bit

8-core multi-core processor
($449, 2018)

Assembly code in movies

Trinity saving the world by
hacking into the power grid
using Nmap Network
Scanning
The Matrix Reloaded, 2003

60

61

Keep a resource guide handy

• https://web.stanford.edu/class/cs107/resources/x86-64-reference.pdf

• B&O book:
• Canvas -> Files

-> Bryant_OHallaron_ch3.1-3.8.pdf

• It’s like study abroad:
• You took LANG 1A

• Your tools give too much/too little information
(a book reference, a rudimentary translator)

• No one expects you to speak the language
fluently…

• …But the more you internalize,
the better you can use tools to read the language

Chapter 3, Figures 3.2-3.3 (p. 180-181)

Why are we reading assembly?

• We will not be writing assembly! (that’s the compiler’s job)

• Rather, we want to translate the assembly back into our C code.

• Knowing how our C code is converted into machine instructions gives us
insight into how to write more efficient, cleaner code.

Programmer-
generated

Main goal: Information retrieval

C codeidea
Assembly

code
Machine code

gcc (compiler+assembler)
generated

62

Extended warmup: Information Synthesis

Spend a few minutes thinking about the main paradigms of the mov instruction.

• What might be the equivalent C-like operation?

• Examples (note %r registers are 64-bit):

1. mov

2. mov

3. mov

4. mov

$0x0,%rdx

%rdx,%rcx

$0x42,(%rdi)

(%rax,%rcx,8),%rax

63

Extended warmup: Information Synthesis

Spend a few minutes thinking about the main paradigms of the mov instruction.

• What might be the equivalent C-like operation?

• Examples (note %r registers are 64-bit):

$0x0,%rdx -> maybe long x = 0

%rdx,%rcx -> maybe long x = y;

$0x42,(%rdi) -> maybe *ptr = 0x42;

1. mov

2. mov

3. mov

4. mov (%rax,%rcx,8),%rax -> maybe long x = arr[i];

Indirect addressing
is like pointer
arithmetic/deref!

64

Fill in the blank to complete the C code that 1. generates this assembly
2. has this register layout

int x = ...

int *ptr = malloc(…);

...

??? = _???_;

mov %ecx,(%rax)

1. Extra Practice

<val of x>

%ecx

(Pedantic: You should sub in
<x> and <ptr> with actual
values, like 4 and 0x7fff80)

<val of ptr>

65

%rax

Fill in the blank to complete the C code that 1. generates this assembly
2. has this register layout

int x = ...

int *ptr = malloc(…);

...

??? = _???_;

mov %ecx,(%rax)

1. Extra Practice

<val of x> <val of ptr>

*ptr = x;

%ecx %rax
67

Fill in the blank to complete the C code that

long arr[5];

...

long num = ??? ;

1. generates this assembly
2. results in this register layout

mov (%rdi, %rcx, 8),%rax

2. Extra Practice

3

%rcx

<val of num>

%rax

<val of arr>

%rdi
67

Fill in the blank to complete the C code that 1. generates this assembly
2. results in this register layout

long arr[5];

...

long num = ??? ;

mov (%rdi, %rcx, 8),%rax

2. Extra Practice

long num = arr[3];
long num = *(arr + 3);
long num = *(arr + y);

(assume long y = 3;
declared earlier)

3

%rcx

<val of num>

%rax

<val of arr>

%rdi
68

Fill in the blank to complete the C code that

char str[5];

...

??? = 'c';

1. generates this assembly
2. has this register layout

mov $0x63,(%rcx,%rdx,1)

3. Extra Practice

2

%rdx

<val of str>

%rcx
69

Fill in the blank to complete the C code that 1. generates this assembly
2. has this register layout

char str[5];

...

??? = 'c';

mov $0x63,(%rcx,%rdx,1)

3. Extra Practice

str[2] = 'c';
*(str + 2) = 'c';

2

%rdx

<val of str>

%rcx
70

Coming Up Soon To A Slide Near You

• The below code is the objdump of a C function, foo.
• foo keeps its 1st and 2nd parameters are in registers %rdi and %rsi, respectively.

0x4005b6 <foo> mov (%rdi),%rax
0x4005b9 <foo+3> mov (%rsi),%rdx
0x4005bc <foo+6> mov %rdx,(%rdi)
0x4005bf <foo+9> mov %rax,(%rsi)

0x7fffe868

%rdi

0x7fffe870

%rsi

42

1000
0x7fffe870

0x7fffe868

8 bytes

%rax %rdx

1. What does this function do?
2. What C code could have

generated this assembly?
(Hints: make up C variable names as
needed, assume all regs 64-bit)

71

Coming Up Soon To A Slide Near You

• The below code is the objdump of a C function, foo.
• foo keeps its 1st and 2nd parameters are in registers %rdi and %rsi, respectively.

0x4005b6 <foo> mov (%rdi),%rax
0x4005b9 <foo+3> mov (%rsi),%rdx
0x4005bc <foo+6> mov %rdx,(%rdi)
0x4005bf <foo+9> mov %rax,(%rsi)

0x7fffe868

%rdi

0x7fffe870

%rsi

42

1000
0x7fffe870

0x7fffe868

8 bytes

%rax %rdx

72

5

Lecture Plan

• Recap: mov so far

• Data and Register Sizes

• The lea Instruction

• Logical and Arithmetic Operations

• Practice: Reverse Engineering

7

11

24

30

38

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

6

Helpful Assembly Resources

• Course textbook (reminder: see relevant readings for each lecture on the
Schedule page, http://cs107.stanford.edu/schedule.html)

• CS107 Assembly Reference Sheet: http://cs107.stanford.edu/resources/x86-
64-reference.pdf

• CS107 Guide to x86-64: http://cs107.stanford.edu/guide/x86-64.html

http://cs107.stanford.edu/schedule.html)
http://cs107.stanford.edu/schedule.html)
http://cs107.stanford.edu/resources/x86-
http://cs107.stanford.edu/resources/x86-
http://cs107.stanford.edu/guide/x86-64.html
http://cs107.stanford.edu/guide/x86-64.html
http://cs107.stanford.edu/guide/x86-64.html

54

References and Advanced Reading

• References:

•

•

•

•

• Stanford guide to x86-64: https://web.stanford.edu/class/cs107/guide/

x86-64.html

CS107 one-page of x86-64: https://web.stanford.edu/class/cs107/resources/

onepage_x86-64.pdf

gdbtui: https://beej.us/guide/bggdb/

More gdbtui: https://sourceware.org/gdb/onlinedocs/gdb/TUI.html

Compiler explorer: https://gcc.godbolt.org
• Advanced Reading:

•

•

• x86-64 Intel Software Developer manual: https://software.intel.com/sites/

default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf

history of x86 instructions: https://en.wikipedia.org/wiki/

X86_instruction_listings

x86-64 Wikipedia: https://en.wikipedia.org/wiki/X86-64

7

Lecture Plan

• Recap: mov so far

• Data and Register Sizes

• The lea Instruction

• Logical and Arithmetic Operations

• Practice: Reverse Engineering

7

11

24

30

38

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

8

mov

The mov instruction copies bytes from one place to another;
it is similar to the assignment operator (=) in C.

mov src,dst

The src and dst can each be one of:

• Immediate (constant value, like a number) (only src)

• Register

• Memory Location
(at most one of src, dst)

Memory Location Syntax

Syntax Meaning

0x104 Address 0x104 (no $)

(%rax) What’s in %rax

4(%rax) What’s in %rax, plus 4

(%rax, %rdx) Sum of what’s in %rax and %rdx

4(%rax, %rdx) Sum of values in %rax and %rdx, plus 4

(, %rcx, 4)
What’s in %rcx, times 4 (multiplier can be 1,

2, 4, 8)

(%rax, %rcx, 2) What’s in %rax, plus 2 times what’s in %rcx

8(%rax, %rcx, 2)
What’s in %rax, plus 2 times what’s in %rcx,

plus 8 9

10

Operand Forms

Type Form Operand Value Name

Immediate $𝐼𝑚𝑚 𝐼𝑚𝑚 Immediate

Register 𝑟! R[𝑟!] Register

Memory 𝐼𝑚𝑚 M[𝐼𝑚𝑚] Absolute

Memory (𝑟!) M[R 𝑟!] Indirect

Memory 𝐼𝑚𝑚(𝑟") M[𝐼𝑚𝑚 + R 𝑟"] Base + displacement

Memory (𝑟", 𝑟#) M[R 𝑟" + R 𝑟#] Indexed

Memory 𝐼𝑚𝑚(𝑟", 𝑟#) M[𝐼𝑚𝑚 + R 𝑟" + R 𝑟#] Indexed

Memory (, 𝑟#, 𝑠) M[R 𝑟# . 𝑠] Scaled indexed

Memory 𝐼𝑚𝑚(, 𝑟#, 𝑠) M[𝐼𝑚𝑚 + R 𝑟# . 𝑠] Scaled indexed

Memory (𝑟", 𝑟#, 𝑠) M[R 𝑟" + R 𝑟# . 𝑠] Scaled indexed

Memory 𝐼𝑚𝑚(𝑟", 𝑟#, 𝑠) M[𝐼𝑚𝑚 + R 𝑟" + R 𝑟# . 𝑠] Scaled indexed

Figure 3.3 from the book: “Operand forms. Operands can denote immediate (constant) values, register values,
or values from memory. The scaling factor s must be either. 1, 2, 4, or 8.”

11

Lecture Plan

• Recap: mov so far

• Data and Register Sizes

• The lea Instruction

• Logical and Arithmetic Operations

• Practice: Reverse Engineering

7

11

24

30

38

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

12

Data Sizes

Data sizes in assembly have slightly different terminology to get used to:

• A byte is 1 byte.

• A word is 2 bytes.

• A double word is 4 bytes.

• A quad word is 8 bytes.

Assembly instructions can have suffixes to refer to these sizes:

• b means byte

• w means word

• l means double word

• q means quad word

Register Sizes

63Bit: 071531

%rax %eax %ax %al

%rbx %ebx %bx %bl

%rcx %ecx %cx %cl

%rdx %edx %dx %dl

%rsi %esi %si %sil

%rdi %edi %di %dil

82

Register Sizes

63Bit: 071531

%rbp %ebp %bp %bpl

%rsp %esp %sp %spl

%r8 %r8d %r8w %r8b

%r9 %r9d %r9w %r9b

%r10 %r10d %r10w %r10b

%r11 %r11d %r11w %r11b

83

Register Sizes

63Bit: 071531

%r12 %r12d %r12w %r12b

%r13 %r13d %r13w %r13b

%r14 %r14d %r14w %r14b

%r15 %r15d %r15w %r15b

84

16

Register Responsibilities

Some registers take on special responsibilities during program execution.

• %rax stores the return value

• %rdi stores the first parameter to a function

• %rsi stores the second parameter to a function

• %rdx stores the third parameter to a function

• %rip stores the address of the next instruction to execute

• %rsp stores the address of the current top of the stack

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

mov Variants

86

• mov can take an optional suffix (b,w,l,q) that specifies the size of data to move:
movb, movw, movl, movq

• mov only updates the specific register bytes or memory locations indicated.
• Exception: movl writing to a register will also set high order 4 bytes to 0.

Practice: mov And Data Sizes

87

For each of the following mov instructions, determine the appropriate suffix
based on the operands (e.g. movb, movw, movl or movq).

1. mov %eax, (%rsp)

2. mov (%rax), %dx

3. mov $0xff, %bl

4. mov (%rsp,%rdx,4),%dl

5. mov (%rdx), %rax

6. mov %dx, (%rax)

Practice: mov And Data Sizes

88

For each of the following mov instructions, determine the appropriate suffix
based on the operands (e.g. movb, movw, movl or movq).

1. movl %eax, (%rsp)

2. movw (%rax), %dx

3. movb $0xff, %bl

4. movb (%rsp,%rdx,4),%dl

5. movq (%rdx), %rax

6. movw %dx, (%rax)

mov

89

• The movabsq instruction is used to write a 64-bit Immediate (constant) value.

• The regular movq instruction can only take 32-bit immediates.

• 64-bit immediate as source, only register as destination.

movabsq $0x0011223344556677, %rax

movz and movs

90

• There are two mov instructions that can be used to copy a smaller source to a
larger destination: movz and movs.

• movz fills the remaining bytes with zeros

• movs fills the remaining bytes by sign-extending the most significant bit in the
source.

• The source must be from memory or a register, and the destination is a
register.

movz and movs

91

Instruction Description

movzbw Move zero-extended byte to word

movzbl Move zero-extended byte to double word

movzwl Move zero-extended word to double word

movzbq Move zero-extended byte to quad word

movzwq Move zero-extended word to quad word

MOVZ S,R R ← ZeroExtend(S)

movz and movs

92

Instruction Description

movsbw Move sign-extended byte to word

movsbl Move sign-extended byte to double word

movswl Move sign-extended word to double word

movsbq Move sign-extended byte to quad word

movswq Move sign-extended word to quad word

movslq Move sign-extended double word to quad word

cltq Sign-extend %eax to %rax

%rax <- SignExtend(%eax)

MOVS S,R R ← SignExtend(S)

24

Lecture Plan

• Recap: mov so far

• Data and Register Sizes

• The lea Instruction

• Logical and Arithmetic Operations

• Practice: Reverse Engineering

7

11

24

30

38

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

lea

The lea instruction copies an “effective address” from one place to another.

lea src,dst

Unlike mov, which copies data at the address src to the destination, lea copies
the value of src itself to the destination.

The syntax for the destinations is the same as

mov. The difference is how it handles the src.

94

lea vs. mov

95

Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Copy 6 + what’s in %rax into %rdx.

lea vs. mov

96

Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Copy 6 + what’s in %rax into %rdx.

(%rax, %rcx), %rdx Go to the address (what’s in %rax +
what’s in %rcx) and copy data there into
%rdx

Copy (what’s in %rax + what’s in %rcx)
into %rdx.

lea vs. mov

97

Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Copy 6 + what’s in %rax into %rdx.

(%rax, %rcx), %rdx Go to the address (what’s in %rax +
what’s in %rcx) and copy data there into
%rdx

Copy (what’s in %rax + what’s in %rcx)
into %rdx.

(%rax, %rcx, 4), %rdx Go to the address (%rax + 4 * %rcx) and
copy data there into %rdx.

Copy (%rax + 4 * %rcx) into %rdx.

lea vs. mov

Operands mov Interpretation lea Interpretation

6(%rax), %rdx Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Copy 6 + what’s in %rax into %rdx.

(%rax, %rcx), %rdx Go to the address (what’s in %rax +
what’s in %rcx) and copy data there into
%rdx

Copy (what’s in %rax + what’s in %rcx)
into %rdx.

(%rax, %rcx, 4), %rdx Go to the address (%rax + 4 * %rcx) and
copy data there into %rdx.

Copy (%rax + 4 * %rcx) into %rdx.

7(%rax, %rax, 8), %rdx Go to the address (7 + %rax + 8 * %rax)
and copy data there into %rdx.

Copy (7 + %rax + 8 * %rax) into %rdx.

Unlike mov, which copies data at the address

src to the destination, lea copies the value of

src itself to the destination.

98

30

Lecture Plan

• Recap: mov so far

• Data and Register Sizes

• The lea Instruction

• Logical and Arithmetic Operations

• Practice: Reverse Engineering

7

11

24

30

38

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

31

Unary Instructions

The following instructions operate on a single operand (register or memory):

Examples:

incq 16(%rax)

dec %rdx

not %rcx

Instruction Effect Description

inc D D ← D + 1 Increment

dec D D ← D - 1 Decrement

neg D D ← -D Negate

not D D ← ~D Complement

32

Binary Instructions

The following instructions operate on two operands (both can be register or
memory, source can also be immediate). Both cannot be memory locations.
Read it as, e.g. “Subtract S from D”:

Examples:

addq %rcx,(%rax)

xorq $16,(%rax, %rdx, 8)

subq %rdx,8(%rax)

Instruction Effect Description

add S, D D ← D + S Add

sub S, D D ← D - S Subtract

imul S, D D ← D * S Multiply

xor S, D D ← D ^ S Exclusive-or

or S, D D ← D | S Or

and S, D D ← D & S And

Large Multiplication

10
2

• Multiplying 64-bit numbers can produce a 128-bit result. How does x86-64
support this with only 64-bit registers?

• If you specify two operands to imul, it multiplies them together and truncates
until it fits in a 64-bit register.

imul S, D D ← D * S

• If you specify one operand, it multiplies that by %rax, and splits the product
across 2 registers. It puts the high-order 64 bits in %rdx and the low-order 64
bits in %rax.

Instruction Effect Description

imulq S R[%rdx]:R[%rax] ← S x R[%rax] Signed full multiply

mulq S R[%rdx]:R[%rax] ← S x R[%rax] Unsigned full multiply

Division and Remainder

• Terminology: dividend / divisor = quotient + remainder

• x86-64 supports dividing up to a 128-bit value by a 64-bit value.

• The high-order 64 bits of the dividend are in %rdx, and the low-order 64 bits
are in %rax. The divisor is the operand to the instruction.

• The quotient is stored in %rax, and the remainder in %rdx.

Instruction Effect Description

idivq S R[%rdx]
R[%rax]

←
←
R[%rdx]:R[%rax]
R[%rdx]:R[%rax]

mod S;
S

Signed divide

divq S R[%rdx]
R[%rax]

←
←
R[%rdx]:R[%rax]
R[%rdx]:R[%rax]

mod S;
S

Unsigned divide

10
3

Division and Remainder

• Terminology: dividend / divisor = quotient + remainder

• The high-order 64 bits of the dividend are in %rdx, and the low-order 64 bits
are in %rax. The divisor is the operand to the instruction.

• Most division uses only 64-bit dividends. The cqto instruction sign-extends the
64-bit value in %rax into %rdx to fill both registers with the dividend, as the
division instruction expects.

Instruction Effect Description

idivq S R[%rdx]
R[%rax]

←
←
R[%rdx]:R[%rax]
R[%rdx]:R[%rax]

mod S;
S

Signed divide

divq S R[%rdx]
R[%rax]

←
←
R[%rdx]:R[%rax]
R[%rdx]:R[%rax]

mod S;
S

Unsigned divide

cqto R[%rdx]:R[%rax] ← SignExtend(R[%rax]) Convert to oct word

10
4

Shift Instructions

10
5

The following instructions have two operands: the shift amount k and the
destination to shift, D. k can be either an immediate value, or the byte register
%cl (and only that register!)

Examples:

shll $3,(%rax)

shrl %cl,(%rax,%rdx,8)

sarl $4,8(%rax)

Instruction Effect Description

sal k, D D ← D << k Left shift

shl k, D D ← D << k Left shift (same as sal)

sar k, D D ← D >>A k Arithmetic right shift

shr k, D D ← D >>L k Logical right shift

Shift Amount

10
6

• When using %cl, the width of what you are shifting determines what portion
of %cl is used.

• For w bits of data, it looks at the low-order log2(w) bits of %cl to know how
much to shift.

• If %cl = 0xff, then: shlb shifts by 7 because it considers only the low-order log2(8) = 3
bits, which represent 7. shlw shifts by 15 because it considers only the low-order
log2(16) = 4 bits, which represent 15.

Instruction Effect Description

sal k, D D ← D << k Left shift

shl k, D D ← D << k Left shift (same as sal)

sar k, D D ← D >>A k Arithmetic right shift

shr k, D D ← D >>L k Logical right shift

38

Lecture Plan

• Recap: mov so far

• Data and Register Sizes

• The lea Instruction

• Logical and Arithmetic Operations

• Practice: Reverse Engineering

7

11

24

30

38

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

Assembly Exploration

10
8

• Let’s pull these commands together and see how some C code might be
translated to assembly.

• Compiler Explorer is a handy website that lets you quickly write C code and see
its assembly translation. Let’s check it out!

• https://godbolt.org/z/WPzz6G4a9

Code Reference: add_to_first

// Returns the sum of x and the first element in
arr
int add_to_first(int x, int arr[]) {

int sum = x;
sum += arr[0];
return sum;

}

add_to_first:
movl %edi, %eax
addl (%rsi), %eax
ret

10
9

Code Reference: full_divide

// Returns x/y, stores remainder in location stored in
remainder_ptr
long full_divide(long x, long y, long *remainder_ptr) {

long quotient = x / y;
long remainder = x % y;
*remainder_ptr = remainder;
return quotient;

}

full_divide:

41ret

movq %rdi, %rax
movq %rdx, %rcx
cqto
idivq %rsi
movq %rdx, (%rcx)

42

Assembly Exercise 1

000000000040116e <sum_example1>:
40116e: 8d 04 37
401171: c3

lea (%rdi,%rsi,1),%eax
retq

Which of the following is most likely to have generated the above assembly?

// A)
void sum_example1() {

int x;
int y;
int sum = x + y;

}

// C)
void sum_example1(int x, int y) {

int sum = x + y;
}

// B)
int sum_example1(int x, int y) {

return x + y;
}

Assembly Exercise 2

0000000000401172 <sum_example2>:
401172: 8b 47 0c mov 0xc(%rdi),%eax
401175: 03 07 add (%rdi),%eax
401177:
40117a:

2b
c3

47 18 sub
retq

0x18(%rdi),%eax

int sum_example2(int arr[]) {
int sum = 0;
sum += arr[0];

sum += arr[3];
sum -= arr[6];
return sum;

}
11
2

What location or value in the assembly above represents the
C code’s sum variable?

%eax

Assembly Exercise 3

0000000000401172 <sum_example2>:
401172: 8b 47 0c mov 0xc(%rdi),%eax
401175: 03 07 add (%rdi),%eax
401177:
40117a:

2b
c3

47 18 sub
retq

0x18(%rdi),%eax

int sum_example2(int arr[]) {
int sum = 0;
sum += arr[0];

sum += arr[3];
sum -= arr[6];
return sum;

}
11
3

What location or value in the assembly code above
represents the C code’s 6 (as in arr[6])?

0x18

45

Our First Assembly

int sum_array(int arr[], int nelems) {
int sum = 0;
for (int i = 0; i < nelems; i++) {

sum += arr[i];
}
return sum;

}

0000000000401136 <sum_array>:
401136: b8 00 00 00 00 mov $0x0,%eax
40113b:
401140:

ba
39

00
f0

00 00 00 mov
cmp

$0x0,%edx
%esi,%eax

401142: 7d 0b jge 40114f <sum_array+0x19>
401144: 48 63 c8 movslq %eax,%rcx
401147: 03 14 8f add (%rdi,%rcx,4),%edx
40114a:
40114d:

83
eb

c0
f1

01 add
jmp

$0x1,%eax
401140 <sum_array+0xa>

40114f: 89 d0 mov %edx,%eax
401151: c3 retq

We’re 1/2 of the way to understanding assembly!
What looks understandable right now?

A Note About Operand Forms

11
5

• Many instructions share the same address operand forms that mov uses.
• Eg. 7(%rax, %rcx, 2).

• These forms work the same way for other instructions, e.g. sub:
• sub 8(%rax,%rdx),%rcx -> Go to 8 + %rax + %rdx, subtract what’s there from %rcx

• The exception is lea:
• It interprets this form as just the calculation, not the dereferencing

• lea 8(%rax,%rdx),%rcx -> Calculate 8 + %rax + %rdx, put it in %rcx

Shift Amount

11
6

• When using %cl, the width of what you are shifting determines what portion
of %cl is used.

• For w bits of data, it looks at the low-order log2(w) bits of %cl to know how
much to shift.

• If %cl = 0xff, then: shlb shifts by 7 because it considers only the low-order log2(8) = 3
bits, which represent 7. shlw shifts by 15 because it considers only the low-order
log2(16) = 4 bits, which represent 15.

Instruction Effect Description

sal k, D D ← D << k Left shift

shl k, D D ← D << k Left shift (same as sal)

sar k, D D ← D >>A k Arithmetic right shift

shr k, D D ← D >>L k Logical right shift

Division and Remainder

• Terminology: dividend / divisor = quotient + remainder

• x86-64 supports dividing up to a 128-bit value by a 64-bit value.

• The high-order 64 bits of the dividend are in %rdx, and the low-order 64 bits
are in %rax. The divisor is the operand to the instruction.

• The quotient is stored in %rax, and the remainder in %rdx.

Instruction Effect Description

idivq S R[%rdx]
R[%rax]

←
←
R[%rdx]:R[%rax]
R[%rdx]:R[%rax]

mod S;
S

Signed divide

divq S R[%rdx]
R[%rax]

←
←
R[%rdx]:R[%rax]
R[%rdx]:R[%rax]

mod S;
S

Unsigned divide

11
7

Extra Practice

11
8

https://godbolt.org/z/hGKPWszq4

Reverse Engineering 1

int add_to(int x, int arr[], int i)
{ int sum = ? ;
sum += arr[?];
return ? ;

}

add_to:
movslq %edx, %rdx
movl %edi, %eax
addl (%rsi,%rdx,4), %eax
ret

11
9

Reverse Engineering 1

int add_to(int x, int arr[], int i)
{ int sum = ? ;
sum += arr[?];
return ? ;

}

// x in %edi, arr in %rsi, i in
%edx add_to:

12
0

// sign-extend i into full register
// copy x into %eax
// add arr[i] to %eax

movslq %edx, %rdx
movl %edi, %eax
addl (%rsi,%rdx,4), %eax
ret

Reverse Engineering 1

int add_to(int x, int arr[], int i)
{ int sum = x;
sum += arr[i];
return sum;

}

// x in %edi, arr in %rsi, i in
%edx add_to:

12
1

// sign-extend i into full register
// copy x into %eax
// add arr[i] to %eax

movslq %edx, %rdx
movl %edi, %eax
addl (%rsi,%rdx,4), %eax
ret

Reverse Engineering 2

int elem_arithmetic(int nums[], int y)
{ int z = nums[?] * ? ;
z -= ? ;
z >>= ? ;
return ? ;

}

elem_arithmetic:
movl %esi, %eax
imull (%rdi), %eax
subl 4(%rdi), %eax
sarl $2, %eax
addl $2, %eax
ret

12
2

Reverse Engineering 2

int elem_arithmetic(int nums[], int y)
{ int z = nums[?] * ? ;
z -= ? ;
z >>= ? ;
return ? ;

}

// nums in %rdi, y in %esi
elem_arithmetic:

addl
ret

$2, %eax // add 2 to %eax

12
3

movl %esi, %eax
imull (%rdi), %eax
subl 4(%rdi), %eax
sarl $2, %eax

// copy y into %eax
// multiply %eax by nums[0]
// subtract nums[1] from %eax
// shift %eax right by 2

Reverse Engineering 2

int elem_arithmetic(int nums[], int y)
{ int z = nums[0] * y;
z -= nums[1];
z >>= 2;
return z + 2;

}

// nums in %rdi, y in %esi
elem_arithmetic:

addl
ret

$2, %eax // add 2 to %eax

12
4

movl %esi, %eax
imull (%rdi), %eax
subl 4(%rdi), %eax
sarl $2, %eax

// copy y into %eax
// multiply %eax by nums[0]
// subtract nums[1] from %eax
// shift %eax right by 2

Reverse Engineering 3

long func(long x, long *ptr) {
*ptr = ? + 1;
long result = x % ? ;
return ? ;

}

func:
movq %rdi, %rax
leaq 1(%rdi), %rcx
movq %rcx, (%rsi)
cqto
idivq %rcx
movq
ret

%rdx, %rax

12
5

Reverse Engineering 3

long func(long x, long *ptr) {
*ptr = ? + 1;
long result = x % ? ;
return ? ;

}

// x in %rdi, ptr in %rsi
func:

movq %rdi, %rax
leaq 1(%rdi), %rcx
movq %rcx, (%rsi)

movq
ret

%rdx, %rax // copy the remainder into %rax

12
6

// copy x into %rax
// put x + 1 into %rcx
// copy %rcx into *ptr

cqto // sign-extend x into %rdx
idivq %rcx // calculate x / (x + 1)

Reverse Engineering 3

long func(long x, long *ptr) {
*ptr = x + 1;
long result = x % *ptr; // or x +
1
return result;

}
// x in %rdi, ptr in %rsi
func:

movq %rdi, %rax
leaq 1(%rdi), %rcx
movq %rcx, (%rsi)

movq
ret

%rdx, %rax // copy the remainder into %rax

12
7

// copy x into %rax
// put x + 1 into %rcx
// copy %rcx into *ptr

cqto // sign-extend x into %rdx
idivq %rcx // calculate x / (x + 1)

Side Note: Old GCC Output

long func(long x, long *ptr) {
*ptr = x + 1;
long result = x % *ptr; // or x +
1
return result;

}
// x in %rdi, ptr in %rsi
func:

leaq 1(%rdi), %rcx
movq %rcx, (%rsi)
movq %rdi, %rax
cqto
idivq %rcx
movq
ret

%rdx, %rax // copy the remainder into %rax

12
8

// put x + 1 into %rcx
// copy %rcx into *ptr
// copy x into %rax
// sign-extend x into %rdx
// calculate x / (x + 1)

Learning Goals

12
9

• Learn about how assembly stores comparison and operation results in
condition codes

• Understand how assembly implements loops and control flow

Lecture Plan

13
0

• Assembly Execution and %rip

• Control Flow Mechanics
• Condition Codes

• Assembly Instructions

• If statements

• Loops
• While loops

• For loops

• Other Instructions That Depend On Condition Codes

• Live Session Slides

5

27

46

54

67

73

81

Lecture Plan

13
1

• Assembly Execution and %rip

• Control Flow Mechanics
• Condition Codes

• Assembly Instructions

• If statements

• Loops
• While loops

• For loops

• Other Instructions That Depend On Condition Codes

• Live Session Slides

5

27

46

54

67

73

81

Executing Instructions

13
2

What does it mean for a program
to execute?

Executing Instructions

So far:

• Program values can be stored in memory or registers.

• Assembly instructions read/write values back and forth
between registers (on the CPU) and memory.

• Assembly instructions are also stored in memory.

Today:

• Who controls the instructions?
How do we know what to do now or next?

Answer:

• The program counter (PC), %rip.

4004fd

4004fc

4004fb

4004fa

4004f9

4004f8

4004f7

4004f6

4004f5

4004f4

4004f3

4004f2

4004f1

4004f0

4004ef

4004ee

4004ed

fa

eb

01

fc

45

83

00

00

00

00

fc

45

c7

e5

89

48

55
13
3

Register Responsibilities

13
4

Some registers take on special responsibilities during program execution.

• %rax stores the return value

• %rdi stores the first parameter to a function

• %rsi stores the second parameter to a function

• %rdx stores the third parameter to a function

• %rip stores the address of the next instruction to execute

• %rsp stores the address of the current top of the stack

See the x86-64 Guide and Reference Sheet on the Resources webpage for more!

Instructions Are Just Bytes!

13
5

Instructions Are Just Bytes!

13
6

Instructions Are Just Bytes!

0x0

Stack

Heap

Data

Text (code)
Machine code

instructions

13
7

Main Memory

p

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8:
4004fc:

83
eb

45
fa

fc 01 addl
jmp

$0x1,-0x4(%rbp)
4004f8 <loop+0xb>

%ri4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

Stack

Heap

Data

Text (code)

Main Memory

13
8

%rip

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004ed

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

%rip 13
9

%rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004ee

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

%rip 14
0

%rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

00000000004004ed <loop>:

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed. 0x4004f1

%rip 15

4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

%rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

00000000004004ed <loop>:

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed. 0x4004f8

%rip 16

4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

%rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

00000000004004ed <loop>:

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed. 0x4004fc

%rip 17

4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

%rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

Special hardware sets the program counter
to the next instruction:

%rip += size of bytes of current instruction

0x4004fc

%rip 18

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

19

Going In Circles

• How can we use this representation of execution to represent e.g. a loop?

• Key Idea: we can ”interfere” with %rip and set it back to an earlier instruction!

Jump! 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

00000000004004ed <loop>:

The jmp instruction is an
unconditional jump that sets
the program counter to the
jump target (the operand). 0x4004fc

%rip 14
6

4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

Jump! 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

The jmp instruction is an
unconditional jump that sets
the program counter to the
jump target (the operand). 0x4004fc

%rip 14
7

Jump! 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

00000000004004ed <loop>:

The jmp instruction is an
unconditional jump that sets
the program counter to the
jump target (the operand). 0x4004fc

%rip 14
8

4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

Jump! 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

The jmp instruction is an
unconditional jump that sets
the program counter to the
jump target (the operand). 0x4004fc

%rip 14
9

Jump! 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

This assembly represents an
infinite loop in C!

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

0x4004fc
while (true) {…}

%rip 15
0

jmp

15
1

The jmp instruction jumps to another instruction in the assembly code
(“Unconditional Jump”).

jmp Label

jmp *Operand

(Direct Jump)

(Indirect Jump)

The destination can be hardcoded into the instruction (direct jump):

jmp 404f8 <loop+0xb> # jump to instruction at 0x404f8

The destination can also be one of the usual operand forms (indirect jump):

jmp *%rax # jump to instruction at address in %rax

“Interfering” with %rip

15
2

1. How do we repeat instructions in a loop?

jmp [target]
• A 1-step unconditional jump (always

jump when we execute this instruction)

What if we want a conditional jump?

Lecture Plan

15
3

• Assembly Execution and %rip

• Control Flow Mechanics
• Condition Codes

• Assembly Instructions

• If statements

• Loops
• While loops

• For loops

• Other Instructions That Depend On Condition Codes

• Live Session Slides

5

27

46

54

67

73

81

Control

15
4

• In C, we have control flow statements like if, else, while, for, etc. to write
programs that are more expressive than just one instruction following another.

• This is conditional execution of statements: executing statements if one
condition is true, executing other statements if one condition is false, etc.

• How is this represented in assembly?

Control

15
5

if (x > y) {

}

}

//
else
//

a
{
b

In Assembly:

1. Calculate the condition result

2. Based on the result, go to a or b

Control

• In assembly, it takes more than one instruction to do these two steps.

• Most often: 1 instruction to calculate the condition, 1 to conditionally jump

Common Pattern:

1. cmp S1, S2 // compare two values

2. je [target] or jne [target] or jl [target] or ... // conditionally jump

“jump if
equal”

“jump if
not equal”

“jump if
less than”

15
6

Conditional Jumps

15
7

There are also variants of jmp that jump only if certain conditions are true
(“Conditional Jump”). The jump location for these must be hardcoded into the
instruction.

Instruction Synonym Set Condition

je Label jz Equal / zero

jne Label jnz Not equal / not zero

js Label Negative

jns Label Nonnegative

jg Label jnle Greater (signed >)

jge Label jnl Greater or equal (signed >=)

jl Label jnge Less (signed <)

jle Label jng Less or equal (signed <=)

ja Label jnbe Above (unsigned >)

jae Label jnb Above or equal (unsigned >=)

jb Label jnae Below (unsigned <)

jbe Label jna Below or equal (unsigned <=)

Control

15
8

Read cmp S1,S2 as “compare S2 to S1”:

// Jump if %edi > 2

cmp $2, %edi

jg [target]

// Jump if %edi != 3

cmp $3, %edi

jne [target]

// Jump if %edi == 4

cmp $4, %edi

je [target]

// Jump if %edi <= 1

cmp $1, %edi

jle [target]

Control

Read cmp S1,S2 as “compare S2 to S1”:

// Jump if %edi > 2

cmp $2, %edi

jg [target]

// Jump if %edi !

cmp $3, %edi

jne [target]

// Jump if %edi == 4

cmp $4, %edi

je [target]

edi <= 1= 3 // Jump if %

cmp $1, %edi

jle [target]

Wait a minute – how does the
jump instruction know anything
about the compared values in
the earlier instruction?

15
9

Control

16
0

• The CPU has special registers called condition codes that are like “global
variables”. They automatically keep track of information about the most
recent arithmetic or logical operation.

• cmp compares via calculation (subtraction) and info is stored in the condition codes

• conditional jump instructions look at these condition codes to know whether to jump

• What exactly are the condition codes? How do they store this information?

Condition Codes

16
1

Alongside normal registers, the CPU also has single-bit condition code registers.
They store the results of the most recent arithmetic or logical operation.

Most common condition codes:

• CF: Carry flag. The most recent operation generated a carry out of the most
significant bit. Used to detect overflow for unsigned operations.

• ZF: Zero flag. The most recent operation yielded zero.

• SF: Sign flag. The most recent operation yielded a negative value.

• OF: Overflow flag. The most recent operation caused a two’s-complement
overflow-either negative or positive.

Condition Codes

16
2

Alongside normal registers, the CPU also has single-bit condition code registers.
They store the results of the most recent arithmetic or logical operation.

Example: if we calculate t = a + b, condition codes are set according to:

• CF: Carry flag (Unsigned Overflow).

• ZF: Zero flag (Zero).

• SF: Sign flag (Negative).

(unsigned) t < (unsigned) a

(t == 0)

(t < 0)

• OF: Overflow flag (Signed Overflow). (a<0 == b<0) && (t<0 != a<0)

Setting Condition Codes

16
3

The cmp instruction is like the subtraction instruction, but it does not store the
result anywhere. It just sets condition codes. (Note the operand order!)

CMP S1, S2 S2 – S1

Instruction Description

cmpb Compare byte

cmpw Compare word

cmpl Compare double word

cmpq Compare quad word

Control

16
4

// Jump if %edi > 2
// calculates %edi – 2
cmp $2, %edi
jg [target]

// Jump if %edi != 3
// calculates %edi – 3
cmp $3, %edi
jne [target]

// Jump if %edi == 4
// calculates %edi – 4
cmp $4, %edi
je [target]

// Jump if %edi <= 1
// calculates %edi – 1
cmp $1, %edi
jle [target]

Read cmp S1,S2 as “compare S2 to S1”. It calculates S2 – S1 and updates the
condition codes with the result.

Conditional Jumps

16
5

Conditional jumps can look at subsets of the condition codes in order to check
their condition of interest.

Instruction Synonym Set Condition

je Label jz Equal / zero (ZF = 1)

jne Label jnz Not equal / not zero (ZF = 0)

js Label Negative (SF = 1)

jns Label Nonnegative (SF = 0)

jg Label jnle Greater (signed >) (ZF = 0 and SF = OF)

jge Label jnl Greater or equal (signed >=) (SF = OF)

jl Label jnge Less (signed <) (SF != OF)

jle Label jng Less or equal (signed <=) (ZF = 1 or SF! = OF)

ja Label jnbe Above (unsigned >) (CF = 0 and ZF = 0)

jae Label jnb Above or equal (unsigned >=) (CF = 0)

jb Label jnae Below (unsigned <) (CF = 1)

jbe Label jna Below or equal (unsigned <=) (CF = 1 or ZF = 1)

Setting Condition Codes

16
6

The test instruction is like cmp, but for AND. It does not store the & result
anywhere. It just sets condition codes.

TEST S1, S2 S2 & S1

Cool trick: if we pass the same value for both operands, we can check the sign
of that value using the Sign Flag and Zero Flag condition codes!

Instruction Description

testb Test byte

testw Test word

testl Test double word

testq Test quad word

Condition Codes

16
7

• Previously-discussed arithmetic and logical instructions update these flags. lea
does not (it was intended only for address computations).

• Logical operations (xor, etc.) set carry and overflow flags to zero.

• Shift operations set the carry flag to the last bit shifted out and set the
overflow flag to zero.

• For more complicated reasons, inc and dec set the overflow and zero flags, but
leave the carry flag unchanged.

Exercise 1: Conditional jump

je target jump if ZF is 1

Let %edi store 0x10. Will we jump in the following cases?

1. cmp $0x10,%edi
je 40056f
add $0x1,%edi

2. test $0x10,%edi
je 40056f
add $0x1,%edi

0x10%edi

16
8

Exercise 1: Conditional jump

je target jump if ZF is 1

Let %edi store 0x10. Will we jump in the following cases?

1. cmp $0x10,%edi
je 40056f
add $0x1,%edi

2. test $0x10,%edi

0x10

S2 & S1 != 0, so don’t jumpje
add

40056f
$0x1,%edi

16
9

%edi

S2 - S1 == 0, so jump

Exercise 2: Conditional jump

1. What is the value of %rip after
executing the jne instruction?

A. 4004d9

B. 4004db
C. 4004de
D. Other

0x5%edi
00000000004004d6 <if_then>:

4004d6: 83 ff 06 cmp $0x6,%edi
4004d9: 75 03 jne 4004de <if_then+0x8>
400rdb: 83 c7 01 add $0x1,%edi
4004de: 8d 04 3f lea (%rdi,%rdi,1),%eax
4004e1: c3 retq

2. What is the value of %eax
when we hit the retq instruction?

E. Other
17
0

A. 4004e1

B. 0x2
C. 0xa
D. 0xc

2. What is the value of %eax
when we hit the retq instruction?
A. 4004e1

B. 0x2

C. 0xa

D. 0xc

Exercise 2: Conditional jump

1. What is the value of %rip after
executing the jne instruction?

A. 4004d9

B. 4004db

C. 4004de

D. Other

0x5%edi
00000000004004d6 <if_then>:

4004d6: 83 ff 06 cmp $0x6,%edi
4004d9: 75 03 jne 4004de <if_then+0x8>
400rdb: 83 c7 01 add $0x1,%edi
4004de: 8d 04 3f lea (%rdi,%rdi,1),%eax
4004e1: c3 retq

E. Other
17
1

Lecture Plan

17
2

• Assembly Execution and %rip

• Control Flow Mechanics
• Condition Codes

• Assembly Instructions

• If statements

• Loops
• While loops

• For loops

• Other Instructions That Depend On Condition Codes

• Live Session Slides

5

27

46

54

67

73

81

If Statements

17
3

How can we use instructions like cmp and conditional jumps to implement if
statements in assembly?

int if_then(int param1) {
if () {

;
}

return ;
}

Practice: Fill In The Blank

0000000000401126 <if_then>:
$0x6,%edi
40112f
(%rdi,%rdi,1),%eax

401126: cmp
401129: je
40112b: lea
40112e: retq
40112f: add
401132: jmp

$0x1,%edi
40112b

17
4

Practice: Fill In The Blank

0000000000401126 <if_then>:
$0x6,%edi
40112f
(%rdi,%rdi,1),%eax

401126: cmp
401129: je
40112b: lea
40112e: retq
40112f: add
401132: jmp

$0x1,%edi
40112b

int if_then(int param1) {
if (param1 == 6) {

param1++;
}

return param1 * 2;
}

17
5

Common If-Else Construction

If-Else In C

long absdiff(long x, long y) {
long result;
if (x < y) {

result = y – x;
} else {

result = x – y;
}

return result;
}

If-Else In Assembly pseudocode

Test
Jump to else-body if test passes
If-body
Jump to past else-body
Else-body
Past else body

17
6

Practice: Fill in the Blank

If-Else In Assembly pseudocode

Test
Jump to else-body if test passes
If-body
Jump to past else-body
Else-body
Past else body

If-Else In C

long absdiff(long x, long y) {
long result;
if () {

;
} else {

;
}

return result;
}

401134 <+0>: mov
401137 <+3>: cmp
40113a <+6>: jge
40113c <+8>: sub

%rsi,%rax
%rsi,%rdi
0x401140 <absdiff+12>
%rdi,%rax

40113f <+11>: retq
401140 <+12>: sub
401143 <+15>: mov
401146 <+18>: retq

%rsi,%rdi
%rdi,%rax

17
7

Practice: Fill in the Blank

long absdiff(long x, long y) {
long result;
if (x < y) {

result = y - x ;
} else {

result = x - y ;
}

return result;
}

If-Else In Assembly pseudocode

Test
Jump to else-body if test passes
If-body
Jump to past else-body
Else-body
Past else body

If-Else In C 401134 <+0>: mov
401137 <+3>: cmp
40113a <+6>: jge
40113c <+8>: sub

%rsi,%rax
%rsi,%rdi
0x401140 <absdiff+12>
%rdi,%rax

40113f <+11>: retq
401140 <+12>: sub
401143 <+15>: mov
401146 <+18>: retq

%rsi,%rdi
%rdi,%rax

17
8

If-Else Construction Variations

17
9

int test(int arg) { 401134 <+0>: cmp $0x3,%edi
int ret; 401137 <+3>: jle 0x401142 <test+14>
if (arg > 3)

ret = 10;
{ 401139

40113e
<+5>:
<+10>:

mov
add

$0xa,%eax
$0x1,%eax

} else { 401141 <+13>: retq
ret = 0; 401142 <+14>: mov $0x0,%eax

} 401147 <+19>: jmp 0x40113e <test+10>

ret++;
return ret;

}

C Code Assembly

Lecture Plan

18
0

• Assembly Execution and %rip

• Control Flow Mechanics
• Condition Codes

• Assembly Instructions

• If statements

• Loops
• While loops

• For loops

• Other Instructions That Depend On Condition Codes

• Live Session Slides

5

27

46

54

67

73

81

Loops and Control Flow

void loop() {
int i = 0;
while (i < 100) {

i++;
}

}

0x000000000040115c <+0>: mov $0x0,%eax
0x0000000000401161 <+5>: cmp $0x63,%eax
0x0000000000401164 <+8>: jg 0x40116b <loop+15>
0x0000000000401166 <+10>: add $0x1,%eax
0x0000000000401169
0x000000000040116b

<+13>:
<+15>:

jmp
retq

0x401161 <loop+5>

18
1

Loops and Control Flow

void loop() {
int i = 0;
while (i < 100) {

i++;
}

}

$0x0,%eax
$0x63,%eax
0x40116b <loop+15>
$0x1,%eax
0x401161 <loop+5>

0x000000000040115c <+0>: mov
0x0000000000401161 <+5>: cmp
0x0000000000401164 <+8>: jg
0x0000000000401166 <+10>: add
0x0000000000401169 <+13>: jmp
0x000000000040116b <+15>: retq

Set %eax (i) to 0.

18
2

Loops and Control Flow

void loop() {
int i = 0;
while (i < 100) {

i++;
}

}

$0x0,%eax
$0x63,%eax
0x40116b <loop+15>
$0x1,%eax
0x401161 <loop+5>

0x000000000040115c <+0>: mov
0x0000000000401161 <+5>: cmp
0x0000000000401164 <+8>: jg
0x0000000000401166 <+10>: add
0x0000000000401169 <+13>: jmp
0x000000000040116b <+15>: retq

Compare %eax (i) to 0x63 (99)
by calculating %eax – 0x63.
This is 0 – 99 = -99, so it sets
the Sign Flag to 1.

18
3

Loops and Control Flow

void loop() {
int i = 0;
while (i < 100) {

i++;
}

}

$0x0,%eax
$0x63,%eax
0x40116b <loop+15>
$0x1,%eax
0x401161 <loop+5>

0x000000000040115c <+0>: mov
0x0000000000401161 <+5>: cmp
0x0000000000401164 <+8>: jg
0x0000000000401166 <+10>: add
0x0000000000401169 <+13>: jmp
0x000000000040116b <+15>: retq

jg means “jump if greater than”.
This jumps if %eax > 0x63. The
flags indicate this is false, so we do
not jump.

18
4

Loops and Control Flow

void loop() {
int i = 0;
while (i < 100) {

i++;
}

}

$0x0,%eax
$0x63,%eax
0x40116b <loop+15>
$0x1,%eax
0x401161 <loop+5>

0x000000000040115c <+0>: mov
0x0000000000401161 <+5>: cmp
0x0000000000401164 <+8>: jg
0x0000000000401166 <+10>: add
0x0000000000401169 <+13>: jmp
0x000000000040116b <+15>: retq

Add 1 to %eax (i).

18
5

Loops and Control Flow

void loop() {
int i = 0;
while (i < 100) {

i++;
}

}

$0x0,%eax
$0x63,%eax
0x40116b <loop+15>
$0x1,%eax
0x401161 <loop+5>

0x000000000040115c <+0>: mov
0x0000000000401161 <+5>: cmp
0x0000000000401164 <+8>: jg
0x0000000000401166 <+10>: add
0x0000000000401169 <+13>: jmp
0x000000000040116b <+15>: retq

Jump to another instruction.

18
6

Loops and Control Flow

void loop() {
int i = 0;
while (i < 100) {

i++;
}

}

$0x0,%eax
$0x63,%eax
0x40116b <loop+15>
$0x1,%eax
0x401161 <loop+5>

0x000000000040115c <+0>: mov
0x0000000000401161 <+5>: cmp
0x0000000000401164 <+8>: jg
0x0000000000401166 <+10>: add
0x0000000000401169 <+13>: jmp
0x000000000040116b <+15>: retq

Compare %eax (i) to 0x63 (99)
by calculating %eax – 0x63.
This is 1 – 99 = -98, so it sets
the Sign Flag to 1.

18
7

Loops and Control Flow

void loop() {
int i = 0;
while (i < 100) {

i++;
}

}

$0x0,%eax
$0x63,%eax
0x40116b <loop+15>
$0x1,%eax
0x401161 <loop+5>

0x000000000040115c <+0>: mov
0x0000000000401161 <+5>: cmp
0x0000000000401164 <+8>: jg
0x0000000000401166 <+10>: add
0x0000000000401169 <+13>: jmp
0x000000000040116b <+15>: retq

We continue in this pattern until
we make this conditional jump.
When will that be?

18
8

Loops and Control Flow

void loop() {
int i = 0;
while (i < 100) {

i++;
}

}

$0x0,%eax
$0x63,%eax
0x40116b <loop+15>
$0x1,%eax
0x401161 <loop+5>

0x000000000040115c <+0>: mov
0x0000000000401161 <+5>: cmp
0x0000000000401164 <+8>: jg
0x0000000000401166 <+10>: add
0x0000000000401169 <+13>: jmp
0x000000000040116b <+15>: retq

We will stop looping when this
comparison says that %eax – 0x63 > 0!

18
9

Loops and Control Flow

void loop() {
int i = 0;
while (i < 100) {

i++;
}

}

0x000000000040115c <+0>: mov
0x0000000000401161 <+5>: cmp
0x0000000000401164 <+8>: jg
0x0000000000401166 <+10>: add
0x0000000000401169 <+13>: jmp
0x000000000040116b <+15>: retq

$0x0,%eax
$0x63,%eax
0x40116b <loop+15>
$0x1,%eax
0x401161 <loop+5>

Then, we return from the function.

19
0

GCC Common While Loop Construction

C

while (test) {
body

}

Assembly

Test
Skip loop if test passes
Body
Jump back to test

0x000000000040115c <+0>: mov $0x0,%eax
0x0000000000401161 <+5>: cmp $0x63,%eax
0x0000000000401164 <+8>: jg 0x40116b <loop+15>
0x0000000000401166 <+10>: add $0x1,%eax
0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
0x000000000040116b <+15>: retq

From Previous Slide:

19
1

GCC Other While Loop Construction

C

while (test) {
body

}

Jump
Body

to test

Test
Jump to body if test passes

Assembly

0x0000000000400570 <+0>: mov $0x0,%eax
0x0000000000400575 <+5>: jmp 0x40057a <loop+10>
0x0000000000400577 <+7>: add $0x1,%eax
0x000000000040057a <+10>: cmp $0x63,%eax
0x000000000040057d <+13>: jle 0x400577 <loop+7>
0x000000000040057f <+15>: repz retq

From Previous Slide:

19
2

Lecture Plan

19
3

• Assembly Execution and %rip

• Control Flow Mechanics
• Condition Codes

• Assembly Instructions

• If statements

• Loops
• While loops

• For loops

• Other Instructions That Depend On Condition Codes

• Live Session Slides

5

27

46

54

67

73

81

Common For Loop Construction

C For loop

for (init; test; update) {
body

}

Assembly pseudocode

Init
Test
Skip loop if test passes
Body
Update
Jump back to test

C Equivalent While Loop

init
while(test) {

body
update

}

For loops and while loops are
treated (essentially) the same
when compiled down to assembly.

19
4

69

Back to Our First Assembly

int sum_array(int arr[], int nelems) {
int sum = 0;
for (int i = 0; i < nelems; i++) {

sum += arr[i];
}
return sum;

}

0000000000401136 <sum_array>:
401136 <+0>: mov
40113b <+5>: mov

$0x0,%eax
$0x0,%edx
%esi,%eax401140 <+10>: cmp

401142 <+12>: jge 0x40114f <sum_array+25>
401144 <+14>: movslq %eax,%rcx

(%rdi,%rcx,4),%edx
$0x1,%eax
0x401140 <sum_array+10>
%edx,%eax

401147 <+17>: add
40114a <+20>: add
40114d <+23>: jmp
40114f <+25>: mov
401151 <+27>: retq

1. Which register is C code’s sum?
2. Which register is C code’s i?
3. Which assembly instruction is C

code’s sum += arr[i]?
4. What are the cmp and jge

instructions doing?
(jge: signed jump greater than/equal)

70

Demo: GDB and Assembly

sum_array.c

71

gdb tips

layout split

info reg Print all registers

p $eax Print register value

p $eflags Print all condition codes currently set

b *0x400546 Set breakpoint at assembly instruction

b *0x400550 if $eax > 98 Set conditional breakpoint

ni Next assembly instruction

si Step into assembly instruction (will step
into function calls)

View C, assembly, and gdb (lab5)
(ctrl-x a: exit,
ctrl-l: resize)

gdb tips

p/x $rdi

p/t $rsi

x $rdi

x/4bx $rdi

x/4wx $rdi

Print register value in hex

Print register value in binary

19
8

Examine the byte stored at this address

Examine 4 bytes starting at this address

Examine 4 ints starting at this address

Lecture Plan

19
9

• Assembly Execution and %rip

• Control Flow Mechanics
• Condition Codes

• Assembly Instructions

• If statements

• Loops
• While loops

• For loops

• Other Instructions That Depend On Condition Codes

• Live Session Slides

5

27

46

54

67

73

81

Condition Code-Dependent Instructions

20
0

There are three common instruction types that use condition codes:

• jmp instructions conditionally jump to a different next instruction

• set instructions conditionally set a byte to 0 or 1

• new versions of mov instructions conditionally move data

set: Read condition codes

set instrucnons condinonally set a byte to 0 or 1.

• Reads current state of flags

• Desnnanon is a single-byte register (e.g., %al) or single-byte memory locanon

• Does not perturb other bytes of register

• Typically followed by movzbl to zero those bytes

int small(int x) {
return x < 16;

}

cmp $0xf,%edi
setle %al

movzbl %al, %eax
retq

20
1

set: Read condition codes

20
2

Instruction Synonym Set Condition (1 if true, 0 if false)

sete D setz Equal / zero

setne D setnz Not equal / not zero

sets D Negative

setns D Nonnegative

setg D setnle Greater (signed >)

setge D setnl Greater or equal (signed >=)

setl D setnge Less (signed <)

setle D setng Less or equal (signed <=)

seta D setnbe Above (unsigned >)

setae D setnb Above or equal (unsigned >=)

setb D setnae Below (unsigned <)

setbe D setna Below or equal (unsigned <=)

cmov: Conditional move

cmovx src,dst conditionally moves data in src to data in dst.

• Mov src to dst if condition x holds; no change otherwise

• src is memory address/register, dst is register

• May be more efficient than branch (i.e., jump)

• Often seen with C ternary operator: result = test ? then: else;

int max(int x, int y) {
return x > y ? x : y;

}

cmp
mov

%edi,%esi
%edi, %eax

cmovge %esi, %eax
retq

20
3

cmov: Conditional move

20
4

Instruction Synonym Move Condition

cmove S,R cmovz Equal / zero (ZF = 1)

cmovne S,R cmovnz Not equal / not zero (ZF = 0)

cmovs S,R Negative (SF = 1)

cmovns S,R NonnegaOve (SF = 0)

cmovg S,R cmovnle Greater (signed >) (SF = 0 and SF = OF)

cmovge S,R cmovnl Greater or equal (signed >=) (SF = OF)

cmovl S,R cmovnge Less (signed <) (SF != OF)

cmovle S,R cmovng Less or equal (signed <=) (ZF = 1 or SF! = OF)

cmova S,R cmovnbe Above (unsigned >) (CF = 0 and ZF = 0)

cmovae S,R cmovnb Above or equal (unsigned >=) (CF = 0)

cmovb S,R cmovnae Below (unsigned <) (CF = 1)

cmovbe S,R cmovna Below or equal (unsigned <=) (CF = 1 or ZF = 1)

Last Lab: Conditional Move

int signed_division(int x) {

return x / 4;

}

signed_division:

leal 3(%rdi), %eax

testl %edi, %edi

cmovns %edi, %eax

sarl $2, %eax

ret

Put x + 3 into %eax

Check the sign of x

If x is positive, put x into %eax

Divide %eax by 4

20
5

Recap

20
6

• Assembly Execution and %rip

• Control Flow Mechanics
• Condition Codes

• Assembly Instructions

• If statements

• Loops
• While loops

• For loops

• Other Instructions That Depend On Condition Codes

Next time: Function calls in assembly

8

How to remember cmp/jmp

• CMP S1, S2 is S2 – S1 (just sets condition codes). But generally:

• Much less important to remember
exact condition codes

• Yes, they fully explain conditional jmp…

• …but more important to know how to
translate assembly back into C

• If you’re interested, B&O p. 206 has details

cmp S1, S2
jg …

S2 S1 >S2 - S1 0>

3

Remember test exists

• TEST S1, S2 is S2 & S1

test %edi, %edi
jns …

%edi & %edi is nonnegative

%edi is nonnegative

20
8

86

Practice: Fill in the blanks

<+0>: mov $0x1,%eax
<+5>: cmp %rsi,%rdi
<+8>: jge 0x1151 <loop+24>
<+10>: lea (%rdi,%rsi,1),%rdx
<+14>: imul %rdx,%rax
<+18>: add $0x1,%rdi
<+22>: jmp 0x113e <loop+5>
<+24>: retq

long loop(long a, long b) {
long result = (1) ;
while ((2)) {

result = (3) ;
a = (4) ;

}
return result;

}

GCC common while loop construction:
Test
Jump past loop if fails
Body
Jump to test

https://godbolt.org/z/zrW6c5MGa

Practice: Fill in the blanks

<+0>: mov $0x1,%eax
<+5>: cmp %rsi,%rdi
<+8>: jge 0x1151 <loop+24>
<+10>: lea (%rdi,%rsi,1),%rdx
<+14>: imul %rdx,%rax
<+18>: add $0x1,%rdi
<+22>: jmp 0x113e <loop+5>
<+24>: retq

long loop(long a, long b) {
long result = (1) ;
while ((2)) {

result = (3) ;
a = (4) ;

}
return result;

}

GCC common while loop construction:
Test
Jump past loop if fails
Body
Jump to test

21
0

Practice: Fill in the blanks

21
1

<+0>: mov $0x1,%eax

<+5>: cmp %rsi,%rdi
<+8>: jge 0x1151 <loop+24>

<+10>: lea (%rdi,%rsi,1),%rdx
<+14>: imul %rdx,%rax
<+18>: add $0x1,%rdi

<+22>: jmp 0x113e <loop+5>

<+24>: retq

long loop(long a, long b) {
long result = ;
while () {

result = ;
a = ;

}
return result;

}

Practice: Fill in the blanks

21
2

long loop(long a, long b) {
long result = 1 ;
while (a < b) {

result = result*(a+b) ;
a = a + 1 ;

}
return result;

}

<+0>: mov $0x1,%eax

<+5>: cmp %rsi,%rdi
<+8>: jge 0x1151 <loop+24>

<+10>: lea (%rdi,%rsi,1),%rdx
<+14>: imul %rdx,%rax
<+18>: add $0x1,%rdi

<+22>: jmp 0x113e <loop+5>

<+24>: retq

test practice: What’s the C code?

0x400546
0x400548

<test_func>
<test_func+2>

test
jns

%edi,%edi
0x400550 <test_func+10>

0x40054a
0x40054f
0x400550
0x400555

<test_func+4>
<test_func+9>
<test_func+10>
<test_func+15>

mov
retq
mov
retq

$0xfeed,%eax

$0xaabbccdd,%eax

91

test practice: What’s the C code?

92

0x400546
0x400548

<test_func>
<test_func+2>

test
jns

%edi,%edi
0x400550 <test_func+10>

0x40054a
0x40054f
0x400550
0x400555

<test_func+4>
<test_func+9>
<test_func+10>
<test_func+15>

mov
retq
mov
retq

$0xfeed,%eax

$0xaabbccdd,%eax

int test_func(int x) {
if (x < 0) {

return 0xfeed;
}
return 0xaabbccdd;

}
(or anything
like this)

Practice: “Escape Room”

returns true (1) and not false (0)? Just figure out the big picture!
93

<escape_room+0> lea (%rdi,%rdi,1),%eax
<escape_room+3> cmp $0x5,%eax
<escape_room+6> jg 0x114c <escape_room+19>
<escape_room+8> cmp $0x1,%edi
<escape_room+11> je 0x1152 <escape_room+25>
<escape_room+13> mov $0x0,%eax
<escape_room+18> retq
<escape_room+19> mov $0x1,%eax
<escape_room+24> retq
<escape_room+25> mov $0x1,%eax
<escape_room+30> retq

What must be passed to the
escapeRoom function such that it

You don’t have to reverse-engineer C
code exactly!

Practice: “Escape Room”

returns true (1) and not false (0)?
94

<escape_room+0> lea (%rdi,%rdi,1),%eax
<escape_room+3> cmp $0x5,%eax
<escape_room+6> jg 0x114c <escape_room+19>
<escape_room+8> cmp $0x1,%edi
<escape_room+11> je 0x1152 <escape_room+25>
<escape_room+13> mov $0x0,%eax
<escape_room+18> retq
<escape_room+19> mov $0x1,%eax
<escape_room+24> retq
<escape_room+25> mov $0x1,%eax
<escape_room+30> retq

First param > 2 or == 1.

What must be passed to the
escapeRoom function such that it

Lecture Plan

• Revisiting %rip

• Calling Functions
• The Stack

• Passing Control

• Passing Data

• Local Storage

• Register Restrictions

• Pulling it all together: recursion example

• Optimizations

• Live session slides

5

19
22

36

44

65

69

78

81

93

cp -r /afs/ir/class/cs107/lecture-code/lect13 .
2
1
7

Lecture Plan

• Revisiting %rip

• Calling Functions
• The Stack

• Passing Control

• Passing Data

• Local Storage

• Register Restrictions

• Pulling it all together: recursion example

• Optimizations

• Live session slides

5

19
22

36

44

65

69

78

81

93

cp -r /afs/ir/class/cs107/lecture-code/lect13 .
2
1
8

%rip

21
9

• %rip is a special register that points to the next instruction to execute.

• Let’s dive deeper into how %rip works, and how jumps modify it.

%rip

void loop() {
int i = 0;
while (i < 100) {

i++;
}

}

0x40113f <+0>: b8 00 00 00 00 mov $0x0,%eax
0x401144 <+5>: 83 f8 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
0x401149 <+10>: 83 c0 01 add $0x1,%eax
0x40114c
0x40114e

<+13>:
<+15>:

eb
c3

f6 jmp
retq

401144 <loop2+5>

22
0

%rip

void loop() {
int i = 0;
while (i < 100) {

i++;
}

}

0x40113f <+0>: b8 00 00 00 00 mov $0x0,%eax
0x401144 <+5>: 83 f8 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
0x401149 <+10>: 83 c0 01 add $0x1,%eax
0x40114c
0x40114e

<+13>:
<+15>:

eb
c3

f6 jmp
retq

401144 <loop2+5>

These are 0-based offsets in bytes
for each instruction relative to the
start of this function.

22
1

%rip

void loop() {
int i = 0;
while (i < 100) {

i++;
}

}

0x40113f <+0>: b8 00 00 00 00 mov $0x0,%eax
0x401144 <+5>: 83 f8 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
0x401149 <+10>: 83 c0 01 add $0x1,%eax
0x40114c
0x40114e

<+13>:
<+15>:

eb
c3

f6 jmp
retq

401144 <loop2+5>

These are bytes for the machine
code instructions. Instructions are
variable length.

22
2

0x40113f <+0>: b8 00 00 00 00 mov $0x0,%eax
0x401144 <+5>: 83 f8 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
0x401149 <+10>: 83 c0 01 add $0x1,%eax
0x40114c
0x40114e

<+13>:
<+15>:

eb
c3

f6 jmp
retq

401144 <loop2+5>

%rip

void loop() {
int i = 0;
while (i < 100) {

i++;
}

}

22
3

0x40113f <+0>: b8 00 00 00 00 mov $0x0,%eax
0x401144 <+5>: 83 f8 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
0x401149 <+10>: 83 c0 01 add $0x1,%eax
0x40114c
0x40114e

<+13>:
<+15>:

eb
c3

f6 jmp
retq

401144 <loop2+5>

%rip

22
4

0x40113f <+0>: b8 00 00 00 00 mov $0x0,%eax
0x401144 <+5>: 83 f8 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
0x401149 <+10>: 83 c0 01 add $0x1,%eax
0x40114c
0x40114e

<+13>:
<+15>:

eb
c3

f6 jmp
retq

401144 <loop2+5>

%rip

0x7f means jg.

22
5

0x40113f <+0>: b8 00 00 00 00 mov $0x0,%eax
0x401144 <+5>: 83 f8 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
0x401149 <+10>: 83 c0 01 add $0x1,%eax
0x40114c
0x40114e

<+13>:
<+15>:

eb
c3

f6 jmp
retq

401144 <loop2+5>

%rip

0x05 is the number of

instruction bytes to

jump relative to %rip.

With no jump, %rip would

advance to the next line.

This jg says to then go 5

bytes further!

22
6

0x40113f <+0>: b8 00 00 00 00 mov $0x0,%eax
0x401144 <+5>: 83 f8 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
0x401149 <+10>: 83 c0 01 add $0x1,%eax
0x40114c
0x40114e

<+13>:
<+15>:

eb
c3

f6 jmp
retq

401144 <loop2+5>

%rip

0x05 is the number of

instruction bytes to

jump relative to %rip.

With no jump, %rip would

advance to the next line.

This jg says to then go 5

bytes further!

22
7

0x40113f <+0>: b8 00 00 00 00 mov $0x0,%eax
0x401144 <+5>: 83 f8 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
0x401149 <+10>: 83 c0 01 add $0x1,%eax
0x40114c
0x40114e

<+13>:
<+15>:

eb
c3

f6 jmp
retq

401144 <loop2+5>

%rip

0xeb means jmp.

22
8

0x40113f <+0>: b8 00 00 00 00 mov $0x0,%eax
0x401144 <+5>: 83 f8 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
0x401149 <+10>: 83 c0 01 add $0x1,%eax
0x40114c
0x40114e

<+13>:
<+15>:

eb
c3

f6 jmp
retq

401144 <loop2+5>

%rip

0xf6 is the number of

instruction bytes to jump

relative to %rip. This is -10

(in two’s complement!).

With no jump, %rip

would advance to the

next line. This jmp says

to then go 10 bytes back!

22
9

0x40113f <+0>: b8 00 00 00 00 mov $0x0,%eax
0x401144 <+5>: 83 f8 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
0x401149 <+10>: 83 c0 01 add $0x1,%eax
0x40114c
0x40114e

<+13>:
<+15>:

eb
c3

f6 jmp
retq

401144 <loop2+5>

%rip

0xf6 is the number of

instruction bytes to jump

relative to %rip. This is -10

(in two’s complement!).

With no jump, %rip

would advance to the

next line. This jmp says

to then go 10 bytes back!

23
0

Summary: Instruction Pointer

23
1

• Machine code instructions live in main memory, just like stack and heap data.

• %rip is a register that stores a number (an address) of the next instruction to
execute. It marks our place in the program’s instructions.

• To advance to the next instruction, special hardware adds the size of the
current instruction in bytes.

• jmp instructions work by adjusting %rip by a specified amount.

Lecture Plan

23
2

• Revisiting %rip

• Calling Functions
• The Stack

• Passing Control

• Passing Data

• Local Storage

• Register Restrictions

• Pulling it all together: recursion example

• Optimizations

• Live session slides

5

19
22

36

44

65

69

78

81

93

cp -r /afs/ir/class/cs107/lecture-code/lect13 .

How do we call functions in
assembly?

23
3

Calling Functions In Assembly

To call a function in assembly, we must do a few things:

• Pass Control – %rip must be adjusted to execute the callee’s instructions, and
then resume the caller’s instructions afterwards.

• Pass Data – we must pass any parameters and receive any return value.

• Manage Memory – we must handle any space needs of the callee on the
stack.

Terminology: caller function calls the callee function.

How does assembly

interact with the stack?

23
4

Lecture Plan

23
5

• Revisiting %rip

• Calling Functions
• The Stack

• Passing Control

• Passing Data

• Local Storage

• Register Restrictions

• Pulling it all together: recursion example

• Optimizations

• Live session slides

5

19
22

36

44

65

69

78

81

93

cp -r /afs/ir/class/cs107/lecture-code/lect13 .

%rsp

• %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

Main Memory

main()

myfunction()

%rsp

Heap

Data

Text (code)

0x0 23
6

%rsp

• %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

Main Memory

main()

myfunction()

%rsp

Heap

Data

Text (code)

0x0 23
7

foo()

%rsp

• %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

Main Memory

main()

myfunction()

%rsp foo()

foo2()

Heap

Data

Text (code)

0x0 23
8

%rsp

• %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

Main Memory

main()

myfunction()

%rsp

Heap

Data

Text (code)

0x0 23
9

foo()

%rsp

main()

Heap

myfunction()

• %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

Main Memory

%rsp

Key idea: %rsp must

point to the same place

before a function is

called and after that

function returns, since

stack frames go away

when a function finishes.Data

Text (code)

0x0 27

push

• The push instruction pushes the data at the specified source onto the top of
the stack, adjusting %rsp accordingly.

Instruction Effect

24
1

pushq S R[%rsp] ⟵ R[%rsp] – 8;
M[R[%rsp]] ⟵ S

push

• The push instruction pushes the data at the specified source onto the top of
the stack, adjusting %rsp accordingly.

Instruction Effect

24
2

pushq S R[%rsp] ⟵ R[%rsp] – 8;
M[R[%rsp]] ⟵ S

push

• The push instruction pushes the data at the specified source onto the top of
the stack, adjusting %rsp accordingly.

Instruction Effect

24
3

pushq S R[%rsp] ⟵ R[%rsp] – 8;
M[R[%rsp]] ⟵ S

push

• This behavior is equivalent to the following, but pushq is a shorter instruction:
subq $8, %rsp
movq S, (%rsp)

• Sometimes, you’ll see instructions just explicitly decrement the stack pointer
to make room for future data.

• The push instruction pushes the data at the specified source onto the top of
the stack, adjusting %rsp accordingly.

Instruction Effect

24
4

pushq S R[%rsp] ⟵ R[%rsp] – 8;
M[R[%rsp]] ⟵ S

pop

• Note: this does not remove/clear out the data! It just increments %rsp to
indicate the next push can overwrite that location.

• The pop instruction pops the topmost data from the stack and stores it in the
specified destination, adjusting %rsp accordingly.

Instruction Effect

24
5

popq D D ⟵ M[R[%rsp]]
R[%rsp] ⟵ R[%rsp] + 8;

pop

• This behavior is equivalent to the following, but popq is a shorter instruction:
movq (%rsp), D
addq $8, %rsp

• Sometimes, you’ll see instructions just explicitly increment the stack pointer to
pop data.

• The pop instruction pops the topmost data from the stack and stores it in the
specified destination, adjusting %rsp accordingly.

Instruction Effect

24
6

popq D D ⟵ M[R[%rsp]]
R[%rsp] ⟵ R[%rsp] + 8;

34

Stack Example

Initially

%rax 0x123

%rdx 0

%rsp 0x108

Stack “bottom”

Stack “top”
0x108

Increasing
addresses

pushq %rax

%rax 0x123

%rdx 0

%rsp 0x100

Stack “bottom”

Stack “top”

Increasing
addresses

popq %rdx

%rax 0x123

%rdx 0x123

%rsp 0x108

Stack “bottom”

Increasing
addresses

0x108

0x100
0x123

Stack “top”

0x108

0x100
0x123

Calling Functions In Assembly

24
8

To call a function in assembly, we must do a few things:

• Pass Control – %rip must be adjusted to execute the callee’s instructions, and
then resume the caller’s instructions afterwards.

• Pass Data – we must pass any parameters and receive any return value.

• Manage Memory – we must handle any space needs of the callee on the
stack.

Terminology: caller function calls the callee function.

Lecture Plan

24
9

• Revisiting %rip

• Calling Functions
• The Stack

• Passing Control

• Passing Data

• Local Storage

• Register Restrictions

• Pulling it all together: recursion example

• Optimizations

• Live session slides

5

19
22

36

44

65

69

78

81

93

cp -r /afs/ir/class/cs107/lecture-code/lect13 .

Remembering Where We Left Off

Problem: %rip points to the
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.

Solution: push the next value of
%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue
executing.

…

…

Stack

0xff20%rsp

main()

0x3021%rip

E.g. main() calls foo():

25
0

Remembering Where We Left Off

Problem: %rip points to the
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.

Solution: push the next value of
%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue
executing.

…

…

0x3026

Stack

main()

0xff18%rsp

0x3021%rip

E.g. main() calls foo():

25
1

Remembering Where We Left Off

Problem: %rip points to the
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.

Solution: push the next value of
%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue
executing.

…

…

0x3026

…

Stack

main()

foo()

0xff08%rsp

0x4058%rip

E.g. main() calls foo():

25
2

Remembering Where We Left Off

Problem: %rip points to the
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.

Solution: push the next value of
%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue
executing.

…

…

0x3026

Stack

0xff18%rsp

0x4058%rip

main()

25
3

E.g. main() calls foo():

Remembering Where We Left Off

Problem: %rip points to the
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.

Solution: push the next value of
%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue
executing.

…

…

Stack

main()

0xff20%rsp

0x3026%rip

E.g. main() calls foo():

25
4

42

Call And Return

The call instruction pushes the address of the instruction immediately following
the call instruction onto the stack and sets %rip to point to the beginning of the
specified function’s instructions.

call Label

call *Operand

The ret instruction pops this instruction address from the stack and stores it in
%rip.

ret

The stored %rip value for a function is called its return address. It is the address
of the instruction at which to resume the function’s execution. (not to be
confused with return value, which is the value returned from a function).

Calling Functions In Assembly

25
6

To call a function in assembly, we must do a few things:

• Pass Control – %rip must be adjusted to execute the function being called and
then resume the caller function afterwards.

• Pass Data – we must pass any parameters and receive any return value.

• Manage Memory – we must handle any space needs of the callee on the
stack.

Terminology: caller function calls the callee function.

Lecture Plan

25
7

• Revisiting %rip

• Calling Functions
• The Stack

• Passing Control

• Passing Data

• Local Storage

• Register Restrictions

• Pulling it all together: recursion example

• Optimizations

• Live session slides

5

19
22

36

44

65

69

78

81

93

cp -r /afs/ir/class/cs107/lecture-code/lect13 .

Parameters and Return

25
8

• There are special registers that store parameters and the return value.

• To call a function, we must put any parameters we are passing into the correct
registers. (%rdi, %rsi, %rdx, %rcx, %r8, %r9, in that order)

• Parameters beyond the first 6 are put on the stack.

• If the caller expects a return value, it looks in %rax after the callee completes.

Parameters and Return

...main()int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;

int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…

}

25
9

47

Parameters and Return

...main()

0xffea08

0x40054f

%rsp

%rip

int main(int
int i1 =

argc, char *argv[]) {
1;

int i2 = 2;
int i3 =
int i4 =

3;
4;

int result = func(&i1, &i2, &i3, &i4,
i1, i2, i3, i4);

…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x40054f <+0>:
0x400553 <+4>:
0x40055b <+12>:
0x400563 <+20>:
0x40056b <+28>:

sub $0x18,%rsp
movl $0x1,0xc(%rsp)
movl $0x2,0x8(%rsp)
movl $0x3,0x4(%rsp)
movl $0x4,(%rsp)

Parameters and Return

...

0xffe9f0

main()

0xffe9f0

0x400553

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&i1, &i2, &i3, &i4,
i1, i2, i3, i4);

…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x40056b <+28>: movl $0x4,(%rsp)

0x40054f
0x400553
0x40055b
0x400563

<+0>:
<+4>:
<+12>:
<+20>:

sub
movl
movl
movl

$0x18,%rsp
$0x1,0xc(%rsp)
$0x2,0x8(%rsp)
$0x3,0x4(%rsp)

26
1

Parameters and Return

...

0xffe9fc 1

0xffe9f0

main()

0xffe9f0

0x40055b

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 =
int i2 =

1;
2;

int i3 =
int i4 =

3;
4;

int result = func(&i1, &i2, &i3, &i4,
i1, i2, i3, i4);

…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x40056b <+28>: movl $0x4,(%rsp)

0x40054f
0x400553
0x40055b
0x400563

<+0>:
<+4>:
<+12>:
<+20>:

sub
movl
movl
movl

$0x18,%rsp
$0x1,0xc(%rsp)
$0x2,0x8(%rsp)
$0x3,0x4(%rsp)

26
2

Parameters and Return

...

0xffe9fc 1

0xffe9f8 2

0xffe9f0

main()

0xffe9f0

0x400563

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 =
int i2 =

1;
2;

int i3 =
int i4 =

3;
4;

int result = func(&i1, &i2, &i3, &i4,
i1, i2, i3, i4);

…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x40056b <+28>: movl $0x4,(%rsp)

0x40054f
0x400553
0x40055b
0x400563

<+0>:
<+4>:
<+12>:
<+20>:

sub
movl
movl
movl

$0x18,%rsp
$0x1,0xc(%rsp)
$0x2,0x8(%rsp)
$0x3,0x4(%rsp)

26
3

Parameters and Return

...

0xffe9fc 1

0xffe9f8 2

0xffe9f4 3

0xffe9f0

main()

0xffe9f0

0x40056b

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&i1, &i2, &i3, &i4,
i1, i2, i3, i4);

…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x400553 <+4>:
0x40055b <+12>:
0x400563 <+20>:

movl
movl
movl

$0x1,0xc(%rsp)
$0x2,0x8(%rsp)
$0x3,0x4(%rsp)

0x400572 <+35>: pushq $0x4
0x40056b <+28>: movl $0x4,(%rsp)

26
4

Parameters and Return

...

0xffe9fc 1

0xffe9f8 2

0xffe9f4 3

0xffe9f0 4

main()

0xffe9f0

0x400572

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&i1, &i2, &i3, &i4,
i1, i2, i3, i4);

…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x40055b <+12>:
0x400563 <+20>:
0x40056b <+28>:

movl
movl
movl

$0x2,0x8(%rsp)
$0x3,0x4(%rsp)
$0x4,(%rsp)

0x400574 <+37>: pushq $0x3
0x400572 <+35>: pushq $0x4

52

Parameters and Return

...

0xffe9fc 1

0xffe9f8 2

0xffe9f4 3

0xffe9f0 4

0xffe9e8
4

main()

0xffe9e8

0x400574

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&i1, &i2, &i3, &i4,
i1, i2, i3, i4);

…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x400563 <+20>:
0x40056b <+28>:

movl
movl

$0x3,0x4(%rsp)
$0x4,(%rsp)

0x400576 <+39>: mov $0x2,%r9d

0x400572 <+35>:
0x400574 <+37>:

pushq
pushq

$0x4
$0x3

53

Parameters and Return

...

0xffe9fc 1

0xffe9f8 2

0xffe9f4 3

0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x400576

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&i1, &i2, &i3, &i4,
i1, i2, i3, i4);

…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x40056b <+28>: movl $0x4,(%rsp)
0x400572 <+35>: pushq $0x4

0x40057c <+45>: mov $0x1,%r8d

0x400574 <+37>:
0x400576 <+39>:

pushq
mov

$0x3
$0x2,%r9d

54

Parameters and Return

...

0xffe9fc 1

0xffe9f8 2

0xffe9f4 3

0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x40057c

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&i1, &i2, &i3, &i4,
i1, i2, i3, i4);

…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x400572 <+35>: pushq $0x4
0x400574 <+37>: pushq $0x3

0x400582 <+51>: lea 0x10(%rsp),%rcx

0x400576 <+39>:
0x40057c <+45>:

mov
mov

$0x2,%r9d
$0x1,%r8d

55

Parameters and Return

...

0xffe9fc 1

0xffe9f8 2

0xffe9f4 3

0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&i1, &i2, &i3, &i4,
i1, i2, i3, i4);

…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x400572 <+35>:
0x400574 <+37>:

pushq $0x4
pushq $0x3

0x400582 <+51>: lea 0x10(%rsp),%rcx

0x400576 <+39>:
0x40057c <+45>:

mov
mov

$0x2,%r9d
$0x1,%r8d

0x40057c

56

Parameters and Return

...

0xffe9fc 1

0xffe9f8 2

0xffe9f4 3

0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x40057c

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&i1, &i2, &i3, &i4,
i1, i2, i3, i4);

…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x400572 <+35>:
0x400574 <+37>:

pushq
pushq

$0x4
$0x3

0x400576 <+39>: mov $0x2,%r9d
0x40057c <+45>: mov $0x1,%r8d
0x400582 <+51>: lea 0x10(%rsp),%rcx

2

%r9d

27
0

Parameters and Return

...

0xffe9fc 1

0xffe9f8 2

0xffe9f4 3

0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x400582

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&i1, &i2, &i3, &i4,
i1, i2, i3, i4);

…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x400574 <+37>:
0x400576 <+39>:

pushq
mov

$0x3
$0x2,%r9d

0x40057c <+45>: mov $0x1,%r8d
0x400582 <+51>: lea 0x10(%rsp),%rcx
0x400587 <+56>: lea 0x14(%rsp),%rdx

2

%r9d

1

%r8d

27
1

Parameters and Return

...

0xffe9fc 1

0xffe9f8 2

0xffe9f4 3

0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x400587

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;

int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…

}

0x400576 <+39>: mov
0x40057c <+45>: mov
0x400582 <+51>: lea

$0x2,%r9d
$0x1,%r8d
0x10(%rsp),%rcx

2

%r9d

1

%r8d

0xffe9f0

%rcx

0x40058c <+61>: lea 0x18(%rsp),%rsi
0x400587 <+56>: lea 0x14(%rsp),%rdx

59

Parameters and Return

...

0xffe9fc 1

0xffe9f8 2

0xffe9f4 3

0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x40058c

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;

int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…

}

0x40057c <+45>: mov
0x400582 <+51>: lea
0x400587 <+56>: lea

$0x1,%r8d
0x10(%rsp),%rcx
0x14(%rsp),%rdx

2

%r9d

1

%r8d

0xffe9f0

%rcx

0xffe9f4

%rdx

0x400591 <+66>: lea 0x1c(%rsp),%rdi
0x40058c <+61>: lea 0x18(%rsp),%rsi

60

Parameters and Return

...

0xffe9fc 1

0xffe9f8 2

0xffe9f4 3

0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x400591

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;

int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…

}

0x400582 <+51>: lea
0x400587 <+56>: lea
0x40058c <+61>: lea

0x10(%rsp),%rcx
0x14(%rsp),%rdx
0x18(%rsp),%rsi

2

%r9d

1

%r8d

0xffe9f0

%rcx

0xffe9f4

%rdx

0xffe9f8

%rsi

0x400596 <+71>: callq 0x400546 <func>
0x400591 <+66>: lea 0x1c(%rsp),%rdi

61

Parameters and Return

...

0xffe9fc 1

0xffe9f8 2

0xffe9f4 3

0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x400596

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;

int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…

}

0x400587 <+56>: lea
0x40058c <+61>: lea
0x400591 <+66>: lea

0x14(%rsp),%rdx
0x18(%rsp),%rsi
0x1c(%rsp),%rdi

2

%r9d

1

%r8d

0xffe9f0

%rcx

0xffe9f4

%rdx

0xffe9fc

%rdi

0xffe9f8

%rsi

0x40059b <+76>: add $0x10,%rsp
0x400596 <+71>: callq 0x400546 <func>

62

Parameters and Return

...

0xffe9fc 1

0xffe9f8 2

0xffe9f4 3

0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x400596

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;

int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…

}

0x40058c <+61>:
0x400591 <+66>:
0x400596 <+71>:

0x40059b <+76>:
…

add $0x10,%rsp
27
6

lea 0x18(%rsp),%rsi
lea 0x1c(%rsp),%rdi
callq 0x400546 <func>

2

%r9d

1

%r8d

0xffe9f0

%rcx

0xffe9f4

%rdx

0xffe9fc

%rdi

0xffe9f8

%rsi

Parameters and Return
...

1

2

3

4

4

3

0x40059b

0xffe9fc

0xffe9f8

0xffe9f4

0xffe9f0

0xffe9e8

0xffe9e0

main()

0xffe9d8

0x400596

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;

int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x40058c <+61>:
0x400591 <+66>:
0x400596 <+71>:

lea 0x18(%rsp),%rsi
lea 0x1c(%rsp),%rdi
callq 0x400546 <func>

2

%r9d

1

%r8d

0xffe9f0

%rcx

0xffe9f4

%rdx

0xffe9fc

%rdi

0xffe9f8
0x40059b <+76>:
…

add $0x10,%rsp
27
7

%rsi

Lecture Plan

27
8

• Revisiting %rip

• Calling Functions
• The Stack

• Passing Control

• Passing Data

• Local Storage

• Register Restrictions

• Pulling it all together: recursion example

• Optimizations

• Live session slides

5

19
22

36

44

65

69

78

81

93

cp -r /afs/ir/class/cs107/lecture-code/lect13 .

Calling Functions In Assembly

27
9

To call a function in assembly, we must do a few things:

• Pass Control – %rip must be adjusted to execute the function being called and
then resume the caller function afterwards.

• Pass Data – we must pass any parameters and receive any return value.

• Manage Memory – we must handle any space needs of the callee on the
stack.

Terminology: caller function calls the callee function.

Local Storage

28
0

• So far, we’ve often seen local variables stored directly in registers, rather than
on the stack as we’d expect. This is for optimization reasons.

• There are three common reasons that local data must be in memory:
• We’ve run out of registers

• The ‘&’ operator is used on it, so we must generate an address for it

• They are arrays or structs (need to use address arithmetic)

Local Storage

28
1

long caller() {
long arg1 = 534;
long arg2 = 1057;
long sum = swap_add(&arg1, &arg2);
...

}

caller:
sub $0x10, %rsp // 16 bytes for stack frame
movq $0x216, 0x8(%rsp) // store 534 in arg1
movq
mov

$0x421, (%rsp)
%rsp, %rsi

//
//

store 1057 in
compute &arg2

arg2
as second arg

lea
callq

0x8(%rsp),
swap_add

%rdi //
//

compute &arg1 as first arg
call swap_add(&arg1, &arg2)

Lecture Plan

28
2

• Revisiting %rip

• Calling Functions
• The Stack

• Passing Control

• Passing Data

• Local Storage

• Register Restrictions

• Pulling it all together: recursion example

• Optimizations

5

19
22

36

44

65

69

78

81

cp -r /afs/ir/class/cs107/lecture-code/lect13 .

Register Restrictions

28
3

There is only one copy of registers for all programs and functions.

• Problem: what if funcA is building up a value in register %r10, and calls funcB
in the middle, which also has instructions that modify %r10? funcA’s value will
be overwritten!

• Solution: make some “rules of the road” that callers and callees must follow
when using registers so they do not interfere with one another.

• These rules define two types of registers: caller-owned and callee-owned

Caller/Callee

main

function1

function2

Caller/callee is

terminology that

refers to a pair of

functions. A single

function may be

both a caller and

callee

simultaneously (e.g.

function1 at right).

calls

calls

main is the caller,

and function1 is

the callee.

function1 is

the caller, and

function2 is

the callee.
28
4

Register Restrictions

28
5

Caller-Owned

• Callee must save the existing value
and restore it when done.

• Caller can store values and assume
they will be preserved across
function calls.

Callee-Owned

• Callee does not need to save the
existing value.

• Caller’s values could be overwritten
by a callee! The caller may consider
saving values elsewhere before
calling functions.

Caller-Owned Registers

main

function1

calls

main can use caller-owned

registers and know that

function1 will not permanently

modify their values.

If function1 wants to use any

caller-owned registers, it must

save the existing values and

restore them before returning.

28
6

Caller-Owned Registers

function1:
push %rbp
push %rbx
...
pop %rbx
pop %rbp
retq

main

function1

calls

28
7

Callee-Owned Registers

main can use callee-owned

registers but calling function1
may permanently modify their

values.

If function1 wants to use any

callee-owned registers, it can do

so without saving the existing

values.

main

function1

calls

28
8

Callee-Owned Registers

main

function1

calls

28
9

main:
...
push %r10
push %r11
callq function1
pop %r11
pop %r10
...

A Day In the Life of function1

main

function1

function2

calls

29
0

calls

Caller-owned registers:
• function1 must save/restore existing values

of any it wants to use.
• function1 can assume that calling

function2 will not permanently change their

values.

Callee-owned registers:
• function1 does not need to save/restore

existing values of any it wants to use.

• calling function2 may permanently change

their values.

Lecture Plan

29
1

• Revisiting %rip

• Calling Functions
• The Stack

• Passing Control

• Passing Data

• Local Storage

• Register Restrictions

• Pulling it all together: recursion example

• Optimizations

• Live session slides

5

19
22

36

44

65

69

78

81

93

cp -r /afs/ir/class/cs107/lecture-code/lect13 .

79

Example: Recursion

• Let’s look at an example of recursion at the assembly level.

• We’ll use everything we’ve learned about registers, the stack, function calls,
parameters, and assembly instructions!

• We’ll also see how helpful GDB can be when tracing through assembly.

factorial.c and factorial

80

Our First Assembly

int sum_array(int arr[], int nelems) {
int sum = 0;
for (int i = 0; i < nelems; i++) {

sum += arr[i];
}
return sum;

}

0000000000401136 <sum_array>:
401136 <+0>: mov $0x0,%eax
40113b <+5>: mov $0x0,%edx
401140 <+10>: cmp %esi,%eax
401142 <+12>: jge 0x40114f <sum_array+25>
401144 <+14>: movslq %eax,%rcx
401147 <+17>: add (%rdi,%rcx,4),%edx
40114a <+20>: add $0x1,%eax
40114d <+23>: jmp 0x401140 <sum_array+10>
40114f <+25>: mov %edx,%eax
401151 <+27>: retq

We’re done with all our assembly lectures! Now we
can fully understand what’s going on in the
assembly below, including how someone would call
sum_array in assembly and what the ret instruction
does.

81

Lecture Plan

• Revisiting %rip

• Calling Functions
• The Stack

• Passing Control

• Passing Data

• Local Storage

• Register Restrictions

• Pulling it all together: recursion example

• Optimizations

• Live session slides

5

19
22

36

44

65

69

78

81

93

cp -r /afs/ir/class/cs107/lecture-code/lect13 .

82

Optimizations you’ll see

nop

• nop/nopl are “no-op” instructions – they do nothing!

• Intent: Make functions align on address boundaries that are nice multiples of 8.

• “Sometimes, doing nothing is how to be most productive” – Philosopher Nick

mov %ebx,%ebx

• Zeros out the top 32 register bits (because a mov on an e-register zeros out rest
of 64 bits).

xor %ebx,%ebx

• Optimizes for performance as well as code size (read more here):
b8 00 00 00 00 mov $0x0,%eax
31 c0 xor %eax,%eax

GCC For Loop Output

29
6

Possible Alternative

Initialization
Jump to test
Body
Update
Test
Jump to body if success

GCC Common For Loop Output

Initialization
Test
Jump past loop if success
Body
Update
Jump to test

GCC For Loop Output

GCC Common For Loop Output

Initialization
Test
Jump past loop if success
Body
Update
Jump to test

Possible Alternative

Initialization
Jump to test
Body
Update
Test
Jump to body if success

for (int i = 0; i < n; i++) // n = 100

29
7

GCC For Loop Output

GCC Common For Loop Output

Initialization
Test
Jump past loop if success
Body
Update
Jump to test

Possible Alternative

Initialization
Jump to test
Body
Update
Test
Jump to body if success

for (int i = 0; i < n; i++)

Body
Update
Jump
...

to test

29
8

// n = 100

Initialization
Test

No jump
Body
Update
Jump to test
Test
No jump

GCC For Loop Output

GCC Common For Loop Output

Initialization
Test
Jump past loop if success
Body
Update
Jump to test

Possible Alternative

Initialization
Jump to test
Body
Update
Test
Jump to body if success

for (int i = 0; i < n; i++)

Body
Update
Jump
...

to test

29
9

// n = 100

Initialization
Test
No jump
Body
Update
Jump to test
Test
No jump

87

GCC For Loop Output

GCC Common For Loop Output

Initialization
Test
Jump past loop if passes
Body
Update
Jump to test

Possible Alternative

Initialization
Jump to test
Body
Update
Test
Jump to body if success

for (int i = 0; i < n; i++) // n = 100

Initialization
Jump to test
Test
Jump to body
Body
Update
Test

Jump to body
Body
Update
Test
Jump to body
...

88

GCC For Loop Output

GCC Common For Loop Output

Initialization
Test
Jump past loop if passes
Body
Update
Jump to test

Possible Alternative

Initialization
Jump to test
Body
Update
Test
Jump to body if success

for (int i = 0; i < n; i++) // n = 100

Initialization
Jump to test
Test
Jump to body
Body
Update
Test
Jump to body
Body
Update
Test
Jump to body
...

GCC For Loop Output

GCC Common For Loop Output

Initialization
Test
Jump past loop if passes
Body
Update
Jump to test

Possible Alternative

Initialization
Jump to test
Body
Update
Test
Jump to body if success

Which instructions are better when n = 0? n = 1000?

for (int i = 0; i < n; i++)
30
2

Optimizing Instruction Counts

30
3

• Both versions have the same static instruction count (# of written instructions).

• But they have different dynamic instruction counts (# of executed instructions
when program is run).

• If n = 0, left (GCC common output) is best b/c fewer instructions

• If n is large, right (alternative) is best b/c fewer instructions

• The compiler may emit a static instruction count that is several times longer
than an alternative, but it may be more efficient if loop executes many times.

• Does the compiler know that a loop will execute many times? (in general, no)

• So what if our code had loops that always execute a small number of times?
How do we know when gcc makes a bad decision?

• (take EE108, EE180, CS316 for more!)

Optimizations

30
4

• Conditional Moves can sometimes eliminate “branches” (jumps), which are
particularly inefficient on modern computer hardware.

• Processors try to predict the future execution of instructions for maximum
performance. This is difficult to do with jumps.

Recap

30
5

• Revisiting %rip

• Calling Functions
• The Stack

• Passing Control

• Passing Data

• Local Storage

• Register Restrictions

• Pulling it all together: recursion example

• Optimizations

That’s it for assembly! Next time: managing the heap

Key GDB Tips For Assembly

30
6

• Examine 4 giant words (8 bytes) on the stack:
(gdb) x/4g $rsp
0x7fffffffe870: 0x0000000000000005 0x0000000000400559

0x7fffffffe880: 0x0000000000000000 0x0000000000400575

• display/undisplay (prints out things every time you step/next)
(gdb) display/4w $rsp

1: x/4xw $rsp

0x7fffffffe8a8:
0xf7a2d830 0x00007fff 0x00000000 0x00000000

Key GDB Tips For Assembly

30
7

• stepi/finish: step into current function call/return to caller:
(gdb) finish

• Set register values during the run
(gdb) p $rdi = $rdi + 1

(Might be useful to write down the original value of $rdi somewhere)

• Tui things
• refresh
• focus cmd – use up/down arrows on gdb command line (vs focus asm, focus
regs)

• layout regs, layout asm

99

Extra Practice – Escape
Room 2

escape_room

https://godbolt.org/z/8e31fG4r5

Escape room assembly code

100

000000000000115b <escape_room>:
115b: 48 83 ec 08 sub $0x8,%rsp
115f: ba 0a 00 00 00 mov $0xa,%edx
1164: be 00 00 00 00 mov $0x0,%esi
1169:
116e:
1171:

e8 d2 fe ff ff
48 89 c7
e8 d3 ff ff ff

callq
mov
callq

1040 <strtol@plt>
%rax,%rdi
1149 <transform>

1176: a8 01 test $0x1,%al
1178: 74 0a je 1184 <escape_room+0x29>
117a: b8 00 00 00 00 mov $0x0,%eax
117f: 48 83 c4 08 add $0x8,%rsp
1183: c3 retq
1184: b8 01 00 00 00 mov $0x1,%eax
1189: eb f4 jmp 117f <escape_room+0x24>

Escape room assembly code

101

0000000000001149 <transform>:
1149: 8d 04 bd 00 00 00 00 lea 0x0(,%rdi,4),%eax
1150: 8d 50 01 lea 0x1(%rax),%edx
1153:
1156:

83
7f

fa
02

32 cmp
jg

$0x32,%edx
115a <transform+0x11>

1158: 89 d0 mov %edx,%eax
115a: c3 retq

Array Allocation and Access

• Arrays in C map in a fairly straightforward way to X86 assembly code, thanks to

the addressing modes available in instructions.

When we perform pointer arithmetic, the assembly code that is produced will have

address computations built into them.

Optimizing compilers are very good at simplifying the address computations (in lab

you will see another optimizing compiler benefit in the form of division — if the

compiler can avoid dividing, it will!). Because of the transformations, compiler-

generated assembly for arrays often doesn't look like what you are expecting.

Consider the following form of a data type T and integer constant N:

T A[N]

The starting location is designated as xA

The declaration allocates N * sizeof(T) bytes, and gives us an identifier that

we can use as a pointer (but it isn't a pointer!), with a value of xA.

•

•

•

•

•

Array Allocation and Access

• Example:

char

char

int

double

A[12];

*B[8];

C[6];

*D[5]

Array Element Size Total Size Start address Element i

A

B

C

D

1

8

4

8

12

64

24

40

xA

xB

xC

xD

xA + i

xB + 8i

xC + 4i

xD + 8i

• The memory referencing operations in x86-64 are designed to simplify array

access. Suppose we wanted to access C[3] above. If the address of C is in

register %rdx, and 3 is in register %rcx

The following copies C[3] into %eax,•

movl (%rdx,%rcx,4), %eax

Pointer

Arithmetic• C allows arithmetic on pointers, where the computed value is calculated according

to the size of the data type referenced by the pointer.
The array reference A[i] is identical to *(A+i)

Example: if the address of array E is in %rdx, and the integer index, i, is in %rcx,

the following are some expressions involving E:

•

•

Expression Type Value A

s

s

e

m

b

l

y

Code

E int * xE movq %rdx, %rax

E[0]

E[i]

&E[2]

int

int

int *

M[xE]

M[xE+4i]

xE+8

movl

movl

leaq

(%rdx), %eax

(%rdx,%rcx,4)

8(%rdx), %rax

%eax

E+i-1 int * xE+4i-4 leaq -4(%rdx,%rcx,4), %rax

*(E+i-3) int M[xE+4i-

12]

movl -12(%rdx,%rcx,4) %eax

&E[i]-E long i movq %rcx,%rax

Pointer

Arithmetic• Practice: xS is the address of a short integer array, S, stored in %rdx, and a long

integer index, i, is stored in register %rcx.

For each of the following expressions, give its type, a formula for its value, and an

assembly-code implementation. The result should be stored in %rax if it is a

pointer, and the result should be in register %ax if it has a data type short.

•

Expression Type Value Assembly Code

S+1

S[3]

&S[i]

S[4*i+1]

S+i-5

Pointer

Arithmetic• Practice: xS is the address of a short integer array, S, stored in %rdx, and a long

integer index, i, is stored in register %rcx.

For each of the following expressions, give its type, a formula for its value, and an

assembly-code implementation. The result should be stored in %rax if it is a

pointer, and the result should be in register %ax if it has a data type short.

•

Expression Type Value Assembly

Code

S+1 short * xS + 2 leaq 2(%rdx),%rax

S[3] short movw 6(%rdx),%ax

&S[i] short * leaq (%rdx,%rcx,2),%rax

S[4*i+1] short + 2] movw

M[xS + 6]

xS + 2i

M[xS + 8i

xS + 2i - 10

2(%rdx,%rcx,8),%ax

S+i-5 short * leaq -10(%rdx,%rcx,2),%rax

Structur

es• The C struct declaration is used to group objects of different types into a single

unit.

Each "field" is referenced by a name, and can be accessed using dot (.) or (if

there is a pointer to the struct) arrow (->) notation.

Structures are kept in contiguous memory

A pointer to a struct is to its first byte, and the compiler maintains the byte offset

information for each field.

In assembly, the references to the fields are via the byte offsets.

•

•

•

•

Structur

es• Example:

struct rec {

int i;

int j;

int a[2];

int *p;

};

• This structure has four fields: two 4-byte values of type int, a

two-element array of type int, and an 8-byte int pointer, for a

total of 24 bytes:

Offset

Contents

0 4 8 16 24

i j a[0] a[1] p

• The numbers along the top of the diagram are the byte offsets of the fields from

the beginning of the structure.

Note that the array is embedded in the structure.

To access the fields, the compiler generates code that adds the field offset to the

address of the structure.

•

•

Structur

es• Example:

struct rec {

int i;

int j;

int a[2];

int *p;

};

• This structure has four fields: two 4-byte values of type int, a

two-element array of type int, and an 8-byte int pointer, for a

total of 24 bytes:

Offset

Contents

0 4 8 16 24

i j a[0] a[1] p

• Example: Variable r of type struct rec * is in register %rdi. The following copies

element r->i to element r->j:

movl (%rdi), %eax

movl %eax, 4(%rdi)

// get r->i

// store in r->j

• The offset of i is 0, so i's field is %rdi. The offset of j is 4, so the offset of 4 is

added to the address of %rdi to store into j.

Structur

es• Example:

struct rec {

int i;

int j;

int a[2];

int *p;

};

• This structure has four fields: two 4-byte values of type int, a

two-element array of type int, and an 8-byte int pointer, for a

total of 24 bytes:

Offset

Contents

0 4 8 16 24

i j a[0] a[1] p

• We can generate a pointer to a field by adding the field's offset to the struct

address. To generate &(r->a[1]) we add offset 8 + 4 = 12. For a pointer r

in register %rdi and long int variable i in %rsi, we can generate the pointer

value &(r->a[i]) with one instruction:

leaq 8(%rdi,%rsi,4), %rax // set %rax to &r->a[i]

Structur

es• Example:

struct rec {

int i;

int j;

int a[2];

int *p;

};

• This structure has four fields: two 4-byte values of type int, a

two-element array of type int, and an 8-byte int pointer, for a

total of 24 bytes:

Offset

Contents

0 4 8 16 24

i j a[0] a[1] p

• The following code implements r->p = &r->a[r->i + r->j];

// r in %rdi

movl 4(%rdi),%eax // get r->j

addl (%rdi),%eax // add r->i

cltq // extend %eax to 8 bytes, %ra

x

leaq 8(%rdi,%rax,4), %rax // compute &r->a[r->i + r->j]

movq %rax, 16(%rdi) // store in r->p

Structur

es• Example:

struct rec {

int i;

int j;

int a[2];

int *p;

};

• This structure has four fields: two 4-byte values of type int, a

two-element array of type int, and an 8-byte int pointer, for a

total of 24 bytes:

Offset

Contents

0 4 8 16 24

i j a[0] a[1] p

• Notice that all struct manipulation is handled at compile time, and the machine

code doesn't contain any information about the field declarations or the names of

the fields.

The compiler does all the work, keeping track as it produces the assembly code.

BTW, if you're curious about how the compiler actually does the transformation

from C to assembly, take a compilers class, e.g., CS143.

•

•

Data Alignment

• Computer systems often put restrictions on the allowable addresses for primitive

data types, requiring that the address for some objects must be a multiple of

some value K (normally 2, 4, or 8).

These alignment restrictions simplify the design of the hardware.

For example, suppose that a processor always fetches 8 bytes from the memory

system, and an address must be a multiple of 8. If we can guarantee that any
double will be aligned to have its address as a multiple of 8, then we can read or

write the values with a single memory access.

For x86-64, Intel recommends the following alignments for best performance:

•

•

•

K Type

s

1 char

2 shor

t

4 int,float

8 long double char *

Data Alignment

• The compiler enforces alignment by making sure that every data type is organized

in such a way that every field within the struct satisfies the alignment restrictions.

For example, let's look at the following struct:
struct S1 {

int i;

char c;

int j;

•

};

If the compiler used a minimal allocation:•

• This would make it impossible to align fields i (offset 0) and j (offset 5). Instead,

the compiler inserts a 3-byte gap between fields c and j:

0 4 5 9Offset

Contents i c j

i c j

Offset

Contents

0 4 5 8 12

• So, don't be surprised if your structs have a sizeof() that is larger than you expect!

Function Pointers

in Assembly• Let's look at the following code:

void *gfind_max(void *arr, int n, size_t elemsz,

int (*compar)(const void *, const void *))

{

void *pmax = arr;

for (int i = 1; i < n; i++) {

void *ith = (char *)arr + i*elemsz;

if (compar(ith, pmax) > 0)

pmax = ith;

}

return pmax;

}

int cmp_alpha(const void *p, const void *q)

{

const char *first = *(const char **)p;

const char *second = *(const char **)q;

return strcmp(first, second);

}

int main(int argc, char *argv[])

{

sizeof(argv[0]), cmp_alpha);char **pmax = gfind_max(argv+1, argc-1,

printf("max = %s\n", *pmax);

return 0;

}

Function Pointers

in Assembly• Let's look at the following code:

void *gfind_max(void *arr, int n, size_t elemsz,

int (*compar)(const void *, const void *))

{

void *pmax = arr;

for (int i = 1; i < n; i++) {

void *ith = (char *)arr + i*elemsz;

if (compar(ith, pmax) > 0)

pmax = ith;

}

return pmax;

}

int cmp_alpha(const void *p, const void *q)

{

const char *first = *(const char **)p;

const char *second = *(const char **)q;

return strcmp(first, second);

}

int main(int argc, char *argv[])

{

sizeof(argv[0]), cmp_alpha);char **pmax = gfind_max(argv+1, argc-1,

printf("max = %s\n", *pmax);

return 0;

}

•

• Because compar is a function

pointer, the compiler calls the

function via the address that is

in the compar variable.

Let's take a look at this in gdb.

References and

Advanced Reading• References:

•

•

•

•

• Stanford guide to x86-64: https://web.stanford.edu/class/cs107/guide/

x86-64.html

CS107 one-page of x86-64: https://web.stanford.edu/class/cs107/resources/

onepage_x86-64.pdf

gdbtui: https://beej.us/guide/bggdb/

More gdbtui: https://sourceware.org/gdb/onlinedocs/gdb/TUI.html

Compiler explorer: https://gcc.godbolt.org
• Advanced Reading:

•

•

•

• Stack frame layout on x86-64: https://eli.thegreenplace.net/2011/09/06/stack-

frame-layout-on-x86-64

x86-64 Intel Software Developer manual: https://software.intel.com/sites/

default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf

history of x86 instructions: https://en.wikipedia.org/wiki/X86_instruction_listings

x86-64 Wikipedia: https://en.wikipedia.org/wiki/X86-64

	Slide 1: CS107, Lecture 10 Introduction to Assembly
	Slide 2: What is Assembly Code?
	Slide 3: What is Assembly Code?
	Slide 4: x86 Assembly
	Slide 5: Machine-Level Code
	Slide 6: Machine-Level Code
	Slide 7: Machine-Level Code
	Slide 8: Learning Goals
	Slide 9: Lecture Plan
	Slide 10: Lecture Plan
	Slide 11: Bits all the way down
	Slide 12: GCC
	Slide 13: Lecture Plan
	Slide 14: Demo: Looking at an Executable (objdump -d)
	Slide 15: Our First Assembly
	Slide 16: Our First Assembly
	Slide 17: Our First Assembly
	Slide 18: Our First Assembly
	Slide 19: Our First Assembly
	Slide 20: Our First Assembly
	Slide 21: Our First Assembly
	Slide 22: Our First Assembly
	Slide 23: Our First Assembly
	Slide 24: Our First Assembly
	Slide 25: Our First Assembly
	Slide 26: Our First Assembly
	Slide 27: Lecture Plan
	Slide 28: Assembly Abstraction
	Slide 29: Registers
	Slide 30: Registers
	Slide 31: What is a register?
	Slide 32: Registers
	Slide 33: Machine-Level Code
	Slide 34: Computer architecture
	Slide 35: GCC And Assembly
	Slide 36: Assembly
	Slide 37: Instruction set architecture (ISA)
	Slide 38: Lecture Plan
	Slide 39: mov
	Slide 40: Operand Forms: Immediate
	Slide 41: Operand Forms: Registers
	Slide 42: Operand Forms: Absolute Addresses
	Slide 43: Practice #1: Operand Forms
	Slide 44: Operand Forms: Indirect
	Slide 45: Operand Forms: Base + Displacement
	Slide 46: Operand Forms: Indexed
	Slide 47: Operand Forms: Indexed
	Slide 48: Practice #2: Operand Forms
	Slide 49: Operand Forms: Scaled Indexed
	Slide 50: Operand Forms: Scaled Indexed
	Slide 51: Operand Forms: Scaled Indexed
	Slide 52: Operand Forms: Scaled Indexed
	Slide 53: Most General Operand Form
	Slide 54: Most General Operand Form
	Slide 55: Operand Forms
	Slide 56: Practice #3: Operand Forms
	Slide 57: Why are there so many forms of indirect addressing?
	Slide 58: Our First Assembly
	Slide 59: Central Processing Units (CPUs)
	Slide 60: Assembly code in movies
	Slide 61: Keep a resource guide handy
	Slide 62: Why are we reading assembly?
	Slide 63: Extended warmup: Information Synthesis
	Slide 64: Extended warmup: Information Synthesis
	Slide 65: 1. Extra Practice
	Slide 66: 1. Extra Practice
	Slide 67: 2. Extra Practice
	Slide 68: 2. Extra Practice
	Slide 69: 3. Extra Practice
	Slide 70: 3. Extra Practice
	Slide 71: Coming Up Soon To A Slide Near You
	Slide 72: Coming Up Soon To A Slide Near You
	Slide 73: Lecture Plan
	Slide 74: Helpful Assembly Resources
	Slide 75: References and Advanced Reading
	Slide 76: Lecture Plan
	Slide 77: mov
	Slide 78: Memory Location Syntax
	Slide 79: Operand Forms
	Slide 80: Lecture Plan
	Slide 81: Data Sizes
	Slide 82: Register Sizes
	Slide 83: Register Sizes
	Slide 84: Register Sizes
	Slide 85: Register Responsibilities
	Slide 86: mov Variants
	Slide 87: Practice: mov And Data Sizes
	Slide 88: Practice: mov And Data Sizes
	Slide 89: mov
	Slide 90: movz and movs
	Slide 91: movz and movs
	Slide 92: movz and movs
	Slide 93: Lecture Plan
	Slide 94: lea
	Slide 95: lea vs. mov
	Slide 96: lea vs. mov
	Slide 97: lea vs. mov
	Slide 98: lea vs. mov
	Slide 99: Lecture Plan
	Slide 100: Unary Instructions
	Slide 101: Binary Instructions
	Slide 102: Large Multiplication
	Slide 103: Division and Remainder
	Slide 104: Division and Remainder
	Slide 105: Shift Instructions
	Slide 106: Shift Amount
	Slide 107: Lecture Plan
	Slide 108: Assembly Exploration
	Slide 109: Code Reference: add_to_first
	Slide 110: Code Reference: full_divide
	Slide 111: Assembly Exercise 1
	Slide 112: Assembly Exercise 2
	Slide 113: Assembly Exercise 3
	Slide 114: Our First Assembly
	Slide 115: A Note About Operand Forms
	Slide 116: Shift Amount
	Slide 117: Division and Remainder
	Slide 118: Extra Practice
	Slide 119: Reverse Engineering 1
	Slide 120: Reverse Engineering 1
	Slide 121: Reverse Engineering 1
	Slide 122: Reverse Engineering 2
	Slide 123: Reverse Engineering 2
	Slide 124: Reverse Engineering 2
	Slide 125: Reverse Engineering 3
	Slide 126: Reverse Engineering 3
	Slide 127: Reverse Engineering 3
	Slide 128: Side Note: Old GCC Output
	Slide 129: Learning Goals
	Slide 130: Lecture Plan
	Slide 131: Lecture Plan
	Slide 132: Executing Instructions
	Slide 133: Executing Instructions
	Slide 134: Register Responsibilities
	Slide 135: Instructions Are Just Bytes!
	Slide 136: Instructions Are Just Bytes!
	Slide 137: Instructions Are Just Bytes!
	Slide 138: %ri4004fd
	Slide 139: %rip
	Slide 140: %rip
	Slide 141: %rip
	Slide 142: %rip
	Slide 143: %rip
	Slide 144: %rip
	Slide 145: Going In Circles
	Slide 146: Jump!
	Slide 147: Jump!
	Slide 148: Jump!
	Slide 149: Jump!
	Slide 150: Jump!
	Slide 151: jmp
	Slide 152: “Interfering” with %rip
	Slide 153: Lecture Plan
	Slide 154: Control
	Slide 155: Control
	Slide 156: Control
	Slide 157: Conditional Jumps
	Slide 158: Control
	Slide 159: Control
	Slide 160: Control
	Slide 161: Condition Codes
	Slide 162: Condition Codes
	Slide 163: Setting Condition Codes
	Slide 164: Control
	Slide 165: Conditional Jumps
	Slide 166: Setting Condition Codes
	Slide 167: Condition Codes
	Slide 168: Exercise 1: Conditional jump
	Slide 169: Exercise 1: Conditional jump
	Slide 170: Exercise 2: Conditional jump
	Slide 171: Exercise 2: Conditional jump
	Slide 172: Lecture Plan
	Slide 173: If Statements
	Slide 174: Practice: Fill In The Blank
	Slide 175: Practice: Fill In The Blank
	Slide 176: Common If-Else Construction
	Slide 177: Practice: Fill in the Blank
	Slide 178: Practice: Fill in the Blank
	Slide 179: If-Else Construction Variations
	Slide 180: Lecture Plan
	Slide 181: Loops and Control Flow
	Slide 182: Loops and Control Flow
	Slide 183: Loops and Control Flow
	Slide 184: Loops and Control Flow
	Slide 185: Loops and Control Flow
	Slide 186: Loops and Control Flow
	Slide 187: Loops and Control Flow
	Slide 188: Loops and Control Flow
	Slide 189: Loops and Control Flow
	Slide 190: Loops and Control Flow
	Slide 191: GCC Common While Loop Construction
	Slide 192: GCC Other While Loop Construction
	Slide 193: Lecture Plan
	Slide 194: Common For Loop Construction
	Slide 195: Back to Our First Assembly
	Slide 196: Demo: GDB and Assembly
	Slide 197: gdb tips
	Slide 198: gdb tips
	Slide 199: Lecture Plan
	Slide 200: Condition Code-Dependent Instructions
	Slide 201: set: Read condition codes
	Slide 202: set: Read condition codes
	Slide 203: cmov: Conditional move
	Slide 204: cmov: Conditional move
	Slide 205: Last Lab: Conditional Move
	Slide 206: Recap
	Slide 207: How to remember cmp/jmp
	Slide 208: Remember test exists
	Slide 209: Practice: Fill in the blanks
	Slide 210: Practice: Fill in the blanks
	Slide 211: Practice: Fill in the blanks
	Slide 212: Practice: Fill in the blanks
	Slide 213: test practice: What’s the C code?
	Slide 214: test practice: What’s the C code?
	Slide 215: Practice: “Escape Room”
	Slide 216: Practice: “Escape Room”
	Slide 217: Lecture Plan
	Slide 218: Lecture Plan
	Slide 219: %rip
	Slide 220: %rip
	Slide 221: %rip
	Slide 222: %rip
	Slide 223: %rip
	Slide 224: %rip
	Slide 225: %rip
	Slide 226: %rip
	Slide 227: %rip
	Slide 228: %rip
	Slide 229: %rip
	Slide 230: %rip
	Slide 231: Summary: Instruction Pointer
	Slide 232: Lecture Plan
	Slide 233: How do we call functions in assembly?
	Slide 234: Calling Functions In Assembly
	Slide 235: Lecture Plan
	Slide 236: %rsp
	Slide 237: %rsp
	Slide 238: %rsp
	Slide 239: %rsp
	Slide 240: %rsp
	Slide 241: push
	Slide 242: push
	Slide 243: push
	Slide 244: push
	Slide 245: pop
	Slide 246: pop
	Slide 247: Stack Example
	Slide 248: Calling Functions In Assembly
	Slide 249: Lecture Plan
	Slide 250: Remembering Where We Left Off
	Slide 251: Remembering Where We Left Off
	Slide 252: Remembering Where We Left Off
	Slide 253: Remembering Where We Left Off
	Slide 254: Remembering Where We Left Off
	Slide 255: Call And Return
	Slide 256: Calling Functions In Assembly
	Slide 257: Lecture Plan
	Slide 258: Parameters and Return
	Slide 259: Parameters and Return
	Slide 260: Parameters and Return
	Slide 261: Parameters and Return
	Slide 262: Parameters and Return
	Slide 263: Parameters and Return
	Slide 264: Parameters and Return
	Slide 265: Parameters and Return
	Slide 266: Parameters and Return
	Slide 267: Parameters and Return
	Slide 268: Parameters and Return
	Slide 269: Parameters and Return
	Slide 270: Parameters and Return
	Slide 271: Parameters and Return
	Slide 272: Parameters and Return
	Slide 273: Parameters and Return
	Slide 274: Parameters and Return
	Slide 275: Parameters and Return
	Slide 276: Parameters and Return
	Slide 277: Parameters and Return
	Slide 278: Lecture Plan
	Slide 279: Calling Functions In Assembly
	Slide 280: Local Storage
	Slide 281: Local Storage
	Slide 282: Lecture Plan
	Slide 283: Register Restrictions
	Slide 284: Caller/Callee
	Slide 285: Register Restrictions
	Slide 286: Caller-Owned Registers
	Slide 287: Caller-Owned Registers
	Slide 288: Callee-Owned Registers
	Slide 289: Callee-Owned Registers
	Slide 290: A Day In the Life of function1
	Slide 291: Lecture Plan
	Slide 292: Example: Recursion
	Slide 293: Our First Assembly
	Slide 294: Lecture Plan
	Slide 295: Optimizations you’ll see
	Slide 296: GCC For Loop Output
	Slide 297: GCC For Loop Output
	Slide 298: GCC For Loop Output
	Slide 299: GCC For Loop Output
	Slide 300: GCC For Loop Output
	Slide 301: GCC For Loop Output
	Slide 302: GCC For Loop Output
	Slide 303: Optimizing Instruction Counts
	Slide 304: Optimizations
	Slide 305: Recap
	Slide 306: Key GDB Tips For Assembly
	Slide 307: Key GDB Tips For Assembly
	Slide 308: Extra Practice – Escape Room 2
	Slide 309: Escape room assembly code
	Slide 310: Escape room assembly code
	Slide 311: Array Allocation and Access
	Slide 312: Array Allocation and Access
	Slide 313: Pointer Arithmetic
	Slide 314: Pointer Arithmetic
	Slide 315: Pointer Arithmetic
	Slide 316: Structures
	Slide 317: Structures
	Slide 318: Structures
	Slide 319: Structures
	Slide 320: Structures
	Slide 321: Structures
	Slide 322: Data Alignment
	Slide 323: Data Alignment
	Slide 324: Function Pointers in Assembly
	Slide 325: Function Pointers in Assembly
	Slide 326: References and Advanced Reading

