Lecture Plan

* Overview: GCC and Assembly

* Demo: Looking at an executable

e Registers and The Assembly Level of Abstraction

* The mov Instruction

e Live Session

cp -r /afs/ir/class/csl107/lecture-code/lectlo .

11
24
35
57

38

The mov instruction copies bytes from one place to another;
it is similar to the assignment operator (=) in C.

mov src,dst

The src and dst can each be one of:

* Imnmediate (constant value, like a number) (only src) $9X104
(o)
* Register %rbx

Direct address exseesce

* Memory Location

(at most one of src, dst)
39

Operand Forms: Immediate

mov $0x104,

|

Copy the value
0x104 into some
destination.

40

Operand Forms: Registers

Copy the value in
register %rbx into
some destination.

mov %rbx,

mov , 6rbx

\ Copy the value

from some source
into register %rbx.

41

Operand Forms: Absolute Addresses

Copy the value at
address 0x104 into

some destination.

mov 0x104,

mov ,0x1604

Copy the value
from some source
into the memory at

address 0x104. 3

Practice #1: Operand Forms

What are the results of the following move instructions (executed separately)?
For this problem, assume the value 5 is stored at address 0x42, and the value 8

is stored in %rbx.

1. mov $0x42,%rax

2. mov 0x42,%rax

3. mov %rbx,0x55

40

Operand Forms: Indirect

Copy the value at the
address stored in register
/ %rbx into some destination.

mov (%rbx),
mov , (%rbx)

N

Copy the value from some source
into the memory at the address
stored in register %rbx. a1

Operand Forms: Base + Displacement

Copy the value at the
address (0x10 plus what is

stored in register %rax) into

mov QX].Q (%r\ax) 5 some destination.
mov ______ _,x10(%rax)

N

Copy the value from some source
into the memory at the address (0x10
plus what is stored in register %rax).«

Operand Forms: Indexed

Copy the value at the address which is
(the sum of the values in registers %rax
and %rdx) into some destination.

mov (%rax,%rdx),
mov , (%rax,%rdx)

Copy the value from}me source into the
memory at the address which is (the sum of
the values in registers %rax and %rdx). 4

Operand Forms: Indexed

Copy the value at the address which is (the
sum of 0x10 plys the values in registers
Y%rax and %rdx) info some destination.

mov Ox10(%rax,%rdx),
mov ,0x10(%rax,%rdx)

Copy the value from some source into the
memory at the address which is (the sum of 0x10
plus the values in registers %rax and %rdx). 4

Practice #2: Operand Forms

What are the results of the following move instructions (executed separately)?
For this problem, assume the value Ox11 is stored at address O0x10C, OxAB is
stored at address 0x104, Ox100 is stored in register %rax and 0x3 is stored in
%rdx.

1. mov $0x42, (%rax)
2. mov 4(%rax),%rcx
3. mov 9(%rax,%rdx),%rcx

Imm(ry,, ri)isequivalenttoaddress Imm + R[r,] + R[ri]
_— /\ N\

/ il

Displacement: positive or Base: register Index: register

negative constant (if missing, = 0) (if missing, = 0) (if missing, =0) 4

U1

Operand Forms: Scaled Indexed

mov

mov

Copy the value at the address which

is (4_times the value in register
/ %rdx) into some destination.

(9 °/oI"dX, 4) 9 The scaling factor

(e.g. 4 here) must
be hardcoded to
be either 1, 2,4

s (s%rdx,4) |os

Copy the value from some source into the
memory at the address which is (4_times
the value in register %rdx). 46

Operand Forms: Scaled Indexed

Copy the value at the address which is
(4 times the value in register %rdx, plus
0x4), info some destination.

mov ox4(,%»rdx,4),

mov ,0x4(,%rdx,4)

Copy the value from some source into the
memory at the address which is (4 times
the value in register %rdx, plus 0x4), +

Operand Forms: Scaled Indexed

Copy the value at the address which is (the
value jn register %rax plus 2 times the value in

register %rdx) into some destination.

mov (%rax,%rdx,2),
mov , (%rax,%rdx,2)

Copy the value from some source into the memory at

the address which is (the value in register %rax

plus 2 times the value in register %rdx). 48

Operand Forms: Scaled Indexed

Copy the value at the address which is (Qx4 plus the
value in register %rax plus 2 times the value in
register %rdx) into some destination.

mov Ox4(%rax,srdx,2),
mov ,0x4(%rax,%srdx,2)

Copy the value from some source into the memory at
the address which is (0x4 plus the value in register
Y%rax plus 2 times the value in register %rdx). 4

Most General Operand Form

Imm(rp,ri,s)
is equivalent to...

Imm + R[r,] + R[r;]*s

Most General Operand Form

Imm(r,, r;, S)isequivalentto
address Imm + R[r,] + Rwi]*s
/

7 \
l—
Displacement: Index: register
pos/neg constant (if missing, = 0)
if missing, =0 : regi '
(g, =0) Base: register (if e o o
missing, = 0)

1,2,4, or 8
(if missing, = 1)

54

Operand Forms

Type Operand Value Name
Immediate $Imm Imm Immediate
Register T R[ri] Register
Memory Imm M[Imm] Absolute
Memory (r) M[R[r!]] Indirect
Memory Imm(r) M[Imm + R[r]] Base + displacement
Memory (r", 1) M[R[r"] + R[r#]] Indexed
Memory Imm(r-, rs) M[Imm + R[r"] + R[m]] Indexed
Memory (m) M[R[r] . s] Scaled indexed
Memory Imm(, 1y 5) M[Imm + R[ry] . s] Scaled indexed
Memory (rv, 1% 5) M[R[r] + R[m] . s] Scaled indexed
Memory Imm(r, 14, 5) M[Imm + R[r"] + R[r#] .s] Scaled indexed

Figure 3.3 from the book: “Operand forms. Operands can denote immediate (constant) values, register values,

or values from memory. The scaling factor s must be either. 1, 2, 4, or 8.” >

Practice #3: Operand Forms

What are the results of the following move instructions (executed separately)?
For this problem, assume the value 0x1 is stored in register %rcx, the value
0x100 is stored in register %rax, the value 0x3 is stored in register %rdx, and
value Ox11 is stored at address Ox10C.

1. mov $0x42,0xfc(,%rcx,4)

2. mov (%rax,%rdx,4),%rbx
Imm(r,, rij, S)isequivalentto

address Imm + R[rp,] + R[ri]*s

56

Goals of indirect addressing: C

Why are there so many forms of
indirect addressing?

We see these indirect addressing
paradigms in C as well!

Our First Assembly

int sum_array(int arr[], int nelems) { | We’re 1/4t of the way to understanding assembly!
int sum = 0; What looks understandable right now?
for (int 1 = 0; i < nelems; i++) { Some notes:
sum += arr[i]; » Registers store addresses and values
} * mov src, dst copiesvalue into dst
return sum; e sizeof(int) is4
} * Instructions executed sequentially
00000000004005b6 <sum_array>:
4005b6 : ba 00 00 00 00 mov $0x0, %edx
4005bb: b8 00 00 00 00 mov $0x0, %eax
4005cO: eb 09 jmp 4005cb <sum_array+0x15>
4005c2: 48 63 ca movslqg %edx,%rcx
4005c5: 03 04 8f add (%rdi,%rcx,4),%eax
ADQGCR - 22 £2 01 add $0x1, %edx P
We'll come back to this cmp %esi,%edx "
example in future lectures! J1 4005c2 <sum_array+oxc> -
repz retq 55

Central Processing Units (CPUs)

Intel 8086, 16-bit
microprocessor
($86.65, 1978)

ntel* Core™ jg

Raspberry Pi BCM2836 Intel Core i9-9900K 64-bit
32-bit ARM microprocessor 8-core multi-core processor

($35 for everything, 2015) ($449, 2018)

59

Assembly code in movies

Trinity saving the world by
hacking into the power grid
using Nmap Network
Scanning

The Matrix Reloaded, 2003

60

* Keep a resource guide handy ¥

* https://web.stanford.edu/class/cs107/resources/x86-64-reference.pdf

Vided |
otan-

180 Chapter3 Machine-Level Representation of Programs

[J ° igndi 1i7
B&O book: e (e s .

tx [wa),
e Canvas -> Files e ey R
e — maooEeaN MR :

i

i

Ay
- " Memory Imm(zy) Miimm + R
% T i 81 ;
-> Bryant_OHallaron_ch3.1-3.8.pdf E =] = I, e
. . . . = ™™ Memory Imm (zy,x;) MUImm + R{zx,) + Rix]]

o et [an oy Memory Gn) MiRiz]-5]

Memory Imm(,x;,s) MUImm +R[r;]-s] Scaled indexed

rop {:T-vp op % Callg g Memory ;rn.lz.-\') M[R[nl+n[r',1-?] Scaled indexed

- = Memory mm(zy,5i,5) M{Imm+Rizy) +Rir;) 5] Scaled indexed

[,‘,_P A [Yesp Ysp e 1] S, T (et e A =

values, or values from memory. The scaling factor s must be either 1, 2, 4, or 8.

tizod Yrow 4290 | 6 ag,

result. x86-64 supports a number of operand forms (see Figure 3.3). Source values

2 ; ,{Zu tixsn] P
=

o :
o FET Ij\"“"' can be given as constants or read from registers or memory. Results can be stored
| Ol sy in either registers or memory. Thus, the different opérasd possibilites sow ba
) . O[T] o ified into three types. The first type, immediate, s for constant values Tn ATT-
. t S I e S t u y a r O a N aller saveg format assembly code, these are written with a ‘$ followed by an integer using
. o ’ = T standard C notation—for example, $-577 or $0x1F. Different instructions allow
BING OV tie12u Calossas | different ranges of immediate values; the assembler will automatically select the
STUDI ES | ‘most compact way of encoding a value. The second type, register, denotes the
% [rex13w Calloe sang contents of a register, one of the sixteen 8-, 4-, 2-, or 1-byte low-order portions of

the registers for operands having 64, 32, 16, or 8 bits, respectively. In Figure 33,
we use the notation r, to denote an arbitrary register and indicate its value with
the reference R[x,], viewing the set of registers as an array R indexed by register
identifiers. i o i
The third type of operand is a memory reference, in which we access some

STANFORD UNIVERSITY

[r1as [eran]| catessans
Yr1bw %r16b Callge saved

|
| memory location according to a computed address, often called the effective ad-

* You took LANG 1A
Toeta i .‘ o .
* Your tools give too much/too little information s s me et e
address Addr. To simplify things, we will generally drop the subscriptb.

das | - As Figure 3.3 shows, there are many different addressing modes allowing dif-
and storing local and temporary € ferent forms of memory references. The most general form is shown at the bottom

.
(a b O O k refe re n C e ’ a r u d I e n t a ry t ra n S I a to r) Werwill cm::r[‘;I";z’v:"a‘{:’zi‘:;z; in 0‘;1' presentation, especially in Section . of the table with syntax Imm (x; ,;,5). Such a reference has four components: an
where we describe the implementation of procedures. | immediate offset [mrm, a base register z;, an index register r;, and a scale factor
s, where s must be 1, 2, 4, or 8. Both the base and index must be 64-bit registers.

The effective address is computed as [mm + R[x;) + Rlx;] - . This general formis
often seen when referencing elements of arrays. The other forms are simply spe-

* No one expects you to speak the language e S e

Most instructions have one or more operands specifying the source gl Jace 1
in performing an operation and the destination location into which ©© P 1 \

fluently... |
 ...But the more you internalize, Chapter 3, Figures 3.2-3.3 (p. 180-181)

the better you can use tools to read the language

61

Why are we reading assembly?

A I
C code SEEID; Machine code
code

Programmer- gcc (compiler+assembler)
generated generated

Main goal: Information retrieval
* We will not be writing assembly! (that’s the compiler’s job)
e Rather, we want to translate the assembly back into our C code.

* Knowing how our C code is converted into machine instructions gives us
insight into how to write more efficient, cleaner code.

62

Extended warmup: Information Synthesis

Spend a few minutes thinking about the main paradigms of the mov instruction.
* What might be the equivalent C-like operation?

* Examples (note %r___ registers are 64-bit):

1. mov $0x0, %rdx

2. mov %rdx, %rcx

3. mov $0x42, (%rdi)

4. mov (%rax,%rcx,8),%rax

°)

(

Extended warmup: Information Synthesis

Spend a few minutes thinking about the main paradigms of the mov instruction.

. : : 1 S
What might be the equivalent C-like operation~ indirect addressing

* Examples (note %r___ registers are 64-bit): is like pointer
mov $0x0,%rdx -> maybe long x = © arithmetic/deref!

mov %rdx,%rcx -> maybe long X = vy;
mov $0x42, (%rdi) -> maybe *ptr = 0x42;
mov (%rax,%rcx,8),%rax -> maybe long x = arr[i];

(

1. Extra Practice

Fill in the blank to complete the C code that 1. generates this assembly
2. has this register layout

int x = ...
int *ptr = malloc(..);

22?

P??
mov %ecx, (%rax)

Pedantic: You should subin /~
<val of x> <val of ptr> (: 0
<x> and <ptr> with actual =

% ecx % rax values, like 4 and 0x7fff80)

1. Extra Practice

Fill in the blank to complete the C code that 1. generates this assembly
2. has this register layout

int x =
int *ptr = malloc(..);

PP PP? *ptr = Xx;

mov %ecx, (%rax)

%ecx %rax
67

2. Extra Practice

Fill in the blank to complete the C code that 1. generates this assembly
2. results in this register layout

long arr[5];

long num = 2?7 5

mov (%rdi, %rcx, 8),%rax

<

%rax %rcx %rdi

S
Y) .,

2. Extra Practice

Fill in the blank to complete the C code that 1. generates this assembly
2. results in this register layout

long arr[5];

long num = arr[3];
long num = *(arr + 3);
long num = ___ 22?2 ; long num = *(arr + y);

(assume long y = 3;
declared earlier)

mov (%rdi, %rcx, 8),%rax

<val of num> <val of arr>

%rax %rcx %rdi
68

3. Extra Practice

Fill in the blank to complete the C code that 1. generates this assembly
2. has this register layout

char str[5];

pP? = 'c';

mov $0x63, (%rcx,%rdx,1)

<

%rcx %rdx

°)
.,/

)

(

3. Extra Practice

Fill in the blank to complete the C code that 1. generates this assembly
2. has this register layout

char str[5];

. str[2] = 'c’;
—— g ¥(str + 2) = 'c';

mov $0x63, (%rcx,%rdx,1)

%rcx %rdx
70

Coming Up Soon To A Slide Near You

* The below code is the objdump of a C function, foo.
* foo keeps its 15t and 2" parameters are in registers %rdi and %rsi, respectively.

Ox4005b6 <foo> mov (%rdi),%rax 42
Ox4005b9 <foo+3> mov (%rsi),%rdx 1000
Ox4005bc <foo+6> mov %rdx, (%rdi)
Ox4005bf <foo+9> mov %rax, (%rsi)

‘ 8 bytes >

1. What does this function do?

2. What C code could have % rdi % rsi
generated this assembly?

(Hints: make up C variable names as : :

—

o)

needed, assume all regs 64-bit) o %rd
orax oldXx

G

-

(

Coming Up Soon To A Slide Near You

* The below code is the objdump of a C function, foo.
* foo keeps its 15t and 2" parameters are in registers %rdi and %rsi, respectively.

Ox4005b6 <foo> mov (%rdi),%rax 42
Ox4005b9 <foo+3> mov (%rsi),%rdx
Ox4005bc <foo+6> mov %rdx, (%rdi)
Ox4005bf <foo+9> mov %rax, (%rsi)

1000

‘ 8 bytes >

%rdi %rsi

I i

%rax %rdx

72

Lecture Plan

* Recap: mov so far

e Data and Register Sizes

* The lea Instruction

* Logical and Arithmetic Operations
* Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

11
24
30
38

Helpful Assembly Resources

* Course textbook (reminder: see relevant readings for each lecture on the
Schedule page, http://cs107.stanford.edu/schedule.html)

* CS107 Assembly Reference Sheet: http://cs107.stanford.edu/resources/x86-
64-reference.pdf
* CS107 Guide to x86-64: http://cs107.stanford.edu/guide/x86-64.html

http://cs107.stanford.edu/schedule.html)
http://cs107.stanford.edu/schedule.html)
http://cs107.stanford.edu/resources/x86-
http://cs107.stanford.edu/resources/x86-
http://cs107.stanford.edu/guide/x86-64.html
http://cs107.stanford.edu/guide/x86-64.html
http://cs107.stanford.edu/guide/x86-64.html

References and Advanced Reading

- References:

. Stanford guide to x86-64: https://web.stanford.edu/class/cs107/quide/
x86-64.html|
« CS107 one-page of x86-64: https://web.stanford.edu/class/cs107/resources/

onepage x86-64.pdf

- gdbtui: https://beej.us/quide/bggdb/

+ More gdbtui: https://sourceware.org/gdb/onlinedocs/gdb/TUl.html
- Compiler explorer: https://gcc.godbolt.org

- Advanced Reading:

54

- x86-64 Intel Software Developer manual: https://software.intel.com/sites/
default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf

- history of x86 instructions: https://en.wikipedia.org/wiki/
X86 _instruction_listings

- x86-64 Wikipedia: https://en.wikipedia.org/wiki/X86-64

Lecture Plan

* Recap: mov so far

e Data and Register Sizes

* The lea Instruction

* Logical and Arithmetic Operations
* Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

11
24
30
38

The mov instruction copies bytes from one place to another;
it is similar to the assignment operator (=) in C.

mov src,dst

The src and dst can each be one of:
* Imnmediate (constant value, like a number) (only src)

* Register

* Memory Location
(at most one of src, dst)

Memory Location Syntax

Syntax Meaning
0x104 Address 0x104 (no S)
(%rax) What's in %rax
4(%rax) What's in %rax, plus 4
(%rax, %rdx) Sum of what'’s in %rax and %rdx
4(%rax, %rdx) Sum of values in %rax and %rdx, plus 4
(%rcx, 4) What’s in %rcx, times 4 (multiplier can be 1,

2,4,8)

(%rax, %rcx, 2)

What’s in %rax, plus 2 times what’s in %rcx

8(%rax, %rcx, 2)

What's in %rax, plus 2 times what’s in %rcx,
plus 8 9

Operand Forms

Type Operand Value Name
Immediate $Imm Imm Immediate
Register T R[ri] Register
Memory Imm M[Imm] Absolute
Memory (r) M[R[r!]] Indirect
Memory Imm(r) M[Imm + R[r]] Base + displacement
Memory (r", 1) M[R[r"] + R[r#]] Indexed
Memory Imm(r-, rs) M[Imm + R[r"] + R[m]] Indexed
Memory (m) M[R[r] . s] Scaled indexed
Memory Imm(, 1y 5) M[Imm + R[ry] . s] Scaled indexed
Memory (rv, 1% 5) M[R[r] + R[m] . s] Scaled indexed
Memory Imm(r, 14, 5) M[Imm + R[r"] + R[r#] .s] Scaled indexed

Figure 3.3 from the book: “Operand forms. Operands can denote immediate (constant) values, register values,

or values from memory. The scaling factor s must be either. 1, 2, 4, or 8.” 10

Lecture Plan

* Recap: mov so far

* Data and Register Sizes

* The lea Instruction

* Logical and Arithmetic Operations
* Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

11
24
30
38

11

Data Sizes

Data sizes in assembly have slightly different terminology to get used to:
* A byte is 1 byte.

A word is 2 bytes.

* A double word is 4 bytes.

* A quad word is 8 bytes.

Assembly instructions can have suffixes to refer to these sizes:
* b means byte

* W means word

* 1 means double word

* d means quad word .

Bit:

Register Sizes

63 31 15 7

%rax %eax %ax %al ‘
%rbx %ebx %bx %bl

%rcx %ecx %CX %cl

%rdx %edx %dx %d1

%rsi %esi %si ‘
%rdi %edi %di

82

Bit:

Register Sizes

63 31 15 7

%rbp %ebp %bp %bpl
%rsp %esp %Sp %spl
%r8 %r8d %r8w %r8b
%r9 %rod %row %r9b
%r10 %r10d %r10w %r10b
%rll %rlild %rl1lw %rl11b

83

Bit:

Register Sizes

63 31 15 7 %]
%rl2 %rl2d %rl2w %rl2b “
%rl3 %rl13d %rl3w %rl3b
%rld %rlad %rldw %rldb “
%r15 %r15d %r15w %rl1l5b

84

Register Responsibilities

Some registers take on special responsibilities during program execution.
* %rax stores the return value

* %rdi stores the first parameter to a function

* %rsi stores the second parameter to a function

» %rdx stores the third parameter to a function

* %rip stores the address of the next instruction to execute

* %rsp stores the address of the current top of the stack

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website! 16

NVA'CELS

* mov can take an optional suffix (b,w,l,q) that specifies the size of data to move:
movb, movw, movl, movq

* mov only updates the specific register bytes or memory locations indicated.
* Exception: movl writing to a register will also set high order 4 bytes to 0.

86

Practice: mov And Data Sizes

For each of the following mov instructions, determine the appropriate suffix
based on the operands (e.g. movb, movw, movl or movgq).

. mov__ %eax, (%rsp)

. mov__ (%rax), %dx

. mov__ $oxff, %bl

. mov__ (%rsp,%rdx,4),%dl
. mov__ (%rdx), %rax

O Ul B W NP

. mov__ %dx, (%rax)

87

Practice: mov And Data Sizes

For each of the following mov instructions, determine the appropriate suffix
based on the operands (e.g. movb, movw, movl or movgq).

. movl %eax, (%rsp)

. movw (%rax), %dx

. movb $Oxff, %bl

. movb (%rsp,%rdx,4),%dl

. movq (%rdx), %rax

O Ul B W NP

. movw %dx, (%rax)

88

 The movabsq instruction is used to write a 64-bit Immediate (constant) value.

* The regular movq instruction can only take 32-bit immediates.

* 64-bit immediate as source, only register as destination.

movabsq $0x0011223344556677, %rax

89

movz and movs

* There are two mov instructions that can be used to copy a smaller source to a
larger destination: movz and movs.

* movz fills the remaining bytes with zeros

* movs fills the remaining bytes by sign-extending the most significant bit in the
source.

* The source must be from memory or a register, and the destination is a
register.

90

movz and movs

MOVZ S,R R « ZeroExtend(S)

Instruction Description

movzbw Move zero-extended byte to word
movzbl Move zero-extended byte to double word
movzwl Move zero-extended word to double word
movzbq Move zero-extended byte to quad word
movzwq Move zero-extended word to quad word

91

movz and movs

MOVS S,R R « SignExtend(S)

Instruction Description

movsbw Move sign-extended byte to word
movsbl Move sign-extended byte to double word
movswl Move sign-extended word to double word
movsbq Move sign-extended byte to quad word
MovVsw(q Move sign-extended word to quad word
movslq Move sign-extended double word to quad word
cltq Sign-extend %eax to %rax

%rax <- SignExtend(%eax)

92

Lecture Plan

* Recap: mov so far

e Data and Register Sizes

* The lea Instruction

* Logical and Arithmetic Operations
* Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

11
24
30
38

24

The lea instruction copies an “effective address” from one place to another.

lea src,dst

Unlike mov, which copies data at the address src to the destination, lea copies
the value of src itself to the destination.

The syntax for the destinations is the same as
mov. The difference is how it handles the src.

94

————— PeyT—

6 (%pax) s %rdx Go to the address (6 + what’s in %rax), Copy 6 + what’s in %rax into %rdx.
and copy data there into %rdx

95

——— Ty ——

6(%rax), %rdx

(%rax, %rcx), %rdx

Go to the address (6 + what’s in %rax),
and copy data there into %rdx

Go to the address (what’s in %rax +
what’s in %rcx) and copy data there into
%rdx

Copy 6 + what’s in %rax into %rdx.

Copy (what’s in %rax + what’s in %rcx)
into %rdx.

96

Operands mov Interpretation lea Interpretation

6 (%pax) , %rdx Go to the address (6 + what’s in %rax), Copy 6 + what’s in %rax into %rdx.
and copy data there into %rdx

(%r\ax, %pcx) , %rdx Go to the address (what’s in %rax + Copy (what’s in %rax + what’s in %rcx)
what’s in %rcx) and copy data there into into %rdx.
%rdx

(%r\ax, %rcx, 4) , %rdx Goto the address (%rax + 4 * %rcx) and Copy (%rax + 4 * %rcx) into %rdx.
copy data there into %rdx.

97

6 (%pax) , %rdx Go to the address (6 + what’s in %rax), Copy 6 + what’s in %rax into %rdx.
and copy data there into %rdx

(%pax’ %PCX) s %rdx Go to the address (what’s in %rax + Copy (what’s in %rax + what’s in %rcx)
what’s in %rcx) and copy data there into into %rdx.
%rdx

(%r\ax, %rcx, 4) , %rdx Goto the address (%rax + 4 * %rcx) and Copy (%rax + 4 * %rcx) into %rdx.
copy data there into %rdx.

7 (%pax, %rax, 8) , %rdx Gototheaddress (7 + %rax+8 * %rax) Copy (7 + %rax + 8 * %rax) into %rdx.
and copy data there into %rdx.

Unlike mov, which copies data at the address
src to the destination, lea copies the value of
src itself to the destination.

98

Lecture Plan

* Recap: mov so far

e Data and Register Sizes

* The lea Instruction

* Logical and Arithmetic Operations
* Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

11
24
30
38

30

Unary Instructions

The following instructions operate on a single operand (register or memory):

Instruction Effect Description
inc D D«D+ 1 Increment
dec D D«<D-1 Decrement
neg D D « -D Negate
not D D « ~D Complement
Examples:
incqg 16(%rax)
dec %rdx

not %rcx

31

Binary Instructions

The following instructions operate on two operands (both can be register or
memory, source can also be immediate). Both cannot be memory locations.
Read it as, e.g. “Subtract S from D”:

Instruction Effect Description
add S, D De«<D+ S Add

sub S, D D«<D-S Subtract
imul S, D De«<D*S Multiply
xor S, D D«<D”™S Exclusive-or
or S, D D«<D| S Or

and S, D D«<D&S And

Examples:

addqg %rcx, (%rax)
xorqg $16, (%rax, %rdx, 8)
subg %rdx,8(%rax) 32

Large Multiplication

* Multiplying 64-bit numbers can produce a 128-bit result. How does x86-64
support this with only 64-bit registers?

* If you specify two operands to imul, it multiplies them together and truncates
until it fits in a 64-bit register.

imul S, D D« D *S

* If you specify one operand, it multiplies that by %rax, and splits the product

across 2 registers. It puts the high-order 64 bits in %rdx and the low-order 64
bits in %rax.

Instruction Effect Description
imulq S R[%rdx]:R[%rax] « S x R[%rax] Signed full multiply
mulq S R[%rdx]:R[%rax] « S x R[%rax] Unsigned full multiply

Division and Remainder

Instruction Effect Description

idivg S R[%rdx] < R[%rdx]:R[%rax] mod S; Signed divide
R[%rax] < R[%rdx]:R[%rax] = S

divqg S R[%rdx] < R[%rdx]:R[%rax] mod S; Unsigned divide
R[%rax] « R[%rdx]:R[%rax] = S

* Terminology: dividend / divisor = quotient + remainder
* x86-64 supports dividing up to a 128-bit value by a 64-bit value.

* The high-order 64 bits of the dividend are in %rdx, and the low-order 64 bits
are in %rax. The divisor is the operand to the instruction.

* The quotient is stored in %rax, and the remainder in %rdx.

Division and Remainder

Instruction Effect Description

idivg S R[%rdx] < R[%rdx]:R[%rax] mod S; Signed divide
R[%rax] < R[%rdx]:R[%rax] = S

divqg S R[%rdx] < R[%rdx]:R[%rax] mod S; Unsigned divide

R[%rax] « R[%rdx]:R[%rax] = S

cqto R[%rdx]:R[%rax] <« SignExtend(R[%rax]) Convert to oct word

* Most division uses only 64-bit dividends. The cqto instruction sign-extends the
64-bit value in %rax into %rdx to fill both registers with the dividend, as the
division instruction expects.

The following instructions have two operands: the shift amount k and the
destination to shift, D. k can be either an immediate value, or the byte register
%cl (and only that register!)

Instruction Effect Description

sal k, D D «D << k Left shift

shl k, D D «D << k Left shift (same as sal)
sar k, D D« D >ak Arithmetic right shift
shr k, D D« D> k Logical right shift

Examples:
shll $3, (%rax)
shrl %cl, (%rax,%rdx,8)
sarl $4,8(%rax)

Instruction Effect Description

sal k, D D« D << k Left shift

shl k, D D «D << k Left shift (same as sal)
sar k, D D« D >a Kk Arithmetic right shift
shr k, D D« D > k Logical right shift

 When using %cl, the width of what you are shifting determines what portion
of %cl is used.

* For w bits of data, it looks at the low-order log2(w) bits of %cl to know how
much to shift.

* If %cl = Oxff, then: shlb shifts by 7 because it considers only the low-order log2(8) = 3
bits, which represent 7. shlw shifts by 15 because it considers only the low-order
log2(16) = 4 bits, which represent 15.

Lecture Plan

* Recap: mov so far

e Data and Register Sizes

* The lea Instruction

* Logical and Arithmetic Operations
* Practice: Reverse Engineering

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

11
24
30
38

38

Assembly Exploration

* Let’s pull these commands together and see how some C code might be
translated to assembly.

* Compiler Explorer is a handy website that lets you quickly write C code and see
its assembly translation. Let’s check it out!

* https://godbolt.org/z/WPzz6G4a9

Code Reference: add_to _first

// Returns the sum of x and the first element in
arr
int add _to first(int x, int arr[]) {

int sum = x;

sum += arr[0];

return sum;

add_to_first:
movl %edi, %eax
addl (%rsi), %eax

ret

Code Reference: full divide

// Returns x/y, stores remainder in location stored in
remainder_ ptr
long full divide(long x, long y, long *remainder_ptr) {
long quotient = x / y;
long remainder = x % y;
*remainder_ ptr remainder;
return quotient;

full divide:
movq %rdi, %rax
movq %rdx, %rcx
cqto
idivg %rsi
movqg %rdx, (%rcx)
ret H

Assembly Exercise 1

0000000VVV40116e <sum_examplel>:
40116e: 8d 04 37 lea (%rdi,%rsi,1),%eax

401171: c3 retqg

Which of the following is most likely to have generated the above assembly?

// A)

void sum_examplel() { int sum_examplel(int x, int y) {
int x; return x + y;
int y;

int sum = x + y;
}
// C)

void sum_examplel(int x, int y) {
int sum = x + y;

}

42

Assembly Exercise 2

00000000V0401172 <sum_example2>:

401172: 8b 47 0Oc

401175: 03 07
401177: 2b 47 18

40117a: c3

int sum_example2(int arr[]) {
int sum = 0;
sum += arr[0];
sum += arr[3];
sum -= arr[6];
return sum;

mov ©Oxc(%rdi),%eax
add (%rdi),%eax

sub 0x18(%rdi),%eax
retq

What location or value in the assembly above represents the
C code’s sum variable?

%eax

Assembly Exercise 3

00000000V0401172 <sum_example2>:

401172: 8b 47 0Oc

401175: 03 07
401177: 2b 47 18

40117a: c3

int sum_example2(int arr[]) {
int sum = 0;
sum += arr[0];
sum += arr[3];
sum -= arr[6];
return sum;

mov ©Oxc(%rdi),%eax
add (%rdi),%eax

sub 0x18(%rdi),%eax
retq

What location or value in the assembly code above
represents the C code’s 6 (as in arr[6])?

0x18

Our First Assembly

int sum_array(int arr[], int nelems) { |We’re1/2 of the way to understanding assembly!
int sum = 0; What looks understandable right now?
for (int 1 = @; 1 < nelems; i++) {
sum += arr[i];

}
return sum;
}
0000000000401136 <sum_array>:
401136: b8 00 00 00 00 mov $0x0, %eax
40113b: ba 90 90 00 00 mov $0x0, %edx
401140: 39 f0O cmp %esi,keax
401142: 7d @b jge 40114f <sum_array+0x19>
401144 48 63 c8 movslq %eax,%rcx
401147 03 14 8f add (%rdi,%rcx,4),%edx
40114a: 83 c0 o1 add $0x1, %eax Goe
40114d: eb f1l jmp 401140 <sum_array+0xa> Kys
40114f: 89 do mov »edx, %eax .

401151 c3 retq 45

A Note About Operand Forms

* Many instructions share the same address operand forms that mov uses.
* Eg. 7(%rax, %rcx, 2).

* These forms work the same way for other instructions, e.g. sub:
* sub 8(%rax,%rdx),%rcx -> Go to 8 + %rax + %rdx, subtract what’s there from %rcx

* The exception is lea:
* It interprets this form as just the calculation, not the dereferencing
* lea 8(%rax,%rdx),%rcx -> Calculate 8 + %rax + %rdx, put it in %rcx

Instruction Effect Description

sal k, D D« D << k Left shift

shl k, D D «D << k Left shift (same as sal)
sar k, D D« D >a Kk Arithmetic right shift
shr k, D D« D > k Logical right shift

 When using %cl, the width of what you are shifting determines what portion
of %cl is used.

* For w bits of data, it looks at the low-order log2(w) bits of %cl to know how
much to shift.

* If %cl = Oxff, then: shlb shifts by 7 because it considers only the low-order log2(8) = 3
bits, which represent 7. shlw shifts by 15 because it considers only the low-order
log2(16) = 4 bits, which represent 15.

Division and Remainder

Instruction Effect Description

idivg S R[%rdx] < R[%rdx]:R[%rax] mod S; Signed divide
R[%rax] < R[%rdx]:R[%rax] = S

divqg S R[%rdx] < R[%rdx]:R[%rax] mod S; Unsigned divide
R[%rax] « R[%rdx]:R[%rax] = S

* Terminology: dividend / divisor = quotient + remainder
* x86-64 supports dividing up to a 128-bit value by a 64-bit value.

* The high-order 64 bits of the dividend are in %rdx, and the low-order 64 bits
are in %rax. The divisor is the operand to the instruction.

* The quotient is stored in %rax, and the remainder in %rdx.

Extra Practice

https://godbolt.org/z/hGKPWszg4

Reverse Engineering 1

int add_to(int x, int arr[], int 1)

{ int sum = _? 5
sum += arr| ? 1;
return ? K

}

add_to:

movslqg %edx, %rdx

movl %edi, %eax

addl (%rsi,%»rdx,4), %eax
ret

Reverse Engineering 1

int add_to(int x, int arr[], int 1)

{ int sum = _? 5
sum += arr| ? 1;
return ? ;

// X 1n %edi, arr in %rsi, 1 in
%»edx add_to:

movslqg %edx, %rdx // sign-extend 1 into full register
movl %edi, %eax // copy x into %eax

addl (%rsi,%rdx,4), %eax // add arr[i] to %eax
ret

Reverse Engineering 1

int add_to(int x, int arr[], int 1)
{ int sum = x;
sum += arr[i];
return sum;

// X 1n %edi, arr in %rsi, 1 in
%»edx add_to:

movslqg %edx, %rdx // sign-extend 1 into full register
movl %edi, %eax // copy x into %eax

addl (%rsi,%rdx,4), %eax // add arr[i] to %eax
ret

Reverse Engineering 2

int elem_arithmetic(int nums[], int y)

{ int z = nums[_?] * ? ;
z -= ? 5

Z >>= ? K

return ? K

elem _arithmetic:
movl %esi, %eax
imull (%rdi), %eax
subl 4(%rdi), %eax
sarl $2, %eax
addl $2, %eax
ret

Reverse Engineering 2

int elem_arithmetic(int nums[], int y)

{ int z = nums[_?]
z -= ? 5

Z >>= ? ;

return ? ;

// nums in %rdi, y in %esi
elem _arithmetic:

movl %esi, %eax

imull (%rdi), %eax

subl 4(%rdi), %eax

sarl $2, %eax

addl $2, %eax

ret

*

//
//
//
//

//

?

.
)

copy y into %eax

multiply %eax by nums[0]
subtract nums[1l] from %eax
shift %eax right by 2

add 2 to %eax

Reverse Engineering 2

int elem_arithmetic(int nums[], int y)

{ int z = nums[@] * y;
z -= nums[1];

Z >>= 2;

return z + 2;

// nums in %rdi, y in %esi
elem _arithmetic:

movl %esi, %eax

imull (%rdi), %eax

subl 4(%rdi), %eax

sarl $2, %eax

addl $2, %eax

ret

//
//
//
//

//

copy y into %eax

multiply %eax by nums[0]
subtract nums[1l] from %eax
shift %eax right by 2

add 2 to %eax

Reverse Engineering 3

long func(long x, long *ptr) {

*ptr = ? + 1;
long result = x % ? 5
return ? K

}

func:

movq %rdi, %rax
leag 1(%rdi), %rcx
movqg %rcx, (%rsi)
cqto

idivg %rcx

movq %rdx, »rax
ret

Reverse Engineering 3

long func(long x, long *ptr) {

*ptr = ? + 1;
long result = x % ? 5
return ? 5
}
// X in %rdi, ptr in %rsi
func:
movqg %rdi, %rax // copy X into %rax
leaq 1(%rdi), %rcx // put x + 1 into %rcx
movq %rcx, (%rsi) // copy %rcx into *ptr
cqto // sign-extend x into %rdx
idivqg %rcx // calculate x / (x + 1)
movq %rdx, %rax // copy the remainder into %rax

ret

Reverse Engineering 3

long func(long x, long *ptr) {
*ptr = x + 1;
long result = x % *ptr; // or x +
1
return result;

S —
// X in %rdi, ptr in %rsi
func:
movqg %rdi, %rax // copy X into %rax
leaq 1(%rdi), %rcx // put x + 1 into %rcx
movqg %rcx, (%rsi) // copy %rcx into *ptr
cqto // sign-extend x into %rdx
idivqg %rcx // calculate x / (x + 1)
movq %rdx, %rax // copy the remainder into %rax

ret

Side Note: Old GCC Output

long func(long x, long *ptr) {

*ptr = x + 1;

long result = x % *ptr; // or x +

1
return result;

// X in %rdi, ptr in %rsi
func:

leag 1(%rdi), %rcx

movq %rcx, (%rsi)

movq %rdi, %rax

cqto

idivg %rcx

movq %rdx, »rax

ret

//
//
//
//
//
//

put x + 1 into %rcx
copy %rcx into *ptr
copy X into %rax
sigh-extend x into %rdx
calculate x / (x + 1)

copy the remainder into %rax

Learning Goals

e Learn about how assembly stores comparison and operation results in
condition codes

* Understand how assembly implements loops and control flow

Lecture Plan

* Assembly Execution and %rip

e Control Flow Mechanics
e Condition Codes
* Assembly Instructions

e If statements
* Loops

* While loops
* For loops

e Other Instructions That Depend On Condition Codes
* Live Session Slides

27

46

54
67

73
31

Lecture Plan

* Assembly Execution and %rip

e Control Flow Mechanics
e Condition Codes
* Assembly Instructions

e If statements
* Loops

* While loops
* For loops

e Other Instructions That Depend On Condition Codes
* Live Session Slides

27

46

54
67

73
31

Executing Instructions

What does it mean for a program
to execute?

Executing Instructions

So far:
* Program values can be stored in memory or registers.

* Assembly instructions read/write values back and forth
between registers (on the CPU) and memory.

* Assembly instructions are also stored in memory.

Today:

e Who controls the instructions?
How do we know what to do now or next?

Answer:
* The program counter (PC), %rip.

40041d

4004fcC |

4004fb
4004fa
400419

400418
400417
400416
400415
400414
400413
400412
400411

» 40040
4004ef

4004ee
4004ed

01

fc

45

83

00

00

00

00

fc

45

c/

e5

89

48

55

Register Responsibilities

Some registers take on special responsibilities during program execution.

* %rip stores the address of the next instruction to execute

See the x86-64 Guide and Reference Sheet on the Resources webpage for more!

Instructions Are Just Bytes!

CPU

Register file

P] ALU
;_. System bus Memory bus

P

A /0 , Main | “hello, world\n”

2
hello code

Bus interface

bridge memory

I/O bus :I D D

Expansion slots for
other devices such

USB Graphics ‘ Disk as network adapters
controller adapter | controller
. foes. 3
Mouse Keyboard Display ——) hello executable
Disk| stored on disk

Memory bus

v

Main | “hello, world\n

MOMOTYl ne1lo code

===

Instructions Are Just Bytes!

Main Memory

Stack

Heap

I
Data

instructions

Machine code gy
0x0

00000000004004ed <loop>:

4004ed:

40041 :
40048
4004fc:

55

c7 45 fc 00 00 00 00
83 45 fc 01
eb fa

push

mov1l
addl
jmp

%rbp

$0x0, -0x4 (%rbp)
$0x1, -0x4(%rbp)
400418 <loop+0xb>

4004fc

4004fb o1
4004fa fc
40049 45
400418 |83
40047 00
4004f6 00
40045 00
40044 00
400413 fc
40042 45
400411 c7
4004ed 55

Main Memory

Stack

§

Heap

Data

Text (code)

00000000004004ed <loop>:
) 4004ed: 55

4004f1: c7 45 fc 00 00 00 00
4004f8: 83 45 fc 01
4004fc: eb fa

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

push %rbp

movl $0x0, -0x4(%rbp)

addl $0x1,-0x4(%rbp)

jmp 400418 <loop+0xb>
Ox4004ed -.____...ﬂ>

%rip

4004fd

4004fc

4004fb o1
4004fa fc
40049 45
40048 83
40047 00
4004f6 00
40045 00
40044 00
400413 fc
40042 45
400411 c7

4004ed

55

00000000004004ed <loop>:
4004ed: 55

»

4004f1: c7 45 fc 00 00 00 00
4004f8: 83 45 fc 01
4004fc: eb fa

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

4004fd

4004fc

4004fb |01
4004fa fc
push %r‘bp 40049 45
4004f8 |83
movl $0x0, -0x4(%rbp) 4004f7 |00
addl $0x1, -0x4(%rbp) 4004f6 | 00
jmp 400418 <loop+0xb> 10045 | 00
4004f4 |00
4004f3 | fc
4004f2 |45
4004f1 | c7
OX4004 e mu——
4004ed |55

%rip

00000000004004ed <loop>:
4004ed: 55

» 4004f1: c7 45 fc 00 00 00 00
4004f8: 83 45 fc 01
4004fc: eb fa

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

push %rbp

movl $0x0, -0x4(%rbp)
addl $0x1,-0x4(%rbp)
jmp 400418 <loop+0xb>
0x4004f1

%rip

4004fd

4004fc

4004fb o1
4004fa fc
40049 45
40048 83
40047 00
4004f6 00
40045 00
40044 00
400413 fc
40042 45
400411 c7
4004ed 55

15

00000000004004ed <loop>:
4004ed: 55

4004f1: c7 45 fc 00 00 00 00
» 4004f8: 83 45 fc 01
4004fc: eb fa

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

push %rbp
movl $0x0, -0x4(%rbp)
addl $0x1,-0x4(%rbp)
jmp 400418 <loop+0x
0x4004f8

%rip

4004fd

4004fc

4004fb o1
4004fa fc
40049 45
40048 83
40047 00
4004f6 00
40045 00
40044 00
400413 fc
40042 45
400411 c7
4004ed 55

16

00000000004004ed <loop>:
4004ed: 55

4004F1: c7 45 fc 00 00 0O 00
4004F8: 83 45 fc 01
m) 4004fc: eb fa

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

push %rbp

movl $0x0, -0x4(%rbp
addl $0x1,-0x4(%rb

jmp 400418 <loopgoxb>
Ox4004fc

%rip

4004fd

4004fc

4004fb o1
4004fa fc
40049 45
40048 83
40047 00
4004f6 00
40045 00
40044 00
400413 fc
40042 45
400411 c7
4004ed 55

17

00000000004004ed <loop>:

4004ed:

40041
400418
m) 4004fc:

55

c7 45 fc 00 00 00 00
83 45 fc 01
eb fa

push %rbp

movl $0x0, -0x4(%rbp
addl $0x1,-0x4(%rb
jmp 400418 <loopgoxb>

Special hardware sets the program counter
to the next instruction:

%rip += size of bytes of current instruction

Ox4004fc

%rip

4004fd

4004fc

4004fb o1
4004fa fc
40049 45
40048 83
40047 00
4004f6 00
40045 00
40044 00
400413 fc
40042 45
400411 c7
4004ed 55

18

Going In Circles

 How can we use this representation of execution to represent e.g. a loop?
* Key Idea: we can "interfere” with %rip and set it back to an earlier instruction!

19

00000000004004ed <loop>:
4004ed: 55

4004F1: c7 45 fc 00 00 0O 00
4004F8: 83 45 fc 01
m) 4004fc: eb fa

The jmp instruction is an
unconditional jump that sets
the program counter to the
jump target (the operand).

push %rbp

movl $0x0, -0x4(%rbp
addl $0x1,-0x4(%rb

jmp 400418 <loopgoxb>
Ox4004fc

%rip

4004fd

4004fc

4004fb o1
4004fa fc
40049 45
40048 83
40047 00
4004f6 00
40045 00
40044 00
400413 fc
40042 45
400411 c7
4004ed 55

00000000004004ed <loop>:

4004ed: 55 push
4004f1: c7 45 fc 00 00 60 00 movl
m) 4004f8: 83 45 fc o1 add1l
4004fc:. eb fa jmp

The jmp instruction is an
unconditional jump that sets

%rbp

$0x0, -0x4(%rbp)
$0x1, -0x4(%rbp)
400418 <loop+0x

the program counter to the

jump target (the operand). Ox4004Ffc

%rip

4004fd

4004fc

4004fb o1
4004fa fc
40049 45
40048 83
40047 00
4004f6 00
40045 00
40044 00
400413 fc
40042 45
400411 c7
4004ed 55

00000000004004ed <loop>:
4004ed: 55

4004F1: c7 45 fc 00 00 0O 00
4004F8: 83 45 fc 01
m) 4004fc: eb fa

The jmp instruction is an
unconditional jump that sets
the program counter to the
jump target (the operand).

push %rbp

movl $0x0, -0x4(%rbp
addl $0x1,-0x4(%rb

jmp 400418 <loopgoxb>
Ox4004fc

%rip

4004fd

4004fc

4004fb o1
4004fa fc
40049 45
40048 83
40047 00
4004f6 00
40045 00
40044 00
400413 fc
40042 45
400411 c7
4004ed 55

00000000004004ed <loop>:

4004ed: 55 push
4004f1: c7 45 fc 00 00 60 00 movl
m) 4004f8: 83 45 fc o1 add1l
4004fc:. eb fa jmp

The jmp instruction is an
unconditional jump that sets

%rbp

$0x0, -0x4(%rbp)
$0x1, -0x4(%rbp)
400418 <loop+0x

the program counter to the

jump target (the operand). Ox4004Ffc

%rip

4004fd

4004fc

4004fb o1
4004fa fc
40049 45
40048 83
40047 00
4004f6 00
40045 00
40044 00
400413 fc
40042 45
400411 c7
4004ed 55

00000000004004ed <loop>:

4004ed: 55 push
4004f1: c7 45 fc 00 00 60 00 movl
m) 4004f8: 83 45 fc o1 add1l
4004fc:. eb fa jmp

This assembly represents an
infinite loop in C!

4004fd

4004fc

%rbp

$0x0, -0x4(%rbp)

$0x1, -0x4(%rbp)

400418 <loop+0x

while (true) {..}

Ox4004fc

4004fb o1
4004fa fc
40049 45
40048 83
40047 00
4004f6 00
40045 00
40044 00
400413 fc
40042 45
400411 c7
4004ed 55

%rip

The jmp instruction jumps to another instruction in the assembly code
(“Unconditional Jump”).

jmp Label (Direct Jump)
jmp *Operand (Indirect Jump)

The destination can be hardcoded into the instruction (direct jump):
jmp 40418 <loop+0xb>

The destination can also be one of the usual operand forms (indirect jump):
jmp *%rax

“Interfering” with %rip

1. How do we repeat instructions in a loop?

jmp [target]
* A 1-step unconditional jump (always
jump when we execute this instruction)

What if we want a conditional jump?

Lecture Plan

* Assembly Execution and %rip

e Control Flow Mechanics
e Condition Codes
* Assembly Instructions

e If statements
* Loops

* While loops
* For loops

e Other Instructions That Depend On Condition Codes
* Live Session Slides

27

46

54
67

73
31

* In C, we have control flow statements like if, else, while, for, etc. to write
programs that are more expressive than just one instruction following another.

* This is conditional execution of statements: executing statements if one
condition is true, executing other statements if one condition is false, etc.

* How is this represented in assembly?

° 'F In Assembly:
1 (X > y) { 1. Calculate the condition result
2. Based on theresult,gotoaorb
// a
} else {

// b

* In assembly, it takes more than one instruction to do these two steps.

* Most often: 1 instruction to calculate the condition, 1 to conditionally jump

Common Pattern:

1. cmp S1, S2 // compare two values

2. je [target] or jne [target] or jl [target] or ... // conditionally jump
“jump if “jump if “jump if
equal” not equal” | |less than”

Conditional Jumps

There are also variants of jmp that jump only if certain conditions are true
(“Conditional Jump”). The jump location for these must be hardcoded into the

instruction.
Instruction Synonym Set Condition
je Label jz Equal / zero
jne Label jnz Not equal / not zero
js Label Negative
jns Label Nonnegative
jg Label jnle Greater (signed >)
jge Label jnl Greater or equal (signed >=)
jl Label jnge Less (signed <)
jle Label jng Less or equal (signed <=)
ja Label jnbe Above (unsigned >)
jae Label jnb Above or equal (unsigned >=)
jb Label jnae Below (unsigned <)
jbe Label jna Below or equal (unsigned <=) %5

Read cmp S1,52 as “compare S2 to S1”:

// Jump if Z%edi > 2 // Jump if %edi == 4
cmp $2, %edi cmp $4, %edi

jg [target] je [target]

// Jump if %edi != 3 // Jump if %edi <=1
cmp $3, %edi cmp $1, %edi

jne [target] jle [target]

Read cmp S1,52 as “compare S2 to S1”:

// Jump if Z%edi > 2 // Jump if Z%edi
cmp $2, %edi cmp $4, %edi

jg [target] je [target]

// Jump if %edi !=2 [/ dumn i€ Yedi

Wait a minute — how does the
jump instruction know anything
jne [target] about the compared values in
the earlier instruction?

cmp $3, %edi

==4

<=1

* The CPU has special registers called condition codes that are like “global
variables”. They automatically keep track of information about the most
recent arithmetic or logical operation.

e cmp compares via calculation (subtraction) and info is stored in the condition codes
e conditional jump instructions look at these condition codes to know whether to jump

 What exactly are the condition codes? How do they store this information?

Condition Codes

Alongside normal registers, the CPU also has single-bit condition code registers.
They store the results of the most recent arithmetic or logical operation.

Most common condition codes:

* CF: Carry flag. The most recent operation generated a carry out of the most
significant bit. Used to detect overflow for unsigned operations.

e ZF: Zero flag. The most recent operation yielded zero.
* SF: Sign flag. The most recent operation yielded a negative value.

* OF: Overflow flag. The most recent operation caused a two’s-complement
overflow-either negative or positive.

Condition Codes

Alongside normal registers, the CPU also has single-bit condition code registers.
They store the results of the most recent arithmetic or logical operation.

Example: if we calculate t = a + b, condition codes are set according to:

* CF: Carry flag (Unsigned Overflow). (unsigned) t < (unsigned) a
* ZF: Zero flag (Zero). (t == 0)

* SF: Sign flag (Negative). (t < 9)

* OF: Overflow flag (Signed Overflow). (a<@ == b<o) && (t<O != a<0)

Setting Condition Codes

The cmp instruction is like the subtraction instruction, but it does not store the
result anywhere. It just sets condition codes. (Note the operand order!)

CMP S1, S2 S2 - S1

Instruction Description

cmpb Compare byte

cmpw Compare word

cmpl Compare double word
cmpq Compare quad word

Read cmp S1,52 as “compare S2 to S1”. It calculates S2 —S1 and updates the
condition codes with the result.

// Jump if Z%edi > 2 // Jump if Z%edi == 4
// calculates %edi - 2 // calculates %edi - 4
cmp $2, %edi cmp $4, %edi

jg [target] je [target]

// Jump if Z%edi != 3 // Jump if Z%edi <=1
// calculates %edi - 3 // calculates %edi - 1
cmp $3, %edi cmp $1, %edi

jne [target] jle [target]

Conditional Jumps

Conditional jumps can look at subsets of the condition codes in order to check
their condition of interest.

Instruction Synonym Set Condition

je Label jz Equal / zero (ZF = 1)

jne Label jnz Not equal / not zero (ZF = 0)

js Label Negative (SF=1)

jns Label Nonnegative (SF = 0)

jg Label jnle Greater (signed >) (ZF = 0 and SF = OF)

jge Label jnl Greater or equal (signed >=) (SF = OF)

jl Label jnge Less (signed <) (SF != OF)

jle Label jng Less or equal (signed <=) (ZF = 1 or SF! = OF)
ja Label jnbe Above (unsigned >) (CF =0 and ZF = 0)

jae Label jnb Above or equal (unsigned >=) (CF = 0)

jb Label jnae Below (unsigned <) (CF = 1)

jbe Label jna Below or equal (unsigned <=) (CF =1 or ZF = 1) é6

Setting Condition Codes

The test instruction is like cmp, but for AND. It does not store the & result
anywhere. It just sets condition codes.

TEST S1, S2 S2 & S1

Instruction Description

testb Test byte

testw Test word

testl Test double word
testq Test quad word

Cool trick: if we pass the same value for both operands, we can check the sign
of that value using the Sign Flag and Zero Flag condition codes!

Condition Codes

* Previously-discussed arithmetic and logical instructions update these flags. lea
does not (it was intended only for address computations).

 Logical operations (xor, etc.) set carry and overflow flags to zero.

 Shift operations set the carry flag to the last bit shifted out and set the
overflow flag to zero.

* For more complicated reasons, inc and dec set the overflow and zero flags, but
leave the carry flag unchanged.

Exercise 1: Conditional jump

je target jump if ZF is 1

Let %ed1i store 0x10. Will we jump in the following cases? %edi

1. cmp $0x10,%edi
je 40056f
add $0x1,%edi

2. test $0x10,%edi
je 40056
add $0x1,%edi

N
).,

0 =

Exercise 1: Conditional jump

je target jump if ZF is 1

Let %ed1i store 0x10. Will we jump in the following cases? %edi

1. cmp $0x10,%edi _
je 40056F S2-S1==0,s0jump

add $0x1,%edi

2. test $0x10,%edi
je 40056f S2 & S1 =0, sodon’t jump
add $0x1,%edi

Exercise 2: Conditional jump

00000000004004d6 <if_then>:
4004d6: 83 ff 06 cmp $0x6,%edi

4004d9: 75 03 jne 4004de <if then+0x8>
400rdb: 83 c7 o1 add $0x1,%edi
4004de: 8d 04 3f lea (%rdi,%rdi,1),%eax

%edi Ox5

4004el: c3 retq
1. What s the value of %rip after 2. Whatis the value of %eax

executing the jne instruction? when we hit the retq instruction?

A. 4004d9 A. 4004el

B. 4004db B. Ox2

C. 4004de C. Oxa _

D. Other D. Oxc Y
E. Other -

Exercise 2: Conditional jump

00000000004004d6 <if_then>:
4004d6: 83 ff 06 cmp $0x6,%edi

4004d9: 75 03 jne 4004de <if then+0x8>
400rdb: 83 c7 o1 add $0x1,%edi
4004de: 8d 04 3f lea (%rdi,%rdi,1),%eax

%edi Ox5

4004el: c3 retq
1. What s the value of %rip after 2. Whatis the value of %eax
executing the jne instruction? when we hit the retq instruction?
A. 4004d9 A. 4004el
5. 4004db 8. Ox2
D. Other D. Oxc

E. Other

Lecture Plan

* Assembly Execution and %rip

e Control Flow Mechanics
e Condition Codes
* Assembly Instructions

 If statements
* Loops

* While loops
* For loops

e Other Instructions That Depend On Condition Codes
* Live Session Slides

27

46

54
67

73
31

How can we use instructions like ecmp and conditional jumps to implement if
statements in assembly?

Practice: Fill In The Blank

int if then(int paraml) { ©000000000401126 <if_then>:

if (

) {

¥

return

401126
401129:
40112b:
40112e:
40112f:

401132:

cmp
je
lea
retq
add

Jmp

$0x6 %edi
40112F

(%rdi,%rdi,1),%eax

$0x1, %edi
40112b

(°)

AR

Practice: Fill In The Blank

int if then(int paraml) { 0©0000000000401126 <if_then>:

¥

if (paraml == 6) {
paraml++;
}

return paraml * 2;

401126
401129:
40112b:
40112e:
40112f:

401132:

cmp
je
lea
retq
add

Jmp

$0x6 %edi
40112F

(%rdi,%rdi,1),%eax

$0x1, %edi
40112b

°)

P
2.

(

Common If-Else Construction

If-Else In C If-Else In Assembly pseudocode
long absdiff(long x, long y) { Test
long result; Jump to else-body if test passes
if (x <vy) { Lf-body
result = y - x; Jump to past else-body

Else-body

} else { Past else body

result = x - y;
}

return result;

Practice: Fill in the Blank

If-Else In C

long absdiff(long x, long y) {
long result;

if () A
1 else { ’
} 5

return result;

401134
401137
40113a
40113c
40113f
401140
401143
401146

<+0>: mov %rsi,srax

<+3>: cmp %rsi,%rdi

<+6>: jge 0x401140 <absdiff+12>
<+8>: sub %rdi,%rax

<+11>: retq

<+12>: sub %rsi,nrdi

<+15>: mov %rdi, %rax

<+18>: retq

If-Else In Assembly pseudocode

Test

Jump to else-body if test passes
If-body

Jump to past else-body =1
Else-body
Past else body N

Practice: Fill in the Blank

If-Else In C

long absdiff(long x, long y) {
long result;

if (X <Y){
1 else { ’
}

return result;

401134
401137
40113a
40113c
40113f
401140
401143
401146

<+0>: mov %rsi,srax

<+3>: cmp %rsi,%rdi

<+6>: jge 0x401140 <absdiff+12>
<+8>: sub %rdi,%rax

<+11>: retq

<+12>: sub %rsi,nrdi

<+15>: mov %rdi, %rax

<+18>: retq

If-Else In Assembly pseudocode

Test

Jump to else-body if test passes
If-body

Jump to past else-body

Else-body

Past else body

If-Else Construction Variations

C Code
int test(int arg) {
int ret;
if (arg > 3) {
ret = 10;
} else {
ret = 0;
}
ret++;

return ret;

Assembly

401134
401137
401139
40113e
401141
401142
401147

<+0>:
<+3>:
<+5>:

<+10>:
<+13>:
<+14>:
<+19>:

cmp
jle
mov
add
retq
mov

jmp

$0x3, %edi
0x401142 <test+14>
$0xa, %eax
$0x1, %eax

$0x0, %eax
0x40113e <test+10>

Lecture Plan

* Assembly Execution and %rip

e Control Flow Mechanics
e Condition Codes
* Assembly Instructions

e If statements
* Loops

* While loops
* For loops

e Other Instructions That Depend On Condition Codes
* Live Session Slides

27

46

54
67

73
31

Loops and Control Flow

void loop() { 0x000000000040115Cc <+0>: mov $0x0, %eax
int i = 0: 0Xx0000000000401161 <+5>: cmp $0x63, %eax
1n. e 0x0000000000401164 <+8>: jg 0x40116b <loop+15>
while (i < 100) { 0x0000000000401166 <+10>: add $0x1,%eax
i++; 0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
} 0x000000000040116b <+15>: retq

Loops and Control Flow

void loop() { 0X0000000PRR40115¢C <+0>: mov $0x0,%eax
T 0x0000000000401161 <+5>: cmp $0x63,%eax
int 1 > Ox0000000000401164 <+8>: ig 0x40116b <loop+15>
while (i < 100) { OX0000000000401166 <+10>: add $0x1, %eax
i++; 0x0000000000401169 <+13>: jmp @x401161 <loop+5>
} 0X000000000040116b <+15>: retq

Set %eax (i) to O.

Loops and Control Flow

void loop() { 0Xx000000000040115C <+0>: mov $0x0, %eax
it 12 0 0X0000000000401161 <+5>: cmp $0x63,%eax
in > 0x0000000000401164 <+8>: jg 0x40116b <loop+15>
while (i < 100) { 0Xx0000000000401166 <+10>: add $0x1,%eax
i++; 0x0000000000401169 <+13>: jmp @x401161 <loop+5>
) 0x000000000040116b <+15>: retq

Compare %eax (i) to 0x63 (99)
by calculating %eax — 0x63.
This is 0 —99 = -99, so it sets
the Sign Flag to 1.

Loops and Control Flow

void loop() { 0x000000000040115Cc <+0>: mov $0x0, %eax
int i = 0° 0x0000000000401161 <+5>: cmp $0x63, %eax
int 1 > 0x0000000000401164 <+8>: ig 0x40116b <loop+15>
while (i < 100) { 0x0000000000401166 <+10>: add $0x1,%eax
i++; 0x0000000000401169 <+13>: jmp @x401161 <loop+5>
) 0x000000000040116b <+15>: retq

jg means “jump if greater than”.
This jumps if %eeax > 0x63. The
flags indicate this is false, so we do
not jump.

Loops and Control Flow

void loop() { 0x000000000040115Cc <+0>: mov $0x0, %eax
int i = 0° 0x0000000000401161 <+5>: cmp $0x63,%eax
1nt 1 > Ox0000000000401164 <+8>: ig Ox40116b <loop+15>
while (i < 100) { 0Xx0000000000401166 <+10>: add $0x1,%eax
i++; 0x0000000000401169 <+13>: jmp @x481161 <loOp+5>
) 0Xx000000000040116b <+15>: retq

Add 1 to %eax (i).

Loops and Control Flow

void loop() { 0x000000000040115Cc <+0>: mov $0x0, %eax
int i = 0° 0x0000000000401161 <+5>: cmp $0x63,%eax
int 1 > Ox0000000000401164 <+8>: ig 0x40116b <loop+15>
while (i < 100) { OX0000000000401166 <+10>: add $0x1, %eax
i++; 0Xx0000000000401169 <+13>: jmp 0x401161 <loop+5>
} 0x000000000040116b <+15>: retq

Jump to another instruction.

Loops and Control Flow

void loop() { 0Xx000000000040115C <+0>: mov $0x0, %eax
it 12 0 0X0000000000401161 <+5>: cmp $0x63,%eax
in > 0x0000000000401164 <+8>: jg 0x40116b <loop+15>
while (i < 100) { 0Xx0000000000401166 <+10>: add $0x1,%eax
i++; 0x0000000000401169 <+13>: jmp @x401161 <loop+5>
) 0x000000000040116b <+15>: retq

Compare %eax (i) to 0x63 (99)
by calculating %eax — 0x63.
This is 1 —99 = -98, so it sets
the Sign Flag to 1.

Loops and Control Flow

void loop() {
int 1 = 0;
while (i < 100) {
i++;
}

0x000000000040115Cc <+0>: mov $0x0, %eax
0Xx0000000000401161 <+5>: cmp $0x63,%eax
0Xx0000000000401164 <+8>: jg 0x40116b <loop+15>

0Xx0000000000401166 <+10>: add $0x1,%eax
0Xx0000000000401169 <+13>: jmp 0x401161 <loop+5>
0x000000000040116b <+15>: retq

We continue in this pattern until
we make this conditional jump.
When will that be?

Loops and Control Flow

void loop() { 0Xx000000000040115C <+0>: mov $0x0, %eax
it 12 0 0X0000000000401161 <+5>: cmp $0x63,%eax
in > OX0000000000401164 <+8>: jg Ox40116b <loop+15>
while (i < 100) { 0Xx0000000000401166 <+10>: add $0x1,%eax
i++; 0x0000000000401169 <+13>: jmp @x401161 <loop+5>
) 0x000000000040116b <+15>: retq

We will stop looping when this
comparison says that %eax — 0x63 > O!

Loops and Control Flow

void loop() { 0Xx000000000040115C <+0>: mov $0x0, %eax
int i = 9: 0Xx0000000000401161 <+5>: cmp $0x63, %eax
int 1 > Ox0000000000401164 <+8>: ig 0x40116b <loop+15>
while (i < 100) { OX0000000000401166 <+10>: add $0x1, %eax
i++; OX0000000000401169 <+13>: jmp Ox401161 <loop+5>
} Px000000000040116b <+15>: retq

Then, we return from the function.

GCC Common While Loop Construction

C

while (test) {
body

}

Assembly

Test

Skip loop if test passes
Body

Jump back to test

From Previous Slide:

0x0000000000401161
0x0000000000401164
0x0000000000401166
0x0000000000401169

<+5>:
<+8>:

<+10>:
<+13>:

cmp $0x63,%eax
jg 0x40116b <loop+15>
add $0x1, %eax
jmp 0x401161 <loop+5>

GCC Other While Loop Construction

C Assembly
while (test) { Jump to test
body Body
} Test
Jump to body if test passes
From Previous Slide:

OXx0000000000400575 <+5>: jmp Px40057a <loop+10>
0xX0000000000400577 <+7>: add $0x1, %eax
0x000000000040057a <+10>: cmp $0x63, %eax
PXx000000000040057d <+13>: jle Ox400577 <loop+7>

Lecture Plan

* Assembly Execution and %rip

e Control Flow Mechanics
e Condition Codes
* Assembly Instructions

e If statements
* Loops

* While loops
* For loops

e Other Instructions That Depend On Condition Codes
* Live Session Slides

27

46

54
67

73
31

Common For Loop Construction

CFor loop Assembly pseudocode
for (init; test; update) {) Tnit
body Test
} Skip loop if test passes
Body
mmm) Update

Jump back to test
C Equivalent While Loop

init

while(test) { For loops and while loops are
3°3Zte treated (essentially) the same

) g when compiled down to assembly.

Back to Our First Assembly

int sum_array(int arr[], int nelems) { |1 Which registeris C code’s sum?
int sum = ©; : : . e 39
for (int i = @; i < nelems; i++) { |2 Whichregisteris Ccode’s 1i:

} sum += arr[i]; 3. Which assembly instruction is C
return sum: code’s sum += arr[i]?
} 4. What are the cmp and jge

instruction ing?
0000000000401136 <sum_array>: .St UFt ° S'dO g
401136 <+0>: mov $0x0, %eax (jge: signed jump greater than/equal)

40113b <+5>: mov $0x0, %edx
401140 <+10>: cmp %»esi,%seax
401142 <+12>: jge 0x40114f <sum_array+25>

401144 <+14>: movslqg %eax,%rcx
401147 <+17>: add (%rdi,%rcx,4),%edx

40114a <+20>: add $0x1, %eax ~
40114d <+23>: jmp 0x401140 <sum_array+10> Kr>
40114f <+25>: mov %edx, seax -

401151 <+27>: retq 69

Demo: GDB and Assembly

(ctrl-x a: exit,
ctrl-1: resize)

layout split
info reg

p $eax
p $eflags

b *0x400546
b *0x400550 if $eax > 98

ni
si

View C, assembly, and gdb (lab5)
Print all registers

Print register value
Print all condition codes currently set

Set breakpoint at assembly instruction
Set conditional breakpoint

Next assembly instruction

Step into assembly instruction (will step
into function calls) 71

p/x $rdi
p/t $rsi

X $rdi
x/4bx $rdi
x/4wx $rdi

Print register value in hex

Print register value in binary

Examine the byte stored at this address
Examine 4 bytes starting at this address
Examine 4 ints starting at this address

Lecture Plan

* Assembly Execution and %rip

e Control Flow Mechanics
e Condition Codes
* Assembly Instructions

e If statements
* Loops

* While loops
* For loops

e Other Instructions That Depend On Condition Codes
* Live Session Slides

27

46

54
67

73
31

Condition Code-Dependent Instructions

There are three common instruction types that use condition codes:
e jmp instructions conditionally jump to a different next instruction
* set instructions conditionally set a bytetoO or 1

* new versions of mov instructions conditionally move data

set: Read condition codes

set instrucnons condinonally set a byte to O or 1.

e Reads current state of flags

* Desnnanon is a single-byte register (e.g., %al) or single-byte memory locanon
* Does not perturb other bytes of register

 Typically followed by movzbl to zero those bytes

cmp $0xf,%edi
setle %al

movzbl %al, %eax
retq

int small(int x) {
return x < 16;

¥

set: Read condition codes

Instruction Synonym Set Condition (1 if true, 0 if false)
sete D setz Equal / zero

setne D setnz Not equal / not zero

sets D Negative

setns D Nonnegative

setg D setnle Greater (signed >)

setge D setnl Greater or equal (signed >=)
setl D setnge Less (signed <)

setle D setng Less or equal (signed <=)
seta D setnbe Above (unsigned >)

setae D setnb Above or equal (unsigned >=)
setb D setnae Below (unsigned <)

setbe D setna Below or equal (unsigned <=)

cmov: Conditional move

cmovx src,dst conditionally moves data in src to data in dst.

* Mov src to dst if condition x holds; no change otherwise

e src is memory address/register, dst is register

* May be more efficient than branch (i.e., jump)

e Often seen with C ternary operator: result = test ? then: else;

. . . cm %edi,%esi
int max(int x, int y) { mos 7edi, %eax
(o}) (o

return x >y ? X : Vy; ,
) ’ cmovge %esi, %eax

retq

cmov: Conditional move

Instruction Synonym Move Condition

cmove S,R cmovz Equal / zero (ZF = 1)

cmovne S,R cmovnz Not equal / not zero (ZF = 0)

cmovs S,R Negative (SF = 1)

cmovns S,R NonnegaOve (SF = 0)

cmovg S,R cmovnle Greater (signed >) (SF = 0 and SF = OF)
cmovge S,R cmovnl Greater or equal (signed >=) (SF = OF)
cmovl S,R cmovnge Less (signed <) (SF != OF)

cmovle S,R cmovng Less or equal (signed <=) (ZF = 1 or SF! = OF)
cmova S,R cmovnbe Above (unsigned >) (CF =0 and ZF = 0)
cmovae S,R cmovnb Above or equal (unsigned >=) (CF = 0)
cmovb S,R cmovnae Below (unsigned <) (CF = 1)

cmovbe S,R cmovna Below or equal (unsigned <=) (CF =1 or ZF = 1)

Last Lab: Conditional Move

int signed _division(int x) {

return x / 4;

signed division:
leal 3(%rdi), %eax
testl %edi, %edi
cmovns »edi, %eax
sarl $2, %eax

ret

Put x + 3 into %eax
Check the sign of x

If X is positive, put x into %eax
Divide %eax by 4

* Assembly Execution and %rip

e Control Flow Mechanics
e Condition Codes
* Assembly Instructions

e If statements
* Loops

* While loops
* For loops

e Other Instructions That Depend On Condition Codes

Next time: Function calls in assembly

* How to remember cmp/jmp

e CMP S1, S2isS2 - S1 (justsets condition codes). But generally:

cmp S1, S2
Jg

S2 > S1 S2 - S1 > 0

Instruction Synonym Jump condition Description
jmp Label 1 Direct jump
jmp *Operand 1 Indirect jump
. je Label jz ZF Equal / zero
[]
IVIUCh |eSS |mp0rta nt to remember jne Label jnz ~ZF Not equal / not zero
exact condition codes fay 2are s Negaie
jns Label ~SF Nonnegative
* Yes, they fully explain conditional jmp... J§ Label gule ~@F-ORE-ZF Greater (signed>)
jge Label jnl ~(SF ~ OF) Greater or equal (signed >=)
. j1 Label jnge SF ~ OF L igned
* ..but more important to know how to THA S gpe L b st e B L e
translate assembly back into C v Label 1T i fmbarily i -G b -ZF Above (unsigned »)
, -]ie iaze; jnb ;CF Above or equal (unsigned >=)
. H 3 abe jnae F Bel i
* If you’re interested, B&O p. 206 has details Sy T TR s by ot e a8

Figure 3.15 The jump instructions. These instructions jump to a labeled destination

when the jump condition holds. Some instructions have “synonyms,” alternate names
for the same machine instruction. 83

* Remember test exists

e TEST S1, S2 isS2 & S1

. . Instruction Synonym Jump condition Description
test %edi, %edi

jmp Label 1 Direct jump
. jmp *Operand 1 Indirect jump
J n S .oe je Label jz 7F Equal / zero
jne Label jnz ~ZF Not equal / not zero
js Label SF Negative
jns Label ~SF Nonnegative
jg Label jnle ~(SF ~ OF) & ~ZF Greater (signed >)
jge Label jnl ~(SF ~ OF) Greater or equal (signed >=)
jl1 Label jnge SF ~ OF Less (signed <)
. jle Label jng (SF ~ OF) | ZF Less or equal (signed <=)
o ° o [J ® K 3
nedi & %edl 1s nonnegative = twa e e Ao usismer)
jae Label jnb ~CF Above or equal (unsigned >=)
jb Label jnae CF

. . . Below (unsigned <
%edi is nonnegative fo Ll e wim o

Below or equal (unsigned <=)

Figure 3.15 The jump instructions. These instructions jump to a labeled destination
when the jump condition holds. Some instructions have “synonyms,”

e : alternate names
for the same machine instruction.

Practice: Fill in the blanks

long loop(long a, long b) {

long result = (1) ;
while ((2)) {
result = (3) 5
a=__(4)_;
}
return result;
}
Test
Jump past loop if fails
Body

Jump to test

<+0>:
<+5>:
<+8>:

<+10>:
<+14>:
<+18>:
<+22>:
<+24>:

mov $0x1, %eax

cmp %rsi,%rdi

jge ©x1151 <loop+24>
lea (%rdi,%rsi,1),%rdx
imul %rdx, %rax

add $0x1,%rdi

jmp Ox113e <loop+5>
retq

°)

{—\\
.,

(

https://godbolt.org/z/zrW6c5MGa 86

Practice: Fill in the blanks

long loop(long a, long b) {

long result = (1) ;
while ((2)) {
result = (3) 5
a=__(4)_;
}
return result;
}
Test
Jump past loop if fails
Body

Jump to test

<+0>:
<+5>:
<+8>:

<+10>:
<+14>:
<+18>:
<+22>:
<+24>:

mov
cmp
jge
lea
imul
add
Jjmp
retq

$0x1,%eax
%rsi,%rdi

0x1151 <loop+24>
(%rdi,%rsi,1),%rdx
%rdx,%rax
$0x1,%rdi

Ox113e <loop+5>

P
f o)
))

(

Practice: Fill in the blanks

long loop(long a, long b) { <+0>: mov $0x1, %eax
long result = ; . .
while () { <+5>: cmp %rsi,%srdi
result = ; <+8>: jge ©x1151 <loop+24>
a =) <+10>: lea (%rdi,%rsi,1),%rdx
} <+14>: imul %rdx, %rax
return result; <+18>: add $ox1,%rdi

<+22>: Jjmp Ox113e <loop+5>

<+24>: retq

Practice: Fill in the blanks

long loop(long a, long b) { <+0>: mov $0x1, %eax
long result = _1 ____; _ .
while (_La <b) { <+5>: cmp %rsi,%rdi
result = result*(a+b) : <+8>: jge Ox1151 <loop+24>
a=atl <+10>: lea (%rdi,%rsi,1),%rdx
} <+14>: 1imul %rdx, %rax
return result; <+18>: add $0x1,%rdi

<+22>: Jjmp Ox113e <loop+5>

<+24>: retq

test practice: What's the C code?

0x400546
0x400548
Ox400543
Ox40054f
©x400550

0x400555

<test func>

<test func+2>
<test func+4>
<test func+9>
<test func+10>

<test func+15>

test %edi, %edi
jns Ox400550 <test func+10>

mov $0xfeed, %eax
retq
mov $0xaabbccdd, %eax

retq

°)

91

test practice: What's the C code?

Ox400546 <test func> test %edi, kedl

0x400548 <test func+2> Jjns Ox400550 <test func+10>
Ox40054a <test func+4> mov $0xfeed, %eax

0x40054f <test_func+9> retq

Ox400550 <test func+10> mov $0xaabbccdd, %eax

Ox400555 <test func+15> retg

int test func(int x) {
if (x < 9) {
return Oxfeed;
}

return Oxaabbccdd; (or anything
} like this)

92

Practice: "Escape Room”

<escape_room+0> lea (%rdi,%rdi,1),%eax
<escape_room+3> cmp $0x5, %eax
<escape_room+6> jg Ox114c <escape_room+19>
<escape_room+8> cmp $0x1,%edi
<escape_room+11> je Ox1152 <escape_room+25>
<escape_room+13> mov $0x0, %eax
<escape_room+18> retq

<escape_room+19> mov $0x1, %eax
<escape_room+24> retq

<escape_room+25> mov $0x1, %eax
<escape_room+30> retq

What must be passed to the You don’t have to reverse-engineer C

escapeRoom function such that it | |code exactly!
returns true (1) and not false (0)?

93

Practice: "Escape Room”

<escape_room+0> lea (%rdi,%rdi,1),%eax
<escape_room+3> cmp $0x5, %eax
<escape_room+6> jg Ox114c <escape_room+19>
<escape_room+8> cmp $0x1,%edi
<escape_room+11> je Ox1152 <escape_room+25>
<escape_room+13> mov $0x0, %eax
<escape_room+18> retq

<escape_room+19> mov $0x1, %eax
<escape_room+24> retq

<escape_room+25> mov $0x1, %eax
<escape_room+30> retq

What must be passed to the
escapeRoom function such that it First param > 2 or == 1.
returns true (1) and not false (0)?

94

* Revisiting %rip

* Calling Functions
* The Stack
* Passing Control

* Passing Data
* Local Storage

Lecture Plan

* Register Restrictions

* Pulling it all together: recursion example

* Optimizations
e Live session slides

cp -r /afs/ir/class/cs107/lecture-code/lectl3 .

19
22
36
44
65

69
78
31
93

* Revisiting %rip

* Calling Functions
* The Stack
* Passing Control

* Passing Data
* Local Storage

Lecture Plan

* Register Restrictions

* Pulling it all together: recursion example

* Optimizations
e Live session slides

cp -r /afs/ir/class/cs107/lecture-code/lectl3 .

19
22
36
44
65

69
78
31
93

* %rip is a special register that points to the next instruction to execute.

* Let’s dive deeper into how %rip works, and how jumps modify it.

void loop() {
int 1 = 0;
while (i < 100) {
i++;
}

0x40113f
0x401144
0x401147
0x401149
0x40114c
0x40114e

<+0>:
<+5>:
<+8>:
<+10>:
<+13>:
<+15>:

b8 00
83 f8
7f 05
83 cO
eb f6
c3

00 00 00
63

01

mov
cmp
jg

add

Jmp
retq

$0x0, %eax
$0x63, %eax
40114e <loop2+15>
$0x1, %eax
401144 <loop2+5>

void loop() {
int 1 = 0;
while (i < 100) {
i++;
}

Ox40113f (<+@>: b8 00 00 00 90 mov $0x0,%eax

0x401144 <+5>: 83 f8 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
0x401149 <+10>: 83 co 01 add $0x1,%eax
0x40114c [<+13>: eb f6 jmp 401144 <loop2+5>
Ox40114e <+15>: c3 retq

These are 0-based offsets in bytes
for each instruction relative to the
start of this function.

void loop() {
int 1 = 0;
while (i < 100) {
i++;
}

0x40113f
0x401144
0x401147
0x401149
0x40114c
0x40114e

<+0>:
<+5>:
<+8>:
<+10>:
<+13>:
<+15>:

b8
83

7f

83
eb
c3

00
8
05
co
6

00 00 00
63

01

mov
cmp
jg
add
jmp
retq

$0x0, %eax
$0x63, %eax
40114e <loop2+15>
$0x1, %eax
401144 <loop2+5>

These are bytes for the machine
code instructions. Instructions are
variable length.

void loop() {
int 1 = 0;
while (i < 100) {
i++;
}

0x40113f
0x401144
0x401147
0x401149
0x40114c
0x40114e

<+0>:
<+5>:
<+8>:
<+16>:
<+13>:
<+15>:

b8 00
83 f8
7f 05
83 cO
eb f6
c3

00 00 00
63

01

mov
cmp
jg
add
jmp
retq

$0x0, %eax
$0x63, %eax
40114e <loop2+15>
$0x1, %eax
401144 <loop2+5>

Ox40113f
0x401144
0x401147
0x401149
0x40114c

0x40114e

<+0>:
<+5>:
<+8>:
<+10>:
<+13>:

<+15>:

b8
83
7f
83
eb

c3

00 00 00 00
8 63

05

co 901

6

mov
cmp
g
add
jmp
retq

$0x0, heax
$0x63, %eax
40114e <loop2+15>
$0x1, %eax
401144 <loop2+5>

Ox40113f <+0>: b8 00 00 00 00
0x401144 <+5>: 83 8 63

0x401147 <+8>: 7f 05

0x401149 <+10>:
Ox40114c <+13/.

0x40114e

O0x7f means jg.

mov
cmp
g
add
jmp
retq

$0x0, heax
$0x63, %eax
40114e <loop2+15>
$0x1, %eax
401144 <loop2+5>

Ox40113f <+0>: b8 0O 0O 00 00
0x401144 <+5>: 83 f8 63
0x401147 <+8>: 7f 05

0x401149 <+10>: co 01
Ox40114c <+13>: 6

0x40114e <+15.

0x05 is the number of
instruction bytes to
jump relative to %rip.

mov
cmp
g
add
jmp
retq

$0x0, heax
$0x63, %eax
40114e <loop2+15>
$0x1, %eax
401144 <loop2+5>

With no jump, %rip would
advance to the next line.

This jg says to then go 5
bytes further!

Ox40113f <+0>: b8 0O 0O 00 00
Ox401144 <+5>: 83 f8 63
Ox401147 <+8>: 7f 05

0x401149 <+10>: 83/co 01
Ox40114c <+13>: 6

0x40114e <+15>%

0x05 is the number of
instruction bytes to
jump relative to %rip.

mov
cmp
Jg
add
Jjmp
retq

$0x0, heax
$0x63, %eax
40114e <loop2+15>
$0x1, %eax
401144 <loop2+5>

With no jump, %rip would
advance to the next line.

This jg says to then go 5
bytes further!

Ox40113f
0x401144
0x401147
0x401149
0x40114c

Ox40114e

b8
83

7f

<+0>:
<+5>:
<+8>:
<+10>: 83
<+13>: eb

y./'c?,

Oxeb means jmp.

00 00 00 00
8 63

05

co 01

f6

mov
cmp
Jg
add
jmp
retq

$0x0, heax
$0x63, %eax
40114e <loop2+15>
$0x1, %eax
401144 <loop2+5>

Ox40113f <+0>: b8 00 00 00 00
0x401144 <+5>: 83 {8 63

0x401147 <+8>: 7f 05
Ox401149 <+10>: 83 cO 01
Ox40114c <+13>: eb fe6

0x40114e <+15y/'

0xf6 is the number of
instruction bytes to jump
relative to %rip. This is -10
(in two’'s complement!).

mov
cmp
Jg
add
jmp
retq

$0x0, heax
$0x63, %eax
40114e <loop2+15>
$0x1, %eax
401144 <loop2+5>

With no jump, %rip
would advance to the
next line. This jmp says
to then go 10 bytes back!

Ox40113f <+0>: b8 00 00 00 00
0x401144 <+5>: 83 f8 63

0x401147 <+8>: 7f 05
0x401149 <+10>: 83 cO 01
Ox40114c <+13>: eb f6

Ox40114e <+15‘>:/))7

0xf6 is the number of
instruction bytes to jump
relative to %rip. This is -10
(in two’'s complement!).

mov
cmp
j8
add
jmp
retq

$0x0, heax

$0x63, %eax
40114e <loop2+15>
$0x1, %eax

401144 <loop2+5>

With no jump, %rip
would advance to the
next line. This jmp says
to then go 10 bytes back!

Summary: Instruction Pointer

* Machine code instructions live in main memory, just like stack and heap data.

* %rip is a register that stores a number (an address) of the next instruction to
execute. It marks our place in the program’s instructions.

* To advance to the next instruction, special hardware adds the size of the
current instruction in bytes.

e jmp instructions work by adjusting %rip by a specified amount.

* Revisiting %rip

* Calling Functions
* The Stack
* Passing Control

* Passing Data
* Local Storage

Lecture Plan

* Register Restrictions

* Pulling it all together: recursion example

* Optimizations
e Live session slides

cp -r /afs/ir/class/csl107/lecture-code/lectl3 .

19
22
36
44
65

69
78
31
93

How do we call functions in
assembly?

Calling Functions In Assembly

To call a function in assembly, we must do a few things:

e Pass Control — %rip must be adjusted to execute the callee’s instructions, and
then resume the caller’s instructions afterwards.

* Pass Data — we must pass any parameters and receive any return value.

 Manage Memory — we must handle any space needs of the callee on the
stack.

How does assembly
interact with the stack?

Terminology: caller function calls the callee function.

* Revisiting %rip

* Calling Functions
* The Stack
* Passing Control

* Passing Data
* Local Storage

Lecture Plan

* Register Restrictions

* Pulling it all together: recursion example

* Optimizations
e Live session slides

cp -r /afs/ir/class/csl107/lecture-code/lectl3 .

19
22
36
44
65

69
78
31
93

* %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

Main Memory

main()

myfunction()

%rsp

Heap

Data

Text (code)

N
w

0x0

* %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

Main Memory

main()

myfunction()

foo()

%rsp

Heap

Data

Text (code)

N
w

0x0

* %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

Main Memory

main()

myfunction()

foo()

%rsp

foo2()

Heap

Data

Text (code)

N
w

0x0

* %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

Main Memory

main()

myfunction()

foo()

%rsp

Heap

Data

Text (code)

N
w

0x0

* %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

%rsp

0x0

Main Memory

main()

myfunction()

Heap
[—
Data
I
Text (code)
[

Key idea: %rsp must
point to the same place
before a function is
called and after that
function returns, since
stack frames go away

when a function finishes.

27

* The push instruction pushes the data at the specified source onto the top of
the stack, adjusting %rsp accordingly.

Instruction Effect

pushg S |R[%rsp] « R[%rsp] - 8;
M[R[%rsp]] < S

* The push instruction pushes the data at the specified source onto the top of
the stack, adjusting %rsp accordingly.

Instruction Effect
pushg S |R[%rsp] <« R[%rsp] - 8;

* The push instruction pushes the data at the specified source onto the top of
the stack, adjusting %rsp accordingly.

Instruction Effect

pushqg S
M[R[%rsp]] < S

* The push instruction pushes the data at the specified source onto the top of
the stack, adjusting %rsp accordingly.

Instruction

Effect

pushqg S

R[%rsp] «— R[%rsp] - 8;
M[R[%rsp]] < S

* This behavior is equivalent to the following, but pushq is a shorter instruction:

subg $8, %rsp
movq S, (%rsp)

* Sometimes, you’ll see instructions just explicitly decrement the stack pointer
to make room for future data.

* The pop instruction pops the topmost data from the stack and stores it in the
specified destination, adjusting %rsp accordingly.

Instruction Effect

popqg D (D «— M[R[%rsp]]
R[%rsp] «— R[%rsp] + 8;

* Note: this does not remove/clear out the data! It just increments %rsp to
indicate the next push can overwrite that location.

* The pop instruction pops the topmost data from the stack and stores it in the
specified destination, adjusting %rsp accordingly.

Instruction Effect

popqg D (D «— M[R[%rsp]]
R[%rsp] «— R[%rsp] + 8;

* This behavior is equivalent to the following, but popq is a shorter instruction:
movq (%rsp), D
addq $8, %rsp
* Sometimes, you’ll see instructions just explicitly increment the stack pointer to
pop data.

Stack Example

Initially pushg %rax popq %rdx
%rax 0x123 %rax 0x123 %rax 0x123
%rdx 0 %rdx (%) %Brdx 0x123
%rsp 0x108 %rsp 0x100 %rsp 0x108
Stack “bottom” Stack “bottom” Stack “bottom”
Increasing Increasing Increasing
addresses addresses addresses
0x108 = stack “top” 0x108 Ox123 0x108 ox123
0x100 0x100

Stack “top” Stack “top’, 34

Calling Functions In Assembly

To call a function in assembly, we must do a few things:

e Pass Control — %rip must be adjusted to execute the callee’s instructions, and
then resume the caller’s instructions afterwards.

Terminology: caller function calls the callee function.

* Revisiting %rip

* Calling Functions
* The Stack
e Passing Control

* Passing Data
* Local Storage

Lecture Plan

* Register Restrictions

* Pulling it all together: recursion example

* Optimizations
e Live session slides

cp -r /afs/ir/class/csl107/lecture-code/lectl3 .

19
22
36
44
65

69
78
31
93

Remembering Where We Left Off

Problem: %rip points to the E.g. main() calls foo(): Stack
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.

Solution: push the next value of l

main()

%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue %rsp | oxft20
executing.

%rip | 0x3021

Remembering Where We Left Off

Problem: %rip points to the
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.

Solution: push the next value of
%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue
executing.

E.g. main() calls foo():

%rsp

%rip

Oxff18

0x3021

main()

0Xx3026

Remembering Where We Left Off

Problem: %rip points to the
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.

Solution: push the next value of
%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue
executing.

E.g. main() calls foo():

%rsp

%rip

Oxff08

0x4058

main()

0Xx3026

Remembering Where We Left Off

Problem: %rip points to the
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.

Solution: push the next value of
%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue
executing.

E.g. main() calls foo():

%rsp

%rip

Oxff18

0x4058

main()

0Xx3026

Remembering Where We Left Off

Problem: %rip points to the E.g. main() calls foo(): Stack
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.

Solution: push the next value of l

main()

%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue %rsp | oxft20
executing.

%rip | 0x3026

Call And Return

The call instruction pushes the address of the instruction immediately following
the call instruction onto the stack and sets %rip to point to the beginning of the
specified function’s instructions.

call Label
call *Operand

The ret instruction pops this instruction address from the stack and stores it in
%rip.

ret

The stored %rip value for a function is called its return address. It is the address

of the instruction at which to resume the function’s execution. (not to be
confused with return value, which is the value returned from a function).

Calling Functions In Assembly

To call a function in assembly, we must do a few things:

* Pass Data — we must pass any parameters and receive any return value.

Terminology: caller function calls the callee function.

* Revisiting %rip

* Calling Functions
* The Stack
* Passing Control

* Passing Data
* Local Storage

Lecture Plan

* Register Restrictions

* Pulling it all together: recursion example

* Optimizations
e Live session slides

cp -r /afs/ir/class/csl107/lecture-code/lectl3 .

19
22
36
44
65

69
78
31
93

Parameters and Return

* There are special registers that store parameters and the return value.

* To call a function, we must put any parameters we are passing into the correct
registers. (%rdi, %rsi, %rdx, %rcx, %r8, %r9, in that order)

 Parameters beyond the first 6 are put on the stack.
* If the caller expects a return value, it looks in %rax after the callee completes.

Parameters and Return

int main(int argc, char *argv[]) { rna]J1() [::
int i1 = 1; \1,
int 12 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&il, &i2, &i3, &i4,
i1, i2, i3, i4);

}

int func(int *pl, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

Parameters and Return

int main(int argc, char *argv[]) { main() [::
int i1 = 1; \1’
int i2 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&il, &i2, &i3, &i4,
i1, i2, i3, i4);

}

Oxffea08

int func(int *pl, int *p2, int *p3, int *p4,

int v1, int v2, int v3, int v4 .
J J J) { %r‘lp

} 0x40054f

0x40054f <+0>: sub $0x18,%rsp
Ox400553 <+4>: movl $0x1,0xc(%rsp)
0x40055b <+12>: movl $0x2,0x8(%rsp)

0x400563 <+20>: movl $0x3,0x4(%rsp)
ox40056h <+28>° mov L tova (%r\sp) 47

PIIc Ty

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1;
int i2 = 2;
int i3 = 3; main()
int i4 = 4;

int result = func(&il, &i2, &i3, &i4,
i1, i2, i3, i4);

Oxffeofo
} \1, %rsp
Oxffe9f0
int func(int *pl, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) { %rip
} 0x400553

0x40054f <+0>: sub $0x18,%rsp

Ox400553 <+4>: movl $0x1,0xc(%rsp)
@x40055b <+12>: movl $0x2,0x8(%rsp)
Ox400563 <+20>: movl $0x3,0x4(%rsp)

OvAPPEENh ¢109QQs - moyvz] $o0vad (Yrcn) 26
A\ A A A~ A4 "4 N LLLAY4 = =

T &OU7 L1} A4 -PUI_I', \IUI JP/

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1; Oxffeofc 1
int i2 = 2;

int i3 = 3; main()

int i4 = 4;

int result = func(&il, &i2, &i3, &i4,
i1, i2, i3, i4);

Oxffeofo
} \1, %rsp
Oxffe9f0
int func(int *pl, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) { %rip
} 0x40055b

0x40054f <+0>: sub $0x18,%rsp

Ox400553 <+4>: movl $0x1,0xc(%rsp)
@x40055b <+12>: movl $0x2,0x8(%rsp)
Ox400563 <+20>: movl $0x3,0x4(%rsp)

OvAPPEENh ¢109QQs - moyvz] $o0vad (Yrcn) 26
A\ A A A~ A4 "4 N LLLAY4 = =

T &OU7 L1} A4 -PUI_I', \IUI JP/

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1; Oxffeofc 1
int i2 = 2;
int i3 = 3; main() oxffeofs 2
int i4 = 4;

int result = func(&il, &i2, &i3, &i4,
i1, i2, i3, i4);

Oxffeofo
} \1, %rsp
Oxffe9f0
int func(int *pl, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) { %rip
} 0x400563

0x40054f <+0>: sub $0x18,%rsp

Ox400553 <+4>: movl $0x1,0xc(%rsp)
@x40055b <+12>: movl $0x2,0x8(%rsp)
Ox400563 <+20>: movl $0x3,0x4(%rsp)

OvAPPEENh ¢109QQs - moyvz] $o0vad (Yrcn) 26
A\ A A A~ A4 "4 N LLLAY4 = =

T &OU7 L1} A4 -PUI_I', \IUI JP/

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1; Oxffed9fc 1
int i2 = 2;
int i3 = 3; rnajj]() Oxffe9fs
int i4 = 4; 3
int result = func(&il, &i2, &i3, &i4, oxffeof4
11, 12, 13, 14); Oxffe9fo
} \1, %rsp
Oxffe9fo
int func(int *pl, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) { %rip
(o]
} 0x40056b

0x400563 <+20>: movl $0x3,0x4(%rsp)
0x40056b <+28>: movl $0x4, (%rsp)

OvADOLE7) ¢4226 . n a t0vA 26
A\ A% A AE" & & N TV 07 o I.IM I\1 -PUI_l'

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1; Oxffed9fc 1
int i2 = 2;
int i3 = 3; main() oxffeofs 2
int i4 = 4; 3
int result = func(&il, &i2, &i3, &i4, oxffeof4
11, 12, 13, 14); oxffeofo 4
} \1, %rsp
Oxffe9fo
int func(int *pl, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) { %rip
(o]
} 0x400572

0x40056b <+28>: movl $0x4, (%rsp)
0x400572 <+35>: pushqg $0x4

OwAPOE 74 <437 - nucha {T0v 52
A\ VA% AYAY4 N - 7

A A o T 7 e PMJII\1 YIINT

Parameters and Return

int main(int argc, char *argv[]) {
int i1 = 1; oxffeofc 1
int i2 = 2;
int i3 = 3; main() oxffeofs 2
int i4 = 4; 3
int result = func(&il, &i2, &i3, &i4, oxffeof4
11, 12, 13, i4); oxffeofo 4
} %rsp
4 Oxffe9e8
int func(int *pl, int *p2, int *p3, int *p4, oxffe9e8
int vl1l, int v2, int v3, int v4)
)))) { ¢ %r‘lp
} 0x400574
0x400572 <+35>: pushq $0x4
0x400574 <+37>: pushqg $0x3
Ox480576 <+39>: moV $0x25%r9d 53

Parameters and Return

int main(int argc, char *argv[]) {
int il = 1; oxffeofc 1
int i2 = 2;
int i3 = 3; main() oxffeofs 2
int i4 = 4; 3
int result = func(&il, &i2, &i3, &i4, oxffeof4
11, 12, 13, i4); oxffeofo 4
} %rsp
4 Oxffe9e0
int func(int *pl, int *p2, int *p3, int *p4, oxffe9e8
int v1, int v2, int v3, int v4) { %rip
(o]
X
3 0x400576
Oxffe9e0
0x400574 <+37>: pushg $0x3
0x400576 <+39>: mov $0x2,%rod
Ox40057¢c <+45>: mov $6x1;%r8d >4

Parameters and Return

int main(int argc, char *argv[]) {
int il = 1; oxffeofc 1
int i2 = 2;
int i3 = 3; main() oxffeofs 2
int i4 = 4; 3
int result = func(&il, &i2, &i3, &i4, oxffeof4
11, 12, 13, 14); oxffeofo 4
} %rsp
4 Oxffe9e0
int func(int *pl, int *p2, int *p3, int *p4, oxffe9e8
int v1, int v2, int v3, int v4) { %rip
(o]
} 3 0x40057¢
Oxffe9e0
0x400576 <+39>: mov $0x2,%r9d
0x40057c <+45>: mov $0x1,%rs8d
0x400582 <+51>: lea Bx10(%rsp),%rcx 2>

Parameters and Return

int main(int argc, char *argv[]) {
int i1 = 1; oxFfeofc 1
int i2 = 2;
int i3 = 3; main() oxffeofs 2
int i4 = 4; 3
int result = func(&il, &i2, &i3, &i4, oxffeof4
11, 12, 13, i4); oxffeofo 4
}
4
int func(int *pl, int *p2, int *p3, int *p4, oxffe9e8
int v1, int v2, int v3, int v4) {
} 3 %rsp
Oxffe9e0
xrrese Oxffe9e0
J’ %rip
0x400576 <+39>: mov $0x2,%r9d
0x40057c <+45>: mov $0x1,%rs8d 0x40057¢
@x400582 <+51>: lea Ox10(%rsp)s%rex ‘ 56

Parameters and Return

int main(int argc, char *argv[]) {
int il = 1; oxFfeofc 1
int i2 = 2;
int i3 = 3; main() oxffeofs 2
int i4 = 4; 3
int result = func(&il, &i2, &i3, &i4, oxffeof4
11, 12, 13, 14); oxffeofo 4
} 4
o,
int func(int *pl, int *p2, int *p3, int *p4, oxffe9e8 %r9d
int v1, int v2, int v3, int v4) { 2
} 3 %rsp
Oxffe9e0
xrrese Oxffe9e0
J’ %rip
0x400576 <+39>: mov $0x2,%r9d 0x40057c
0x40057c <+45>: mov $0x1, %r8d
DOVvADODEQ) ,4C1\ - 1an ovID(Yrnen Ynev ‘ 27
0

Parameters and Return

int main(int argc, char *argv[]) {
int i1 = 1; oxffeofc 1
int i2 = 2;
int i3 = 3; main() oxffeofs 2
int i4 = 4; 3
int result = func(&il, &i2, &i3, &i4, oxffeof4
11, 12, 13, i4); oxffeofo 4 %r8d
} ; !
o,
int func(int *pl, int *p2, int *p3, int *p4, oxffe9e8 %r9d
int v1, int v2, int v3, int v4) { 2
} 3 %rsp
Oxffe9e0
xrrese Oxffe9e0
J’ %rip
0x40057c <+45>: mov $ex1,fr8d o 0x400582
0x400582 <+51>: lea 0x10(%rsp),%rcx
DVvADODEQ7 ,4CAN - 1an OVvIA(Yrnen Yndv ‘ 27
1

Parameters and Return

int main(int argc, char *argv[]) {
int i1 = 1; oxffeofc 1
int i2 = 2;
int i3 = 3; rnajj1() Oxffeofs8 2 %rCX
int i4 = 4;
Oxffe9f0
int result = func(&il, &i2, &i3, &i4, oxffeof4 3
i1, i2, i3, id); OxFFe9fo 4 %r8d
} 1
: : : : : 4 %r9od
int func(int *pl, int *p2, int *p3, int *p4, Oxffe9e8
int v1, int v2, int v3, int v4) { 2
} e 3 %r‘sp
Oxffe9e0
xrrese Oxffe9e0
J’ %rip
0x400582 <+51>: lea ox10(%rsp),%rcx
]] 0x400587
0x400587 <+56>: lea Ox14(%rsp) ,%rdx
Ox40058¢c <+61> lea Ox18(%rsp) %rsi ‘ 59

Parameters and Return

int main
int
int
int
int
int

}

argc, char *argv[]) {

(int

il = 1;
i2 = 2;
i3 = 3;
i4 = 4,

result = func(&il1l, &i2, &i3, &i4,

i1, i2, i3, i4);

int func(int *pl, int *p2, int *p3, int *p4,

int v1, int v2, int v3, int v4) {

}

0x400587 <+56>: lea ox14(%rsp),%rdx
0x40058c <+61>: lea Ox18(%rsp),%rsi
Ox400591 <+66>: lea BOxlc(%hrsp) khrdi

main()

Oxffe9fc

Oxffe9of8

oxffeof4

oxffeofo

Oxffe9e8

Oxffe9ed

%rdx

Oxffe9f4

%rcx

Oxffe9f0

P WIN|F

%r8d

1

%rad

2

%rsp
Oxffe9e0

%rip

0x40058¢

‘60

Parameters and Return

int main(int argc, char *argv[]) { o %rdx
int i1 = 1; Oxffe9fc 1 Oxffe9fs
int i2 = 2;
int i3 = 3; rnajj1() Oxffeofs8 2 %rCX
int i4 = 4;
Oxffe9f0
int result = func(&il, &i2, &i3, &i4, oxffeof4 3
i1, i2, i3, id); OxFFe9fo 4 %r8d
} 1
: : : : : 4 %r9od
int func(int *pl, int *p2, int *p3, int *p4, Oxffe9e8
int v1, int v2, int v3, int v4) { 2
} e 3 %r‘sp
Oxffe9e0
xrrese Oxffe9e0
%»rsi ¢ %r‘ip
0x40058c <+61>: lea ox18(%rsp),%rsi Oxffe9ofs 0x400591
0x400591 <+66>: lea Oxlc(%rsp),%rdi
Ox400596 <+71>: callg—Ox400546 <func> ‘ 61

Parameters and Return

int main(int argc, char *argv[]) { o %rdx
int i1 = 1; Oxffe9fc 1 Oxffe9fs
int i2 = 2;
int i3 = 3; rnajj1() Oxffeofs8 2 %rCX
int i4 = 4;
Oxffe9f0
int result = func(&il, &i2, &i3, &i4, oxffeof4 3
i1, 12, i3, 14); oxffeofo 4 %r8d
} 1
: : : : : 4 %rod
int func(int *pl, int *p2, int *p3, int *p4, Oxffe9e8
int v1, int v2, int v3, int v4) { 2
} e 3 %r‘sp
Oxffe9e0
xrrese Oxffe9e0
(o) 2 (o) 3
%rsi %rdi J/ %rip
0x400591 <+66>: lea oxlc(%rsp),%rdi Oxffe9ofs Oxffe9fc 0x400596
0x400596 <+71>: callg ©x400546 <func>
@x40059b <+76>:—add $0x10,%rsp ‘ 62

Parameters and Return

int main
int
int
int
int
int

}

(int
i1 =
i2 =
i3 =
i4 =

argc, char *argv[]) {

result = func(&il1l, &i2, &i3, &i4,

i1, i2, i3, i4);

int func(int *pl, int *p2, int *p3, int *p4,

int v1, int v2, int v3, int v4) {

0x400596

<+71>:
0x40059b <+76>: add

callqg 0x400546 <func>
$0x10,%rsp

main()

%rsi

Oxffe9fc
Oxffe9f8
Oxffeof4

oxffeofo

Oxffe9e8

Oxffe9ed

%rdi

Oxffe9f8

Oxffe9fc

%rdx

Oxffe9f4

%rcx

Oxffe9f0

P WIN|F

%r8d

1

%rad

2

%rsp
Oxffe9e0

%rip

0x400596

|‘ 27
6

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1;

int i2 = 2;

int i3 = 3;

int i4 = 4;

int result = func(&il1l, &i2, &i3, &i4,

i1, i2, i3, i4);
}
int func(int *pl, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

}
0x400596 <+71>: callqg 0x400546 <func>
0x40059b <+76>: add $0x10,%rsp

main()

%rsi

Oxffe9fc
Oxffe9f8
Oxffeof4

oxffeofo

Oxffe9e8

Oxffe9ed

%rdi

Oxffe9f8

Oxffe9fc

%rdx

Oxffe9f4

%rcx

Oxffe9f0

Nl wliNn|R

%r8d

1

%rad

2

Ox40059b

%rsp
Oxffe9d8

%rip

v

0x400596

‘[27
7

* Revisiting %rip

* Calling Functions
* The Stack
* Passing Control

* Passing Data
* Local Storage

Lecture Plan

* Register Restrictions

* Pulling it all together: recursion example

* Optimizations
e Live session slides

cp -r /afs/ir/class/csl107/lecture-code/lectl3 .

19
22
36
44
65

69
78
31
93

Calling Functions In Assembly

To call a function in assembly, we must do a few things:

 Manage Memory — we must handle any space needs of the callee on the
stack.

Terminology: caller function calls the callee function.

Local Storage

 So far, we’'ve often seen local variables stored directly in registers, rather than
on the stack as we’d expect. This is for optimization reasons.

* There are three common reasons that local data must be in memory:

* We've run out of registers
* The ‘&’ operator is used on it, so we must generate an address for it
* They are arrays or structs (need to use address arithmetic)

Local Storage

long caller() {
long argl = 534;
long arg2 = 1057,
long sum = swap_add(&argl, &arg2);

}

caller:
sub $0x10, %rsp // 16 bytes for stack frame
movqg $0x216, 0x8(%rsp) // store 534 in argl

movq $0x421, (%rsp) //

mov %rsp, %rsi //
lea Ox8(%rsp), %rdi //

callg swap_add //

store 1057 in arg2
compute &arg2 as second arg
compute &argl as first arg

call swap add(&argl, &argl)

28
1

* Revisiting %rip

* Calling Functions
* The Stack
* Passing Control

* Passing Data
* Local Storage

Lecture Plan

* Register Restrictions

* Pulling it all together: recursion example

* Optimizations

cp -r /afs/ir/class/csl107/lecture-code/lectl3 .

19
22
36
44
65

69
78

31

Register Restrictions

There is only one copy of registers for all programs and functions.

* Problem: what if funcA is building up a value in register %r10, and calls funcB
in the middle, which also has instructions that modify %r10? funcA’s value will
be overwritten!

e Solution: make some “rules of the road” that callers and callees must follow
when using registers so they do not interfere with one another.

* These rules define two types of registers: caller-owned and callee-owned

Caller/Callee

Caller/callee is
terminology that
refers to a pair of
functions. A single
function may be
both a caller and
callee
simultaneously (e.g.
functionl at right).

functionl

function2

main iIs the caller,
and functionl is
the callee.

functionl is
the caller, and
function2 is
the callee.

Register Restrictions

Caller-Owned Callee-Owned

* Callee must save the existing value Callee does not need to save the
and restore it when done. existing value.

 Caller can store values and assume Caller’s values could be overwritten
they will be preserved across by a callee! The caller may consider
function calls. saving values elsewhere before

calling functions.

Caller-Owned Registers

main can use caller-owned
registers and know that
functionl will not permanently
modify their values.

If function1 wants to use any
caller-owned registers, it must
save the existing values and
restore them before returning.

Caller-Owned Registers

functionl:
push %rbp
push %rbx
pop %rbx
pop %rbp
retq

Callee-Owned Registers

main can use callee-owned
registers but calling functionl
may permanently modify their
values.

If function1 wants to use any
callee-owned registers, it can do
so without saving the existing
values.

Callee-Owned Registers

main:

push %rile

push %rill

callg functionl
pop %rll

pop %rle

A Day In the Life of functionl

functionl

function2

Caller-owned registers:

 functionl must save/restore existing values
of any it wants to use.

 functionl can assume that calling
function2 will not permanently change their
values.

Callee-owned registers:
« functionl does not need to save/restore

existing values of any it wants to use.
« calling function2 may permanently change
their values.

* Revisiting %rip

* Calling Functions
* The Stack
* Passing Control

* Passing Data
* Local Storage

Lecture Plan

* Register Restrictions

* Pulling it all together: recursion example

* Optimizations
e Live session slides

cp -r /afs/ir/class/csl107/lecture-code/lectl3 .

19
22
36
44
65

69
78
31
93

Example: Recursion

* Let’s look at an example of recursion at the assembly level.

 We'll use everything we’ve learned about registers, the stack, function calls,
parameters, and assembly instructions!

 We'll also see how helpful GDB can be when tracing through assembly.

>

factorial.c and factorial 79

Our First Assembly

int sum_array(int arr[], int nelems) { | We’re done with all our assembly lectures! Now we
int sum = ©; can fully understand what’s going on in the
for (int i = 0; 1 < nelems; i++) { assembly below, including how someone would call
sum += arr[i]; sum_array in assembly and what the ret instruction
} does.

return sum;

}

0000000000401136 <sum_array>:
401136 <+0>: mov $0x0, %eax

40113b <+5>: mov $0x0, %edx

401140 <+10>: cmp %esi,%eax

401142 <+12>: jge 0x40114f <sum_array+25>

401144 <+14>: movslqg %eax,%rcx

401147 <+17>: add (%rdi,%rcx,4),%edx

40114a <+20>: add $0x1, %eax

40114d <+23>: jmp 0x401140 <sum_array+10>

40114f <+25>: mov %edx, seax

401151 <+27>: retq 80

* Revisiting %rip

* Calling Functions
* The Stack
* Passing Control

* Passing Data
* Local Storage

Lecture Plan

* Register Restrictions

* Pulling it all together: recursion example

* Optimizations
e Live session slides

cp -r /afs/ir/class/csl107/lecture-code/lectl3 .

19
22
36
44
65

69
78
31
93

81

Optimizations you'll see

nop

* nop/nopl are “no-op” instructions — they do nothing!

* Intent: Make functions align on address boundaries that are nice multiples of 8.
* “Sometimes, doing nothing is how to be most productive” — Philosopher Nick

mov %ebx,%ebx

» Zeros out the top 32 register bits (because a mov on an e-register zeros out rest
of 64 bits).

xor %ebx,%ebx

* Optimizes for performance as well as code size (read more here):

b8 00 00 00 00 mov $0x0,%eax
31 cO Xor %eax,seax 82

GCC For Loop Output

GCC Common For Loop Output Possible Alternative
Initialization Initialization
Test Jump to test
Jump past loop if success Body

Body Update

Update Test

Jump to test Jump to body if success

GCC For Loop Output

[/ n=100

GCC Common For Loop Output
Initialization
Test

Jump past loop if success

Body
Update

Jump to test

for (inti=0; i< n;i++)

GCC For Loop Output

GCC Common For Loop Output

Initialization
Test

Jump past loop if success

Body
Update

Jump to test

for (inti=0; i< n;i++)

Initialization
Test

No jump

Body

Update

Jump to test
Test

No jump

Body

Update

Jump to test

[/ n=100

GCC For Loop Output

GCC Common For Loop Output
Initialization
Test

Jump past loop if success

Body
Update

Jump to test

for (inti=0; i< n;i++)

Test

No jump

Body

Update

Jump to test

Body
Update
Jump to test

[/ n=100

GCC For Loop Output

for (inti=0;i<n;i+t)

Initialization
Jump to test
Test

Jump to body
Body

Update

Test

Jump to body
Body

Update

Test

Jump to body

[/ n=100

Possible Alternative

Initialization

Jump to test

Body

Update

Test

Jump to body if success

87

GCC For Loop Output

for (inti=0;i<n;i+t)

Body

Update

Test

Jump to body

[/ n=100

Possible Alternative

Initialization

Jump to test

Body

Update

Test

Jump to body if success

88

GCC For Loop Output

GCC Common For Loop Output Possible Alternative
Initialization Initialization

Test Jump to test

Jump past loop if passes Body

Body Update

Update Test

Jump to test Jump to body if success

Which instructions are better when n=0? n = 10007

for (inti=0;i<n;i++)

Optimizing Instruction Counts

e Both versions have the same static instruction count (# of written instructions).

e But they have different dynamic instruction counts (# of executed instructions
when program is run).
* If n =0, left (GCC common output) is best b/c fewer instructions
* If nis large, right (alternative) is best b/c fewer instructions

* The compiler may emit a static instruction count that is several times longer
than an alternative, but it may be more efficient if loop executes many times.
* Does the compiler know that a loop will execute many times? (in general, no)

* So what if our code had loops that always execute a small number of times?
How do we know when gcc makes a bad decision?

 (take EE108, EE180, CS316 for more!)

Optimizations

* Conditional Moves can sometimes eliminate “branches” (jumps), which are
particularly inefficient on modern computer hardware.

* Processors try to predict the future execution of instructions for maximum
performance. This is difficult to do with jumps.

* Revisiting %rip

* Calling Functions
* The Stack
* Passing Control
* Passing Data
* Local Storage

* Register Restrictions
* Pulling it all together: recursion example

* Optimizations

That’s it for assembly! Next time: managing the heap

Key GDB Tips For Assembly

 Examine 4 giant words (8 bytes) on the stack:

(gdb) x/4g $rsp
Ox7fTffffffe870: Ox0000000000000005 Ox000000VVVV400559

Ox7fffffffe880: 0Ox0000000000000000 0X0000000000400575

e display/undisplay (prints out things every time you step/next)
(gdb) display/4w $rsp
1: x/4xw $rsp

OX7fffffffe8a8:
Oxf7a2d839 Ox00007fff Ox00000000 Ox00000000

Key GDB Tips For Assembly

e stepi/finish:stepinto current function call/return to caller:
(gdb) finish

* Set register values during the run
(gdb) p $rdi = $rdi + 1

(Might be useful to write down the original value of Srdi somewhere)

* Tui things
* refresh
 focus cmd —use up/down arrows on gdb command line (vs focus asm, focus
regs)
 layout regs, layout asm

Extra Practice — Escape
Room 2

https://godbolt.org/z/8e31fG4r5

Escape room assembly code

000000000V 115b
115b: 48 83
115f: ba @a
1164: be 00
1169: e8 d2
116e: 48 89
1171: e8 d3
1176: a8 01
1178: 74 0a
117a: b8 00
117f: 48 83
1183: «c3
1184: b8 01
1189: eb f4

<escape_room>:

ec 08
00 00

00 00
fe ff

c/
f ff

PO 00
c4 08

00 00

00

00
£f

£f

00

00

sub
mov

mov
callqg

mov
callqg
test
je
mov
add
retq
mov

jmp

$0x8,%rsp

$0xa, %edx

$0x0,%esi

1040 <strtol@plt>
%Brax,srdi

1149 <transform>
$0x1,%al

1184 <escape_room+0x29>
$0x0, %eax

$0x8,%rsp

$0x1, %eax
117f <escape_room+0x24>

100

Escape room assembly code

0000001149 <transform>:
1149: 8d 04 bd 90 00 00 00 lea ox0(,%rdi,4),%eax

1150: 8d 50 o1 lea Ox1(%rax) ,%edx

1153: 83 fa 32 cmp $0x32, %edx

1156: 7f 02 jg 115a <transform+0x11>
1158: 89 do mov %edx, seax

115a: «c3 retq

101

Array Allocation and Access

- Arrays in C map in a fairly straightforward way to X86 assembly code, thanks to
the addressing modes available in instructions.

- When we perform pointer arithmetic, the assembly code that is produced will have
address computations built into them.

- Optimizing compilers are very good at simplifying the address computations (in lab
you will see another optimizing compiler benefit in the form of division — if the
compiler can avoid dividing, it will'). Because of the transformations, compiler-
generated assembly for arrays often doesn't look like what you are expecting.

- Consider the following form of a data type T and integer constant N:

T A[N]

- The starting location is designated as xa
- The declaration allocates N * sizeof (T) bytes, and gives us an identifier that

we can use as a pointer (but it isn't a pointer!), with a value of xa.

Array Allocation and Access

Example:

Array Element Size Total Size Start address Elementi
char A[l2],; & 1 12 XA XA + i
char *B[8]; B 8 64 XB XB + 8
int Clo]; C 4 24 Xc Xc + 4
double *D[5] D 8 40 XD XD + 8i

The memory referencing operations in x86-64 are designed to simplify array
access. Suppose we wanted to access C [3] above. If the address of C is in
register $rdx, and 3 is in register $rcx

The following copies C[3] into %eax,

movl (%rdx,srcx,4), %eax

- C allows arithmetic on pointers, where the computed value is calculated according

to the size of the data type referenced by the pointer.
- The array reference A[1i] is identical to * (A+1)

- Example: if the address of array E is in $rdx, and the integer index, i, isin $rcx,

the following are some expressions involving E:

Expression Type Value Code

E[0] int MI[XE] movl (%$rdx), %eax

E[i] int M[xe+4i] movl (%rdx,%rcx,4) S%eax

S§E[2] int * XE+8 leaq 8(%rdx), %rax

E+i-1 int * Xe+4i-4 leag -4 (%rdx,%rcx,4), %rax

£ (E+1-3) iHi * M[XE+4i- mo%vq l%I@%,dx%%ggx, 4) %eax
12]

&E[1]-E long i movqg $rcx, srax

- Practice: xs is the address of a short integer array, S, stored in $rdx, and a long
integer index, 1, is stored in register $rcx.
- For each of the following expressions, give its type, a formula for its value, and an

assembly-code implementation. The result should be stored in $rax ifitis a
pointer, and the result should be in register $ax if it has a data type short.

Expression Type Value Assembly Code

S+1

S[4*1+1]

S+1i-5

- Practice: xs is the address of a short integer array, S, stored in $rdx, and a long
integer index, 1, is stored in register $rcx.
- For each of the following expressions, give its type, a formula for its value, and an

assembly-code implementation. The result should be stored in $rax ifitis a
pointer, and the result should be in register $ax if it has a data type short.

Expression Type Value Assembly
Code

S+1 short * XS + 2 leaqg 2 (%rdx), srax

S[3] short M[xs + 0] movw 6 (%rdx), %ax

&S[1] short Xs + 21 leag (%rdx,%rcx,2),%rax

S[4*1+1] short M[xs + 81 + 2] movw 2 (%rdx, %rcx,8),%ax

S+1i-5 short Xs + 21 - 10 leag -10(%rdx, %rcx,2),%rax

- The C struct declaration is used to group objects of different types into a single
unit.

- Each "field" is referenced by a name, and can be accessed using dot (.) or (if
there is a pointer to the struct) arrow (->) notation.
- Structures are kept in contiguous memory

« A pointer to a struct is to its first byte, and the compiler maintains the byte offset

information for each field.
-+ In assembly, the references to the fields are via the byte offsets.

- Example:

struct rec {
int 1i;
int j;
int al2];
int *p;

- This structure has four fields: two 4-byte values of type int, a

two-element array of type int, and an 8-byte int pointer, for a
total of 24 bytes:

Offset 0 4 8 16 24
Contents i j al0] all] p

- The numbers along the top of the diagram are the byte offsets of the fields from
the beginning of the structure.

* Note that the array is embedded in the structure.

- To access the fields, the compiler generates code that adds the field offset to the
address of the structure.

- Example:

struct rec {
int 1i;
int j;
int al2];
int *p;

- This structure has four fields: two 4-byte values of type int, a
two-element array of type int, and an 8-byte int pointer, for a
total of 24 bytes:

Offset 0 4 8 16 24

Contents i j al0] all] p

- Example: Variable r of type struct rec * is in register $rdi. The following copies

element r->1i to element r->7:
movl (%rdi), %eax // get r->i

movl %eax,

4 (%rdi) // store in r->j

- Theoffsetof 1 is 0, so i's field is $rdi. The offset of j is 4, so the offset of 4 is__

added to the address of $rdi to store into J.

- Example:
struct rec { - This structure has four fields: two 4-byte values of type int, a
iﬂz ; two-element array of type int, and an 8-byte int pointer, for a
int a[2]; total of 24 bytes:
o P Offset 0 4 8 16 24
Contents 1 J al0] all] P

- We can generate a pointer to a field by adding the field's offset to the struct
address. To generate & (r->a[1]) we add offset 8 + 4 = 12. Fora pointer r
in register $rdi andlong int variable i in $rsi, we can generate the pointer
value & (r->a[1i]) with one instruction:

leag 8 (%rdi, %rsi,4), Srax // set %Srax to &r->al[i]

- Example:

struct rec {
int 1i;
int 73;

int *p;

int al[2];

- This structure has four fields: two 4-byte values of type int, a
two-element array of type int, and an 8-byte int pointer, for a
total of 24 bytes:

Offset 0 4 8 16 24
Contents i j al0] all] p

- The following code implements r->p = &r->a[r->1i + r->73];

// r in %$rdi
movl 4 (%rdi), %eax // get r—->j
addl (%rdi), Seax // add r->i

&eag 8(%rdi, Srax,4), Srax [/ ceppaie %$&awais-8ibyt&sy] -%r..fg;g :

movqg %srax,

16 ($rdi) // store in r->p

- Example:

struct rec {
int 1i;
int j;
int al2];
int *p;

- Notice that all struct manipulation is handled at compile time, and the machine
code doesn't contain any information about the field declarations or the names of

the fields.

- The compiler does all the work, keeping track as it produces the assembly code.
- BTW, if you're curious about how the compiler actually does the transformation
from C to assembly, take a compilers class, e.g., CS143.

Offset

Contents

0

4

16

al0]

all]

- This structure has four fields: two 4-byte values of type int, a
two-element array of type int, and an 8-byte int pointer, for a

total of 24 bytes:

24

Data Alignment

- Computer systems often put restrictions on the allowable addresses for primitive
data types, requiring that the address for some objects must be a multiple of
some value K (normally 2, 4, or 8).

- These alignment restrictions simplify the design of the hardware.

- For example, suppose that a processor always fetches 8 bytes from the memory
system, and an address must be a multiple of 8. If we can guarantee that any
double will be aligned to have its address as a multiple of 8, then we can read or
write the values with a single memory access.

- For x86-64, Intel recommends the following alignments for best performance:

K Type
S

1 char

2 shor

t
4 int, float

Q —lf\'r\f‘f /4/\11}'\1/'\ /“h’JV‘ *

Data Alignment

- The compiler enforces alignment by making sure that every data type is organized
in such a way that every field within the struct satisfies the alignment restrictions.

For example, let's look at the following struct:
struct S1 {

int 1i;
char c;
int 3;
. Offset 0 4 5 9
X Contents i c j

If the compiler used a minimal allocation:
- This would make it impossible to align fields i (offset 0) and j (offset 5). Instead,

the compiler inserts a 3-byte gap between fields ¢ and 7:
Offset 0 4 5 8 12

Contents i c j

So, don't be surprised if your structs have a sizeof () thatis larger than you expect!

Function Pointers

.- Let's look at the following code:

void *gfind max(void *arr, int n, size t elemsz,
int (*compar) (const void *, const void *))

void *pmax = arr;
for (int 1 = 1; 1 < n; i++) {
void *ith = (char *)arr + i*elemsz;

if (compar (ith, pmax) > 0)
pmax = ith;

}
return pmax;

int cmp alpha(const void *p, const void *q)
const char *first = *(const char **)p;

const char *second = *(const char **)qg;
return strcmp (first, second);

int main(int argc, char *argv([])

char **pmax gfind max(argv+l, argc-1, sizeof(argv[0]), cmp_alpha);
printf ("max = %$s\n", *pmax);
return O0;

Function Pointers

.- Let's look at the following code:

void *gfind max(void *arr, int n, size t elemsz, ° Because Compar iS a funCtion

int (*compar) (const void *, const void *))

{ _ pointer, the compiler calls the

void *pmax = arr;
i L T e eness function via the address that is

if (compar (ith, pmax) > 0)

prax = ith; iIn the compar variable.
return pma; - Let's take a look at this in gdb.

int cmp_ alpha(const void *p, const void *q)

const char *first = *(const char **)p;
const char *second = *(const char **)qg;
return strcmp(first, second);

int main(int argc, char *argv|[])

char **pmax
printf ("max

gfind max(argv+l, argc-1, sizeof(argv[0]), cmp_alpha);
$s\n", *pmax);

return O0;

References and

- References:
- Stanford guide to x86-64: https://web.stanford.edu/class/cs107/quide/

x86-64.html

* CS107 one-page of x86-64: https://web.stanford.edu/class/cs107/resources/
onepage x86-64.pdf

* gdbtui: https://beej.us/quide/bggdb/
* More gdbtui: https://sourceware.org/gdb/onlinedocs/gdb/TUl.html

* Compiler explorer: https://gcc.godbolt.org

- Advanced Reading:
- Stack frame layout on x86-64: https://eli.thegreenplace.net/2011/09/06/stack-

frame-layout-on-x86-64

* x86-64 Intel Software Developer manual: https://software.intel.com/sites/

* x86-64 Wikipedia: https://en.wikipedia.org/wiki/X86-64

default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
* history of x86 instructions: https://en.wikipedia.org/wiki/X86 _instruction Iistinm@,;}_..

