
1

CS107, Lecture 12
Assembly: Control Flow

Reading: B&O 3.6
This document is copyright (C) Stanford Computer Science, Adam Keppler, and Olayinka Adekola licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Joel Ramirez, Nick Troccoli, Chris Gregg

2

Learning Assembly

Moving data
around

Arithmetic and
logical

operations

Lecture 11

Control flow Function calls

Lecture 10 This Lecture Lecture 13

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

Learning Goals

3

• Learn about how assembly stores comparison and operation results in
condition codes

• Understand how assembly implements loops and control flow

Lecture Plan

4

• Assembly Execution and %rip
• Control Flow Mechanics

• Condition Codes
• Assembly Instructions

• If statements
• Loops

• While loops
• For loops

• Other Instructions That Depend On Condition Codes

Lecture Plan

5

• Assembly Execution and %rip
• Control Flow Mechanics

• Condition Codes
• Assembly Instructions

• If statements
• Loops

• While loops
• For loops

• Other Instructions That Depend On Condition Codes

Executing Instructions

6

What does it mean for a program
to execute?

Executing Instructions
So far:
• Program values can be stored in memory or registers.
• Assembly instructions read/write values back and forth

between registers (on the CPU) and memory.
• Assembly instructions are also stored in memory.

Today:
• Who controls the instructions?

How do we know what to do now or next?
Answer:
• The program counter (PC), %rip.

4004fd
4004fc

4004fb
4004fa
4004f9

4004f8
4004f7
4004f6
4004f5
4004f4
4004f3
4004f2
4004f1
4004f0
4004ef
4004ee

4004ed

fa

eb

01

fc

45

83

00

00

00

00

fc

45

c7
e5

89

48

55
7

Register Responsibilities

8

Some registers take on special responsibilities during program execution.
• %rax stores the return value
• %rdi stores the first parameter to a function
• %rsi stores the second parameter to a function
• %rdx stores the third parameter to a function
• %rip stores the address of the next instruction to execute
• %rsp stores the address of the current top of the stack

See the x86-64 Guide and Reference Sheet on the Resources webpage for more!

Instructions Are Just Bytes!

9

Instructions Are Just Bytes!

10

Instructions Are Just Bytes!

0x0

Stack

Heap

Data

Text (code)Machine code
instructions

11

Main Memory

p
00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8:
4004fc:

83
eb

45
fa

fc 01 addl
jmp

$0x1,-0x4(%rbp)
4004f8 <loop+0xb>

fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

Stack

Heap

Data

Text (code)

Main Memory

12

4004fd%rip

%rip
00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004ed

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

%rip 13

%rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

0x4004ee

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

%rip 14

%rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

00000000004004ed <loop>:

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed. 0x4004f1

%rip 15

4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

%rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

00000000004004ed <loop>:

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed. 0x4004f8

%rip 16

4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

%rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

00000000004004ed <loop>:

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed. 0x4004fc

%rip 17

4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

%rip 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

Special hardware sets the program counter
to the next instruction:
%rip += size of bytes of current instruction

0x4004fc

%rip 18

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

19

Going In Circles

• How can we use this representation of execution to represent e.g. a loop?

• Key Idea: we can ”interfere” with %rip and set it back to an earlier instruction!

Jump! 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

00000000004004ed <loop>:

The jmp instruction is an
unconditional jump that sets
the program counter to the
jump target (the operand). 0x4004fc

%rip 20

4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

Jump! 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

The jmp instruction is an
unconditional jump that sets
the program counter to the
jump target (the operand). 0x4004fc

%rip 21

Jump! 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

00000000004004ed <loop>:

The jmp instruction is an
unconditional jump that sets
the program counter to the
jump target (the operand). 0x4004fc

%rip 22

4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

Jump! 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

The jmp instruction is an
unconditional jump that sets
the program counter to the
jump target (the operand). 0x4004fc

%rip 23

Jump! 4004fd fa

4004fc eb

4004fb 01

4004fa fc

4004f9 45

4004f8 83

4004f7 00

4004f6 00

4004f5 00

4004f4 00

4004f3 fc

4004f2 45

4004f1 c7

4004f0 e5

4004ef 89

4004ee 48

4004ed 55

This assembly represents an
infinite loop in C!

00000000004004ed <loop>:
4004ed: 55 push %rbp
4004ee: 48 89 e5 mov %rsp,%rbp
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4004fc: eb fa jmp 4004f8 <loop+0xb>

0x4004fcwhile (true) {…}
%rip 24

jmp

25

The jmp instruction jumps to another instruction in the assembly code
(“Unconditional Jump”).

jmp Label
jmp *Operand

(Direct Jump)
(Indirect Jump)

The destination can be hardcoded into the instruction (direct jump):
jmp 404f8 <loop+0xb> # jump to instruction at 0x404f8

The destination can also be one of the usual operand forms (indirect jump):
jmp *%rax # jump to instruction at address in %rax

“Interfering” with %rip

26

1. How do we repeat instructions in a loop?
jmp [target]
• A 1-step unconditional jump (always

jump when we execute this instruction)

What if we want a conditional jump?

Lecture Plan

27

• Assembly Execution and %rip
• Control Flow Mechanics

• Condition Codes
• Assembly Instructions

• If statements
• Loops

• While loops
• For loops

• Other Instructions That Depend On Condition Codes

Control

28

• In C, we have control flow statements like if, else, while, for, etc. to write
programs that are more expressive than just one instruction following another.

• This is conditional execution of statements: executing statements if one
condition is true, executing other statements if one condition is false, etc.

• How is this represented in assembly?

Control

29

if (x > y) {

}

}

//
else
//

a
{
b

In Assembly:
1. Calculate the condition result
2. Based on the result, go to a or b

Control
• In assembly, it takes more than one instruction to do these two steps.
• Most often: 1 instruction to calculate the condition, 1 to conditionally jump

Common Pattern:
1. cmp S1, S2 // compare two values
2. je [target] or jne [target] or jl [target] or ... // conditionally jump

“jump if
equal”

“jump if
not equal”

“jump if
less than”

30

Conditional Jumps

31

There are also variants of jmp that jump only if certain conditions are true
(“Conditional Jump”). The jump location for these must be hardcoded into the
instruction.

Instruction Synonym Set Condition

je Label jz Equal / zero

jne Label jnz Not equal / not zero

js Label Negative

jns Label Nonnegative

jg Label jnle Greater (signed >)

jge Label jnl Greater or equal (signed >=)

jl Label jnge Less (signed <)

jle Label jng Less or equal (signed <=)

ja Label jnbe Above (unsigned >)

jae Label jnb Above or equal (unsigned >=)

jb Label jnae Below (unsigned <)

jbe Label jna Below or equal (unsigned <=)

Control

32

Read cmp S1,S2 as “compare S2 to S1”:

// Jump if %edi > 2
cmp $2, %edi
jg [target]

// Jump if %edi != 3
cmp $3, %edi
jne [target]

// Jump if %edi == 4
cmp $4, %edi
je [target]

// Jump if %edi <= 1
cmp $1, %edi
jle [target]

Control
Read cmp S1,S2 as “compare S2 to S1”:

// Jump if %edi > 2
cmp $2, %edi
jg [target]

// Jump if %edi !
cmp $3, %edi
jne [target]

// Jump if %edi == 4
cmp $4, %edi
je [target]

edi <= 1
= 3 // Jump if %

cmp $1, %edi
jle [target]

33

Wait a minute – how does the jump instruction know anything
about the compared values in the earlier instruction?

Control

34

• The CPU has special registers called condition codes that are like “global
variables”. They automatically keep track of information about the most
recent arithmetic or logical operation.

• cmp compares via calculation (subtraction) and info is stored in the condition codes
• conditional jump instructions look at these condition codes to know whether to jump

• What exactly are the condition codes? How do they store this information?

Condition Codes

35

Alongside normal registers, the CPU also has single-bit condition code registers.
They store the results of the most recent arithmetic or logical operation.

Most common condition codes:
• CF: Carry flag. The most recent operation generated a carry out of the most

significant bit. Used to detect overflow for unsigned operations.
• ZF: Zero flag. The most recent operation yielded zero.
• SF: Sign flag. The most recent operation yielded a negative value.
• OF: Overflow flag. The most recent operation caused a two’s-complement

overflow-either negative or positive.

Condition Codes

36

Alongside normal registers, the CPU also has single-bit condition code registers.
They store the results of the most recent arithmetic or logical operation.

Example: if we calculate t = a + b, condition codes are set according to:
• CF: Carry flag (Unsigned Overflow).
• ZF: Zero flag (Zero).
• SF: Sign flag (Negative).

(unsigned) t < (unsigned) a
(t == 0)
(t < 0)

• OF: Overflow flag (Signed Overflow). (a<0 == b<0) && (t<0 != a<0)

Setting Condition Codes

37

The cmp instruction is like the subtraction instruction, but it does not store the
result anywhere. It just sets condition codes. (Note the operand order!)

CMP S1, S2 S2 – S1

Instruction Description

cmpb Compare byte

cmpw Compare word

cmpl Compare double word

cmpq Compare quad word

Control

38

// Jump if %edi > 2
// calculates %edi – 2
cmp $2, %edi
jg [target]

// Jump if %edi != 3
// calculates %edi – 3
cmp $3, %edi
jne [target]

// Jump if %edi == 4
// calculates %edi – 4
cmp $4, %edi
je [target]

// Jump if %edi <= 1
// calculates %edi – 1
cmp $1, %edi
jle [target]

Read cmp S1,S2 as “compare S2 to S1”. It calculates S2 – S1 and updates the
condition codes with the result.

Conditional Jumps

39

Conditional jumps can look at subsets of the condition codes in order to check
their condition of interest.

Instruction Synonym Set Condition

je Label jz Equal / zero (ZF = 1)

jne Label jnz Not equal / not zero (ZF = 0)

js Label Negative (SF = 1)

jns Label Nonnegative (SF = 0)

jg Label jnle Greater (signed >) (ZF = 0 and SF = OF)

jge Label jnl Greater or equal (signed >=) (SF = OF)

jl Label jnge Less (signed <) (SF != OF)

jle Label jng Less or equal (signed <=) (ZF = 1 or SF! = OF)

ja Label jnbe Above (unsigned >) (CF = 0 and ZF = 0)

jae Label jnb Above or equal (unsigned >=) (CF = 0)

jb Label jnae Below (unsigned <) (CF = 1)

jbe Label jna Below or equal (unsigned <=) (CF = 1 or ZF = 1)

Setting Condition Codes

40

The test instruction is like cmp, but for AND. It does not store the & result
anywhere. It just sets condition codes.

TEST S1, S2 S2 & S1

Cool trick: if we pass the same value for both operands, we can check the sign
of that value using the Sign Flag and Zero Flag condition codes!

Instruction Description

testb Test byte

testw Test word

testl Test double word

testq Test quad word

Condition Codes

41

• Previously-discussed arithmetic and logical instructions update these flags. lea
does not (it was intended only for address computations).

• Logical operations (xor, etc.) set carry and overflow flags to zero.
• Shift operations set the carry flag to the last bit shifted out and set the

overflow flag to zero.
• For more complicated reasons, inc and dec set the overflow and zero flags, but

leave the carry flag unchanged.

Exercise 1: Conditional jump

je target jump if ZF is 1

Let %edi store 0x10. Will we jump in the following cases?

1. cmp $0x10,%edi
je 40056f
add $0x1,%edi

2. test $0x10,%edi
je 40056f
add $0x1,%edi

0x10%edi

42

Exercise 1: Conditional jump

je target jump if ZF is 1

Let %edi store 0x10. Will we jump in the following cases?

1. cmp $0x10,%edi
je 40056f
add $0x1,%edi

2. test $0x10,%edi

0x10

S2 & S1 != 0, so don’t jumpje
add

40056f
$0x1,%edi

43

%edi

S2 - S1 == 0, so jump

Exercise 2: Conditional jump

1. What is the value of %rip after
executing the jne instruction?
A. 4004d9
B. 4004db
C. 4004de
D. Other

0x5%edi00000000004004d6 <if_then>:
4004d6: 83 ff 06 cmp $0x6,%edi
4004d9: 75 03 jne 4004de <if_then+0x8>
400rdb: 83 c7 01 add $0x1,%edi
4004de: 8d 04 3f lea (%rdi,%rdi,1),%eax
4004e1: c3 retq

2. What is the value of %eax
when we hit the retq instruction?

E. Other
44

A. 4004e1
B. 0x2
C. 0xa
D. 0xc

2. What is the value of %eax
when we hit the retq instruction?
A. 4004e1
B. 0x2
C. 0xa
D. 0xc

Exercise 2: Conditional jump

1. What is the value of %rip after
executing the jne instruction?
A. 4004d9
B. 4004db
C. 4004de
D. Other

0x5%edi00000000004004d6 <if_then>:
4004d6: 83 ff 06 cmp $0x6,%edi
4004d9: 75 03 jne 4004de <if_then+0x8>
400rdb: 83 c7 01 add $0x1,%edi
4004de: 8d 04 3f lea (%rdi,%rdi,1),%eax
4004e1: c3 retq

E. Other
45

Lecture Plan

46

• Assembly Execution and %rip
• Control Flow Mechanics

• Condition Codes
• Assembly Instructions

• If statements
• Loops

• While loops
• For loops

• Other Instructions That Depend On Condition Codes

If Statements

47

How can we use instructions like cmp and conditional jumps to implement if
statements in assembly?

int if_then(int param1) {
if () {

;
}

return ;
}

Practice: Fill In The Blank

0000000000401126 <if_then>:
$0x6,%edi
40112f
(%rdi,%rdi,1),%eax

401126: cmp
401129: je
40112b: lea
40112e: retq
40112f: add
401132: jmp

$0x1,%edi
40112b

48

Practice: Fill In The Blank

0000000000401126 <if_then>:
$0x6,%edi
40112f
(%rdi,%rdi,1),%eax

401126: cmp
401129: je
40112b: lea
40112e: retq
40112f: add
401132: jmp

$0x1,%edi
40112b

int if_then(int param1) {
if (param1 == 6) {

param1++;
}

return param1 * 2;
}

49

Common If-Else Construction

If-Else In C
long absdiff(long x, long y) {

long result;
if (x < y) {

result = y – x;
} else {

result = x – y;
}

return result;
}

If-Else In Assembly pseudocode
Test
Jump to else-body if test passes
If-body
Jump to past else-body
Else-body
Past else body

50

Practice: Fill in the Blank

If-Else In Assembly pseudocode
Test
Jump to else-body if test passes
If-body
Jump to past else-body
Else-body
Past else body

If-Else In C
long absdiff(long x, long y) {

long result;
if () {

 ;
} else {

 ;
}

return result;
}

401134 <+0>: mov
401137 <+3>: cmp
40113a <+6>: jge
40113c <+8>: sub

%rsi,%rax
%rsi,%rdi
0x401140 <absdiff+12>
%rdi,%rax

40113f <+11>: retq
401140 <+12>: sub
401143 <+15>: mov
401146 <+18>: retq

%rsi,%rdi
%rdi,%rax

51

Practice: Fill in the Blank

long absdiff(long x, long y) {
long result;
if (x < y) {

result = y - x ;
} else {

result = x - y ;
}

return result;
}

If-Else In Assembly pseudocode
Test
Jump to else-body if test passes
If-body
Jump to past else-body
Else-body
Past else body

If-Else In C 401134 <+0>: mov
401137 <+3>: cmp
40113a <+6>: jge
40113c <+8>: sub

%rsi,%rax
%rsi,%rdi
0x401140 <absdiff+12>
%rdi,%rax

40113f <+11>: retq
401140 <+12>: sub
401143 <+15>: mov
401146 <+18>: retq

%rsi,%rdi
%rdi,%rax

52

If-Else Construction Variations

53

int test(int arg) { 401134 <+0>: cmp $0x3,%edi
int ret; 401137 <+3>: jle 0x401142 <test+14>
if (arg > 3)

ret = 10;
{ 401139

40113e
<+5>:
<+10>:

mov
add

$0xa,%eax
$0x1,%eax

} else { 401141 <+13>: retq
ret = 0; 401142 <+14>: mov $0x0,%eax

} 401147 <+19>: jmp 0x40113e <test+10>

ret++;
return ret;

}

C Code Assembly

Lecture Plan

54

• Assembly Execution and %rip
• Control Flow Mechanics

• Condition Codes
• Assembly Instructions

• If statements
• Loops

• While loops
• For loops

• Other Instructions That Depend On Condition Codes

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

0x000000000040115c <+0>: mov $0x0,%eax
0x0000000000401161 <+5>: cmp $0x63,%eax
0x0000000000401164 <+8>: jg 0x40116b <loop+15>
0x0000000000401166 <+10>: add $0x1,%eax
0x0000000000401169
0x000000000040116b

<+13>:
<+15>:

jmp
retq

0x401161 <loop+5>

55

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

$0x0,%eax
$0x63,%eax
0x40116b <loop+15>
$0x1,%eax
0x401161 <loop+5>

0x000000000040115c <+0>: mov
0x0000000000401161 <+5>: cmp
0x0000000000401164 <+8>: jg
0x0000000000401166 <+10>: add
0x0000000000401169 <+13>: jmp
0x000000000040116b <+15>: retq

Set %eax (i) to 0.

56

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

$0x0,%eax
$0x63,%eax
0x40116b <loop+15>
$0x1,%eax
0x401161 <loop+5>

0x000000000040115c <+0>: mov
0x0000000000401161 <+5>: cmp
0x0000000000401164 <+8>: jg
0x0000000000401166 <+10>: add
0x0000000000401169 <+13>: jmp
0x000000000040116b <+15>: retq

Compare %eax (i) to 0x63 (99)
by calculating %eax – 0x63.
This is 0 – 99 = -99, so it sets
the Sign Flag to 1.

57

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

$0x0,%eax
$0x63,%eax
0x40116b <loop+15>
$0x1,%eax
0x401161 <loop+5>

0x000000000040115c <+0>: mov
0x0000000000401161 <+5>: cmp
0x0000000000401164 <+8>: jg
0x0000000000401166 <+10>: add
0x0000000000401169 <+13>: jmp
0x000000000040116b <+15>: retq

jg means “jump if greater than”.
This jumps if %eax > 0x63. The
flags indicate this is false, so we do
not jump.

58

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

$0x0,%eax
$0x63,%eax
0x40116b <loop+15>
$0x1,%eax
0x401161 <loop+5>

0x000000000040115c <+0>: mov
0x0000000000401161 <+5>: cmp
0x0000000000401164 <+8>: jg
0x0000000000401166 <+10>: add
0x0000000000401169 <+13>: jmp
0x000000000040116b <+15>: retq

Add 1 to %eax (i).

59

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

$0x0,%eax
$0x63,%eax
0x40116b <loop+15>
$0x1,%eax
0x401161 <loop+5>

0x000000000040115c <+0>: mov
0x0000000000401161 <+5>: cmp
0x0000000000401164 <+8>: jg
0x0000000000401166 <+10>: add
0x0000000000401169 <+13>: jmp
0x000000000040116b <+15>: retq

Jump to another instruction.

60

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

$0x0,%eax
$0x63,%eax
0x40116b <loop+15>
$0x1,%eax
0x401161 <loop+5>

0x000000000040115c <+0>: mov
0x0000000000401161 <+5>: cmp
0x0000000000401164 <+8>: jg
0x0000000000401166 <+10>: add
0x0000000000401169 <+13>: jmp
0x000000000040116b <+15>: retq

Compare %eax (i) to 0x63 (99)
by calculating %eax – 0x63.
This is 1 – 99 = -98, so it sets
the Sign Flag to 1.

61

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

$0x0,%eax
$0x63,%eax
0x40116b <loop+15>
$0x1,%eax
0x401161 <loop+5>

0x000000000040115c <+0>: mov
0x0000000000401161 <+5>: cmp
0x0000000000401164 <+8>: jg
0x0000000000401166 <+10>: add
0x0000000000401169 <+13>: jmp
0x000000000040116b <+15>: retq

We continue in this pattern until
we make this conditional jump.
When will that be?

62

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

$0x0,%eax
$0x63,%eax
0x40116b <loop+15>
$0x1,%eax
0x401161 <loop+5>

0x000000000040115c <+0>: mov
0x0000000000401161 <+5>: cmp
0x0000000000401164 <+8>: jg
0x0000000000401166 <+10>: add
0x0000000000401169 <+13>: jmp
0x000000000040116b <+15>: retq

We will stop looping when this
comparison says that %eax – 0x63 > 0!

63

Loops and Control Flow
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

0x000000000040115c <+0>: mov
0x0000000000401161 <+5>: cmp
0x0000000000401164 <+8>: jg
0x0000000000401166 <+10>: add
0x0000000000401169 <+13>: jmp
0x000000000040116b <+15>: retq

$0x0,%eax
$0x63,%eax
0x40116b <loop+15>
$0x1,%eax
0x401161 <loop+5>

Then, we return from the function.

64

GCC Common While Loop Construction

C
while (test) {

body
}

Assembly
Test
Skip loop if test passes
Body
Jump back to test

0x000000000040115c <+0>: mov $0x0,%eax
0x0000000000401161 <+5>: cmp $0x63,%eax
0x0000000000401164 <+8>: jg 0x40116b <loop+15>
0x0000000000401166 <+10>: add $0x1,%eax
0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
0x000000000040116b <+15>: retq

From Previous Slide:

65

GCC Other While Loop Construction

C
while (test) {

body
}

Jump
Body

to test

Test
Jump to body if test passes

Assembly

0x0000000000400570 <+0>: mov $0x0,%eax
0x0000000000400575 <+5>: jmp 0x40057a <loop+10>
0x0000000000400577 <+7>: add $0x1,%eax
0x000000000040057a <+10>: cmp $0x63,%eax
0x000000000040057d <+13>: jle 0x400577 <loop+7>
0x000000000040057f <+15>: repz retq

From Previous Slide:

66

Lecture Plan

67

• Assembly Execution and %rip
• Control Flow Mechanics

• Condition Codes
• Assembly Instructions

• If statements
• Loops

• While loops
• For loops

• Other Instructions That Depend On Condition Codes

Common For Loop Construction

C For loop
for (init; test; update) {

body
}

Assembly pseudocode
Init
Test
Skip loop if test passes
Body
Update
Jump back to test

C Equivalent While Loop
init
while(test) {

body
update

}

For loops and while loops are
treated (essentially) the same
when compiled down to assembly.

68

69

Back to Our First Assembly
int sum_array(int arr[], int nelems) {

int sum = 0;
for (int i = 0; i < nelems; i++) {

sum += arr[i];
}
return sum;

}

0000000000401136 <sum_array>:
401136 <+0>: mov
40113b <+5>: mov

$0x0,%eax
$0x0,%edx
%esi,%eax401140 <+10>: cmp

401142 <+12>: jge 0x40114f <sum_array+25>
401144 <+14>: movslq %eax,%rcx

(%rdi,%rcx,4),%edx
$0x1,%eax
0x401140 <sum_array+10>
%edx,%eax

401147 <+17>: add
40114a <+20>: add
40114d <+23>: jmp
40114f <+25>: mov
401151 <+27>: retq

1. Which register is C code’s sum?
2. Which register is C code’s i?
3. Which assembly instruction is C

code’s sum += arr[i]?
4. What are the cmp and jge

instructions doing?
(jge: signed jump greater than/equal)

gdb tips

layout split
info reg Print all registers

p $eax Print register value
p $eflags Print all condition codes currently set

b *0x400546 Set breakpoint at assembly instruction
b *0x400550 if $eax > 98 Set conditional breakpoint

ni Next assembly instruction
si Step into assembly instruction (will step

into function calls)

View C, assembly, and gdb (lab5)(ctrl-x a: exit,
ctrl-l: resize)

70

gdb tips
p/x $rdi
p/t $rsi

x $rdi
x/4bx $rdi
x/4wx $rdi

Print register value in hex
Print register value in binary

71

Examine the byte stored at this address
Examine 4 bytes starting at this address
Examine 4 ints starting at this address

Lecture Plan

72

• Assembly Execution and %rip
• Control Flow Mechanics

• Condition Codes
• Assembly Instructions

• If statements
• Loops

• While loops
• For loops

• Other Instructions That Depend On Condition Codes

Condition Code-Dependent Instructions

73

There are three common instruction types that use condition codes:
• jmp instructions conditionally jump to a different next instruction
• set instructions conditionally set a byte to 0 or 1
• new versions of mov instructions conditionally move data

set: Read condition codes
set instrucnons condinonally set a byte to 0 or 1.
• Reads current state of flags
• Desnnanon is a single-byte register (e.g., %al) or single-byte memory locanon
• Does not perturb other bytes of register
• Typically followed by movzbl to zero those bytes

int small(int x) {
return x < 16;

}

cmp $0xf,%edi
setle %al
movzbl %al, %eax
retq

74

set: Read condition codes

75

Instruction Synonym Set Condition (1 if true, 0 if false)

sete D setz Equal / zero

setne D setnz Not equal / not zero

sets D Negative

setns D Nonnegative

setg D setnle Greater (signed >)

setge D setnl Greater or equal (signed >=)

setl D setnge Less (signed <)

setle D setng Less or equal (signed <=)

seta D setnbe Above (unsigned >)

setae D setnb Above or equal (unsigned >=)

setb D setnae Below (unsigned <)

setbe D setna Below or equal (unsigned <=)

cmov: Conditional move
cmovx src,dst conditionally moves data in src to data in dst.
• Mov src to dst if condition x holds; no change otherwise
• src is memory address/register, dst is register
• May be more efficient than branch (i.e., jump)
• Often seen with C ternary operator: result = test ? then: else;

int max(int x, int y) {
return x > y ? x : y;

}

cmp
mov

%edi,%esi
%edi, %eax

cmovge %esi, %eax
retq

76

cmov: Conditional move

77

Instruction Synonym Move Condition

cmove S,R cmovz Equal / zero (ZF = 1)

cmovne S,R cmovnz Not equal / not zero (ZF = 0)

cmovs S,R Negative (SF = 1)

cmovns S,R NonnegaOve (SF = 0)

cmovg S,R cmovnle Greater (signed >) (SF = 0 and SF = OF)

cmovge S,R cmovnl Greater or equal (signed >=) (SF = OF)

cmovl S,R cmovnge Less (signed <) (SF != OF)

cmovle S,R cmovng Less or equal (signed <=) (ZF = 1 or SF! = OF)

cmova S,R cmovnbe Above (unsigned >) (CF = 0 and ZF = 0)

cmovae S,R cmovnb Above or equal (unsigned >=) (CF = 0)

cmovb S,R cmovnae Below (unsigned <) (CF = 1)

cmovbe S,R cmovna Below or equal (unsigned <=) (CF = 1 or ZF = 1)

Last Lab: Conditional Move
int signed_division(int x) {

return x / 4;
}

signed_division:
leal 3(%rdi), %eax
testl %edi, %edi
cmovns %edi, %eax
sarl $2, %eax
ret

Put x + 3 into %eax
Check the sign of x
If x is positive, put x into %eax
Divide %eax by 4

78

Recap

79

• Assembly Execution and %rip
• Control Flow Mechanics

• Condition Codes
• Assembly Instructions

• If statements
• Loops

• While loops
• For loops

• Other Instructions That Depend On Condition Codes

How to remember cmp/jmp
• CMP S1, S2 is S2 – S1 (just sets condition codes). But generally:

• Much less important to remember
exact condition codes

• Yes, they fully explain conditional jmp…
• …but more important to know how to

translate assembly back into C
• If you’re interested, B&O p. 206 has details

cmp S1, S2
jg … S2 S1 >S2 - S1 0>

80

Remember test exists
• TEST S1, S2 is S2 & S1

test %edi, %edi
jns …

%edi & %edi is nonnegative
%edi is nonnegative

81

Practice: Fill in the blanks
<+0>: mov $0x1,%eax
<+5>: cmp %rsi,%rdi
<+8>: jge 0x1151 <loop+24>
<+10>: lea (%rdi,%rsi,1),%rdx
<+14>: imul %rdx,%rax
<+18>: add $0x1,%rdi
<+22>: jmp 0x113e <loop+5>
<+24>: retq

long loop(long a, long b) {
long result = (1) ;
while ((2)) {

result = (3) ;
a = (4) ;

}
return result;

}

GCC common while loop construction:
Test
Jump past loop if fails
Body
Jump to test

https://godbolt.org/z/zrW6c5MGa 82

Practice: Fill in the blanks
<+0>: mov $0x1,%eax
<+5>: cmp %rsi,%rdi
<+8>: jge 0x1151 <loop+24>
<+10>: lea (%rdi,%rsi,1),%rdx
<+14>: imul %rdx,%rax
<+18>: add $0x1,%rdi
<+22>: jmp 0x113e <loop+5>
<+24>: retq

long loop(long a, long b) {
long result = (1) ;
while ((2)) {

result = (3) ;
a = (4) ;

}
return result;

}

GCC common while loop construction:
Test
Jump past loop if fails
Body
Jump to test

83

Practice: Fill in the blanks

84

<+0>: mov $0x1,%eax

<+5>: cmp %rsi,%rdi
<+8>: jge 0x1151 <loop+24>

<+10>: lea (%rdi,%rsi,1),%rdx
<+14>: imul %rdx,%rax
<+18>: add $0x1,%rdi

<+22>: jmp 0x113e <loop+5>

<+24>: retq

long loop(long a, long b) {
long result = ;
while () {

result = ;
a = ;

}
return result;

}

Practice: Fill in the blanks

85

long loop(long a, long b) {
long result = 1 ;
while (a < b) {

result = result*(a+b) ;
a = a + 1 ;

}
return result;

}

<+0>: mov $0x1,%eax

<+5>: cmp %rsi,%rdi
<+8>: jge 0x1151 <loop+24>

<+10>: lea (%rdi,%rsi,1),%rdx
<+14>: imul %rdx,%rax
<+18>: add $0x1,%rdi

<+22>: jmp 0x113e <loop+5>

<+24>: retq

test practice: What’s the C code?
0x400546
0x400548

<test_func>
<test_func+2>

test
jns

%edi,%edi
0x400550 <test_func+10>

0x40054a
0x40054f
0x400550
0x400555

<test_func+4>
<test_func+9>
<test_func+10>
<test_func+15>

mov
retq
mov
retq

$0xfeed,%eax

$0xaabbccdd,%eax

86

test practice: What’s the C code?
0x400546
0x400548

<test_func>
<test_func+2>

test
jns

%edi,%edi
0x400550 <test_func+10>

0x40054a
0x40054f
0x400550
0x400555

<test_func+4>
<test_func+9>
<test_func+10>
<test_func+15>

mov
retq
mov
retq

$0xfeed,%eax

$0xaabbccdd,%eax

int test_func(int x) {
if (x < 0) {

return 0xfeed;
}
return 0xaabbccdd;

}
(or anything
like this)

87

Practice: “Escape Room”

returns true (1) and not false (0)? Just figure out the big picture!

<escape_room+0> lea (%rdi,%rdi,1),%eax
<escape_room+3> cmp $0x5,%eax
<escape_room+6> jg 0x114c <escape_room+19>
<escape_room+8> cmp $0x1,%edi
<escape_room+11> je 0x1152 <escape_room+25>
<escape_room+13> mov $0x0,%eax
<escape_room+18> retq
<escape_room+19> mov $0x1,%eax
<escape_room+24> retq
<escape_room+25> mov $0x1,%eax
<escape_room+30> retq

What must be passed to the
escapeRoom function such that it

You don’t have to reverse-engineer C
code exactly!

88

Practice: “Escape Room”

returns true (1) and not false (0)?

<escape_room+0> lea (%rdi,%rdi,1),%eax
<escape_room+3> cmp $0x5,%eax
<escape_room+6> jg 0x114c <escape_room+19>
<escape_room+8> cmp $0x1,%edi
<escape_room+11> je 0x1152 <escape_room+25>
<escape_room+13> mov $0x0,%eax
<escape_room+18> retq
<escape_room+19> mov $0x1,%eax
<escape_room+24> retq
<escape_room+25> mov $0x1,%eax
<escape_room+30> retq

First param > 2 or == 1.
What must be passed to the
escapeRoom function such that it

89

	Slide Number 1
	Learning Assembly
	Learning Goals
	Lecture Plan
	Lecture Plan
	Executing Instructions
	Executing Instructions
	Register Responsibilities
	Instructions Are Just Bytes!
	Instructions Are Just Bytes!
	Instructions Are Just Bytes!
	4004fd
	%rip
	%rip
	%rip
	%rip
	%rip
	%rip
	Going In Circles
	Jump!
	Jump!
	Jump!
	Jump!
	Jump!
	jmp
	“Interfering” with %rip
	Lecture Plan
	Control
	Control
	Control
	Conditional Jumps
	Control
	Control
	Control
	Condition Codes
	Condition Codes
	Setting Condition Codes
	Control
	Conditional Jumps
	Setting Condition Codes
	Condition Codes
	Exercise 1: Conditional jump
	Exercise 1: Conditional jump
	Exercise 2: Conditional jump
	Exercise 2: Conditional jump
	Lecture Plan
	If Statements
	Practice: Fill In The Blank
	Practice: Fill In The Blank
	Common If-Else Construction
	Practice: Fill in the Blank
	Practice: Fill in the Blank
	If-Else Construction Variations
	Lecture Plan
	Loops and Control Flow
	Loops and Control Flow
	Loops and Control Flow
	Loops and Control Flow
	Loops and Control Flow
	Loops and Control Flow
	Loops and Control Flow
	Loops and Control Flow
	Loops and Control Flow
	Loops and Control Flow
	GCC Common While Loop Construction
	GCC Other While Loop Construction
	Lecture Plan
	Common For Loop Construction
	Back to Our First Assembly
	gdb tips
	gdb tips
	Lecture Plan
	Condition Code-Dependent Instructions
	set: Read condition codes
	set: Read condition codes
	cmov: Conditional move
	cmov: Conditional move
	Last Lab: Conditional Move
	Recap
	How to remember cmp/jmp
	Remember test exists
	Practice: Fill in the blanks
	Practice: Fill in the blanks
	Practice: Fill in the blanks
	Practice: Fill in the blanks
	test practice: What’s the C code?
	test practice: What’s the C code?
	Practice: “Escape Room”
	Practice: “Escape Room”

