CS107, Lecture 12

Assembly: Control Flow

T COULD RESTRUCTURE | | EH, SCREW GQOD PRACTICE.
THE PROGRAMS FLOW | | HOW BAD CAN 1T BE?

OR USE OVE LITILE goto main.sub3;
oD INSTEAD .

?)ﬁ f ; w *COMPILE*

Reading: B&O 3.6

This document is copyright (C) Stanford Computer Science, Adam Keppler, and Olayinka Adekola licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Joel Ramirez, Nick Troccoli, Chris Gregg

Learning Assembly

Arithmetic and
logical Control flow Function calls
operations

Lecture 10 Lecture 11 This Lecture Lecture 13

Reference Sheet: cs107.stanford.edu/resources/x86-64-reference.pdf
See more guides on Resources page of course website!

Learning Goals

* Learn about how assembly stores comparison and operation results in
condition codes

* Understand how assembly implements loops and control flow

Lecture Plan

* Assembly Execution and %rip

e Control Flow Mechanics

e Condition Codes
* Assembly Instructions

e If statements
* Loops

* While loops
* For loops

e Other Instructions That Depend On Condition Codes

Lecture Plan

* Assembly Execution and %rip

e Control Flow Mechanics

e Condition Codes
* Assembly Instructions

e If statements
* Loops

* While loops
* For loops

e Other Instructions That Depend On Condition Codes

Executing Instructions

What does it mean for a program
to execute?

Executing Instructions &

4004fc
4004fb | 01
SO far' 4004fa | fc
* Program values can be stored in memory or registers. 400419 |45
* Assembly instructions read/write values back and forth 400418 | 83
. 400417 | 00

between registers (on the CPU) and memory.

400416 |00
* Assembly instructions are also stored in memory. 1004F5 | 0o
400414 | 00
d 400413 | fc
Toaay: 40042 | 45
* Who controls the instructions? 4004f1 | c7
How do we know what to do now or next? 4+ 400410 |e5
A 4004ef | g9
nswer: 4004ee |48
* The program counter (PC), %rip. 4004ed [sg

Register Responsibilities

Some registers take on special responsibilities during program execution.

* %rip stores the address of the next instruction to execute

See the x86-64 Guide and Reference Sheet on the Resources webpage for more!

Instructions Are Just Bytes!

CPU

Register file

m
iz System bus Memory bus

P | :

| 110 | Main | “hello, world\n”
| bridge - T |memoryl .00 code

I/O bus | | il-[-'_[-l_

Expansion slots for
other devices such
as network adapters

Bus interface }

USB Graphics | Disk
controller adapter | controller

PR ' }

Mouse Keyboard Display (& 7
k

— | hello executable
Dis stored on disk

| “hello, world\n

i memory hello code

——— e

Instructions Are Just Bytes!

Main Memory

Stack

Heap

A
Data

I\/!achine_code — Text (code)
Instructions
Ox0

11

00000000004004ed <loop>:

4004ed:

40041 :
400418 :
4004fc:

55

c7 45 fc 00 00 00 00
83 45 fc 01
eb fa

push

mov1l
addl
jmp

%rbp

$0x0, -0x4 (%rbp)
$0x1, -0x4(%rbp)
400418 <loop+0xb>

4004fd

4004fc

4004fb o1
4004fa fc
400419 45
40048 83
400417 00
400416 00
40045 00
400414 00
400413 fc
400412 45
400411 c7
4004ed 55

Main Memory

Stack

Heap

Data

Text (code)

1

N

00000000004004ed <loop>:
) 4004ed: 55

4004f1: c7 45 fc 00 00 00 00
4004f8: 83 45 fc 01
4004fc: eb fa

The program counter (PC),
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed.

4004fd

4004fc

4004fb 01

4004fa fc

push %rbp 40049 45
400418 83

movl $0x0,-0x4(%rbp) 4004f7 |00
addl $0x1, -0x4(%rbp) 4004f6 | 00
jmp 400418 <loop+0xb> 4004F5 | 00
4004f4 |00

400413 fc

4004f2 |45

4004f1 | c7

Ox4004ed

\ 4004ed |55

%rip

13

4004fd

4004fc

4004fb 01
0000000PRV4004ed <loop>: 40e4fa | fc
4004ed: 55 push %rbp 4004f9 |45

» 4004f8 | 83
4004f1: c7 45 fc 00 00 00 @0 movl $0x0,-0x4(%rbp) 4004f7 |00
4004f8: 83 45 fc 01 addl $0x1, -0x4(%rbp) 40046 | 00
4004fc: eb fa jmp 400418 <loop+0xb> 40045 | 00

400414 00

400413 fc

40042 45

The program counter (PC), roontl oo
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed. | 9X4004 00 T ————————])
4004ed 55

%Pip 14

4004fd

4004fc

4004fb 01
0000000PRV4004ed <loop>: 40e4fa | fc
4004ed: 55 push %rbp 4004f9 |45

400418 83

m) 4004f1: c7 45 fc 00 00 00 @0 movl $0x0,-0x4(%rbp) 4004f7 |00
4004f8: 83 45 fc 01 addl $0x1, -0x4(%rbp) 40046 | 00
4004fc: eb fa jmp 400418 <loop+0xb> 40045 | 00

400414 00

400413 fc

40042 45

The program counter (PC), roontl oo
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed. | 9x4004f1
4004ed 55

%rip 15

4004fd
4004fc
4004fb 01
00000000004004ed <loop>: 2ooare e
4004ed: 55 push %rbp
400419 45
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp) feoats |83
m) 4004f8: 83 45 fc 01 addl $0x1, -0x4(%rbp) 4004f7 | 00
4004fc: eb fa jmp 400418 <loop+0xb> 4004f6 | 00
40045 (%1%
400414 00
400413 fc
40042 45
The program counter (PC), roontl oo
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed. | 9x4004f8
4004ed 55

%rip 16

4004fd

4004fc

4004fb 01
0000000PRV4004ed <loop>: 40e4fa | fc
4004ed: 55 push %rbp 4004f9 |45

400418 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp 4004f7 |00
400418: 83 45 fc 01 addl $0x1, -0x4(%rb 4004f6 | 00

m) 4004fc: eb fa jmp 400418 <loopfOxb> 10045 | 00

400414 00

400413 fc

40042 45

The program counter (PC), roontl oo
known as %rip in x86-64, stores
the address in memory of the
next instruction to be executed. | 9x4004Ffc
4004ed 55

%Pip 17

4004fd

4004fc

4004fb o1
00000000004004ed <loop>: 4004fa | fc
4004ed: 55 push %rbp 4004f9 |45

40048 83
4004f1: c7 45 fc 00 00 00 @0 movl $0x0,-0x4(%rbp 4004f7 |00
4004f8: 83 45 fc 01 addl $0x1, -0x4(%rb 4004f6 | 00

m) 4004fc: eb fa jmp 400418 <loopfOxb> [ip0afs | oo

400414 00

. 4004f3 | fc
Special haro_lware sets the program counter rooats | as
to the next instruction: noonfl o7
%rip += size of bytes of current instruction
Ox4004fC
4004ed 55

%rip 18

Going In Circles

* How can we use this representation of execution to represent e.g. a loop?

* Key Idea: we can “interfere” with %rip and set it back to an earlier instruction!

19

4004fd

4004fc

4004fb 01
0000000PRV4004ed <loop>: 40e4fa | fc
4004ed: 55 push %rbp 4004f9 |45

400418 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp 4004f7 |00
400418: 83 45 fc 01 addl $0x1, -0x4(%rb 4004f6 | 00

m) 4004fc: eb fa jmp 400418 <loopfOxb> 10045 | 00

400414 00

400413 fc

40042 45

The jmp instruction is an noonfl o7
unconditional jump that sets
the program counter to the
jump target (the operand). Ox4004Ffc
4004ed 55

%rip 20

4004fd
4004fc
4004fb 01
0000000PRV4004ed <loop>: 40e4fa | fc
4004ed: 55 push %rbp 4004f9 |45
400418 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp) 4004f7 |00
m) 4004f8: 83 45 fc 01 addl $@x1,-0x4(%rbp) 4004f6 | 00
4004fc: eb fa jmp 400418 <loop+0x 40045 | 00
4004f4 | 00
400413 fc
4e004f2 |45
The jmp instruction is an noonfl o7
unconditional jump that sets
the program counter to the
jump target (the operand). Ox4004Ffc
4004ed 55

%rip 21

4004fd

4004fc

4004fb 01
0000000PRV4004ed <loop>: 40e4fa | fc
4004ed: 55 push %rbp 4004f9 |45

400418 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp 4004f7 |00
400418: 83 45 fc 01 addl $0x1, -0x4(%rb 4004f6 | 00

m) 4004fc: eb fa jmp 400418 <loopfOxb> 10045 | 00

400414 00

400413 fc

40042 45

The jmp instruction is an noonfl o7
unconditional jump that sets
the program counter to the
jump target (the operand). Ox4004Ffc
4004ed 55

%Pip 22

4004fd
4004fc
4004fb 01
0000000PRV4004ed <loop>: 40e4fa | fc
4004ed: 55 push %rbp 4004f9 |45
400418 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp) 4004f7 |00
m) 4004f8: 83 45 fc 01 addl $@x1,-0x4(%rbp) 4004f6 | 00
4004fc: eb fa jmp 400418 <loop+0x 40045 | 00
4004f4 | 00
400413 fc
4e004f2 |45
The jmp instruction is an noonfl o7
unconditional jump that sets
the program counter to the
jump target (the operand). Ox4004Ffc
4004ed 55

%rip 23

4004fd
4004fc
4004fDb o1
0000000V4004ed <loOp>: 4eedfa | fc
4004ed: 55 push %rbp 4eeafs | 45
400418 83
4004f1: c7 45 fc 00 00 00 00 movl $0x0, -0x4(%rbp) 40047 |00
m) 4004f8: 83 45 fc 01 addl $0x1,-0x4(%rbp) 4004f6 | 00
4004fc: eb fa jmp 400418 <loop+0x 40045 | 00
400414 00
400413 fc
400412 45
This assembly represents an 4004f1 | c7
infinite loop in C!
, Ox4004fcC
while (true) {..} rooded 55

%rip 24

The jmp instruction jumps to another instruction in the assembly code
(“Unconditional Jump”).

jmp Label (Direct Jump)
jmp *Operand (Indirect Jump)

The destination can be hardcoded into the instruction (direct jump):
jmp 40418 <loop+Oxb>

The destination can also be one of the usual operand forms (indirect jump):
jmp *%rax

25

“Interfering” with %rip

1. How do we repeat instructions in a loop?

jmp [target]
A 1-step unconditional jump (always
jump when we execute this instruction)

What if we want a conditional jump?

26

Lecture Plan

* Assembly Execution and %rip

 Control Flow Mechanics

e Condition Codes
* Assembly Instructions

e If statements
* Loops

* While loops
* For loops

e Other Instructions That Depend On Condition Codes

27

* In C, we have control flow statements like if, else, while, for, etc. to write
programs that are more expressive than just one instruction following another.

* This is conditional execution of statements: executing statements if one
condition is true, executing other statements if one condition is false, etc.

* How is this represented in assembly?

28

o 'F In Assembly:
1 (X > y) { 1. Calculate the condition result

// a 2. Based on theresult,gotoaorb

} else {
// b

* In assembly, it takes more than one instruction to do these two steps.

* Most often: 1 instruction to calculate the condition, 1 to conditionally jump

Common Pattern:
1. cmp S1, S2 // compare two values

2. je [target] or jne [target] or jl[target] or ... // conditionally jump
“jump if ”jumpq* "jump¢

|” |” less than”

equa not equa

30

Conditional Jumps

There are also variants of jmp that jump only if certain conditions are true
(“Conditional Jump”). The jump location for these must be hardcoded into the
instruction.

Instruction Synonym Set Condition

je Label jz Equal / zero

jne Label jnz Not equal / not zero

js Label Negative

jns Label Nonnegative

jg Label jnle Greater (signed >)

jge Label jnl Greater or equal (signed >=)
jl Label jnge Less (signed <)

jle Label jng Less or equal (signed <=)

ja Label jnbe Above (unsigned >)

jae Label jnb Above or equal (unsigned >=)
jb Label jnae Below (unsigned <)

jbe Label jna Below or equal (unsigned <=) 31

Read cmp S1,S2 as “compare S2 to S17

// Jump if %edi > 2 // Jump if %edi == 4
cmp $2, %edi cmp $4, %edi

jg [target] je [target]

// Jump 1if %edi = 3 // Jump 1if Z%edi <=1
cmp $3, %edi cmp $1, %edi

jne [target] jle [target]

32

Read cmp S1,S2 as “compare S2 to S17

// Jump 1if %edi > 2 // Jump 1f Z%edi ==
cmp $2, %edi cmp $4, %edi

jg [target] je [target]

// Jump if %edi !'= 3 // Jump if %

cmp $3, %edi cmp $1, %ediedi <=1
jne [target] jle [target]

Wait a minute — how does the jump instruction know anything
about the compared values in the earlier instruction?

33

* The CPU has special registers called condition codes that are like “global
variables”. They automatically keep track of information about the most
recent arithmetic or logical operation.

e cmp compares via calculation (subtraction) and info is stored in the condition codes
e conditional jump instructions look at these condition codes to know whether to jump

* What exactly are the condition codes? How do they store this information?

34

Condition Codes

Alongside normal registers, the CPU also has single-bit condition code registers.
They store the results of the most recent arithmetic or logical operation.

Most common condition codes:

* CF: Carry flag. The most recent operation generated a carry out of the most
significant bit. Used to detect overflow for unsigned operations.

e ZF: Zero flag. The most recent operation yielded zero.
* SF: Sign flag. The most recent operation yielded a negative value.

* OF: Overflow flag. The most recent operation caused a two’s-complement
overflow-either negative or positive.

35

Condition Codes

Alongside normal registers, the CPU also has single-bit condition code registers.
They store the results of the most recent arithmetic or logical operation.

Example: if we calculate t = a + b, condition codes are set according to:

* CF: Carry flag (Unsigned Overflow). (unsigned) t < (unsigned) a
* ZF: Zero flag (Zero). (t == 0)

* SF: Sign flag (Negative). (t < 0)

* OF: Overflow flag (Signed Overflow). (a<@ == b<o) && (t<0 != a<0)

36

Setting Condition Codes

The cmp instruction is like the subtraction instruction, but it does not store the
result anywhere. It just sets condition codes. (Note the operand order!)

CMP S1, S2 S2 - S1

Instruction Description

cmpb Compare byte

cmpw Compare word

cmpl Compare double word
cmpq Compare quad word

37

Read cmp $1,52 as “compare S2 to S1”. It calculates S2 — S1 and updates the
condition codes with the result.

// Jump 1f Z%edi > 2 // Jump 1if %edi == 4
// calculates %edi - 2 // calculates %edi - 4
cmp $2, %edi cmp $4, %edi

jg [target] je [target]

// Jump 1f %edi != 3 // Jump 1f %edi <=1
// calculates %edi - 3 // calculates %edi - 1
cmp $3, %edi cmp $1, %edi

jne [target] jle [target]

38

Conditional Jumps

Conditional jumps can look at subsets of the condition codes in order to check
their condition of interest.

Instruction Synonym Set Condition

je Label jz Equal / zero (ZF = 1)

jne Label jnz Not equal / not zero (ZF = 0)

js Label Negative (SF = 1)

jns Label Nonnegative (SF = 0)

jg Label jnle Greater (signed >) (ZF = 0 and SF = OF)

jge Label jnl Greater or equal (signed >=) (SF = OF)

jl Label jnge Less (signed <) (SF != OF)

jle Label jng Less or equal (sighed <=) (ZF = 1 or SF! = OF)
ja Label jnbe Above (unsigned >) (CF =0 and ZF = 0)

jae Label jnb Above or equal (unsigned >=) (CF = 0)

jb Label jnae Below (unsigned <) (CF = 1)

jbe Label jna Below or equal (unsigned <=) (CF =1 or ZF = 1) 39

Setting Condition Codes

The test instruction is like cmp, but for AND. It does not store the & result
anywhere. It just sets condition codes.

TEST S1, S2 S2 & S1
testb Test byte
testw Test word
testl Test double word
testq Test quad word

Cool trick: if we pass the same value for both operands, we can check the sign
of that value using the Sign Flag and Zero Flag condition codes!

40

Condition Codes

* Previously-discussed arithmetic and logical instructions update these flags. lea
does not (it was intended only for address computations).

* Logical operations (xor, etc.) set carry and overflow flags to zero.

* Shift operations set the carry flag to the last bit shifted out and set the
overflow flag to zero.

* For more complicated reasons, inc and dec set the overflow and zero flags, but
leave the carry flag unchanged.

41

Exercise 1: Conditional jump

je target jump if ZF is 1

Let %edi store 0x10. Will we jump in the following cases? %ed

1. cmp $0x10,%edi
je 40056f
add $0x1,%edi

2. test $0x10,%edi
je 40056f A
add $0x1,%edi Q*

42

Exercise 1: Conditional jump

je target jump if ZF is 1

Let %edi store 0x10. Will we jump in the following cases? %ed

1. cmp $0x10,%edi ,
je 40056f S2-S51==0, so jump

add $0x1,%edi

2. test $0x10,%edi
je 40056f S2 & S1 =0, so don’t jump
add $0x1,%edi

43

Exercise 2: Conditional jump

00000000004004d6 <if then>:

4004d6: 83 ff 06 cmp $0x6,%edi roed %>
4004d9: 75 03 jne 4004de <if then+0x8>
400rdb: 83 c7 01 add $0x1, %edi
4004de: 8d 04 3f lea (%rdi,%rdi,1),%eax
4004el: c3 retqg
1. What is the value of %rip after 2. What is the value of %eax
executing the jne instruction? when we hit the retq instruction?
A. 4004d9 A. 4004el
B. 4004db B. Ox2
C. 4004de C. ©Oxa o
D. Other D. OXc (?—9
E. Other -

Exercise 2: Conditional jump

00000000004004d6 <if then>:

4004d6: 83 ff 06 cmp $0x6,%edi roed %>
4004d9: 75 03 jne 4004de <if then+0x8>
400rdb: 83 c7 01 add $0x1, %edi
4004de: 8d 04 3f lea (%rdi,%rdi,1),%eax
4004el: c3 retq
1. What is the value of %rip after 2. What is the value of %eax
executing the jne instruction? when we hit the retq instruction?
A. 4004d9 A. 4004el
B. 4004db B. Ox2
D. Other D. OXc

E. Other

45

Lecture Plan

* Assembly Execution and %rip

e Control Flow Mechanics

e Condition Codes
* Assembly Instructions

e |[f statements
* Loops

* While loops
* For loops

e Other Instructions That Depend On Condition Codes

46

How can we use instructions like emp and conditional jumps to implement if
statements in assembly?

47

Practice: Fill In The Blank

int if then(int paraml) { ©000000000401126 <if_then>:

if (

) {

¥

return

401126:
401129:
40112b:
40112e:
40112f:

401132:

cmp $0x6 %edi

je 40112F

lea (%rdi,%rdi,1),%eax
retqg

add $0x1, %edi

jmp 40112b

Practice: Fill In The Blank

int if then(int paraml) { ©0000000000401126 <if_then>:

¥

if (paraml == 6) {
paraml++;
}

return paraml * 2;

401126:
401129:
40112b:
40112e:
40112f:

401132:

cmp $0x6 %edi

je 40112F

lea (%rdi,%rdi,1),%eax
retqg

add $0x1, %edi

jmp 40112b

49

Common If-Else Construction

If-Else In C If-Else In Assembly pseudocode
long absdiff(long x, long y) { Test
long result; Jump to else-body if test pgsses
1F Ocay) o if-bogy t el bod
result = y - x; ump to past else-body
Else-body
} else {

Past else body
result

X =Y

}

return result;

50

Practice: Fill in the Blank

If-Else In C

long absdiff(long x, long y) {
long result;

if () {
} else { ”
} J

return result;

401134
401137
40113a
40113c
40113f
401140
401143
401146

<+0>: mov %rsi,%krax

<+3>: cmp %rsi,%srdi

<+6>: jge 0x401140 <absdiff+12>
<+8>: sub %rdi,%rax

<+11>: retq

<+12>: sub %rsi,%rdi

<+15>: mov %rdi,%rax

<+18>: retq

If-Else In Assembly pseudocode
Test

Jump to else-body if test pgsses
If-body

Jump to past else-body Pt
Else-body (%é)
Past else body -

Practice: Fill in the Blank

If-Else In C

long absdiff(long x, long y) {
long result;

if ((X <Y) {

r 1t = 'X;
} else {

r 1t = X - 3
}

return result;

401134
401137
40113a
40113c
40113f
401140
401143
401146

<+0>:
<+3>:
<+6>:
<+8>:

<+11>:
<+12>:
<+15>:
<+18>:

mov
cmp
jge
sub
retq
sub
mov
retq

%rsi,%krax
%rsi,%rdi
0x401140 <absdiff+12>
%rdi,%rax

%rsi,%rdi
%rdi,%rax

If-Else In Assembly pseudocode

Test

Jump to else-body if test pgsses
If-body
Jump to past else-body
Else-body
Past else body

52

If-Else Construction Variations

C Code
int test(int arg) {
int ret;
if (arg > 3) {
ret = 10;
} else {
ret = 0;
}
ret++;

return ret;

Assembly

401134
401137
401139

40113e
401141
401142
401147

<+0>:
<+3>:
<+5>:

<+10>:
<+13>:
<+14>:
<+19>:

cmp
jle
mov
add
retq
mov

Jmp

$0x3,%edi

0x401142 <test+14>
$0xa, %heax

$0x1, %eax

$0x0, %eax
0x40113e <test+10>

53

Lecture Plan

* Assembly Execution and %rip

e Control Flow Mechanics

e Condition Codes
* Assembly Instructions

e If statements
* Loops

* While loops
* For loops

e Other Instructions That Depend On Condition Codes

54

Loops and Control Flow

void]_oop() { 0Xx000000000040115Cc <+0>: mov $0x0, %eax
int i = 9 0x0000000000401161 <+5>: cmp $0x63,%eax
o OX0000000000401164 <+8>: g Ox40116b <loop+15>
while (i < 100) { 0x0000000000401166 <+10>: add $0x1, %eax
i++4; 0x0000000000401169 <+13>: Jmp 0x401161 <loop+5>
} 0x000000000040116b <+15>: retq

55

Loops and Control Flow

void loop() { 0X000000000040115C <+0>: mov $0x0,%eax
R E—E 0X00000VVVVV401161 <+5>: gmp $0x63, %eax
1N > 0X0000000000401164 <+8>: jg 0x40116b <loop+15>
while (i < 100) { 0Xx0000000000401166 <+10>: add $0x1,%eax
i++; 0x0000000000401169 <+13>: jmp 0Ox401161 <loop+5>
1 0Xx000000000040116b <+15>: retq

Set %eax (i) to O.

56

Loops and Control Flow

void loop() { 0xX000000000040115Cc <+0>: mov $0x0, %eax
ti=0: 0x0000000000401161 <+5>: cmp $0x63, %eax
in) 0x0000000000401164 <+8>: jg Ox40116b <loop+15>
while (i < 100) { OX000000000R401166 <+10>: add $0x1,%eax
i++; 0Xx0000000000401169 <+13>: jmp 0x401161 <loop+5>
} 0x000000000040116b <+15>: retq

Compare %eax (i) to 0x63 (99)
by calculating %eax — 0x63.
This is 0 —99 =-99, so it sets
the Sign Flag to 1.

57

Loops and Control Flow

void loop() { 0xX000000000040115Cc <+0>: mov $0x0, %eax
ti=o: 0x0000000000401161 <+5>: cmp $0x63,%eax
in > 0x0000000000401164 <+8>: jg 0x40116b <loop+15>
while (i < 100) { OX0000000000401166 <+10>: add $0x1,%eax
1++; 0x0000000000401169 <+13>: jmp Ox401161 <loop+5>
} PX000000000R40116b <+15>: retq
}

jg means “jump if greater than”.
This jumps if %eax > 0x63. The
flags indicate this is false, so we do
not jump.

58

Loops and Control Flow

void loop() {
int 1 = 0;
while (i < 100) {
1++;
}

0Xx000000000040115Cc <+0>: mov
0x0000000000401161 <+5>: cmp
0x0000000000401164 <+8>: jg

0x0000000000401166 <+10>: add
0x0000000000401169 <+13>: jmp
0x000000000040116b <+15>: retq

$0x0, %eax
$0x63, %eax

Ox40116b <loop+15>
$0x1, %eax

0x401161 <loop+5>

Add 1 to %eax (i).

59

Loops and Control Flow

void 100p() { 0x000000000040115Cc <+0>: mov $0x0, %eax
ti=0: 0x0000000000401161 <+5>: cmp $0x63, %eax
in ’ 0x0000000000401164 <+8>: jg 0x40116b <loop+15>
while (i < 100) { 0Xx0000000000401166 <+10>: add $0x1,%eax
i++; 0X0000000000401169 <+13>: jmp 0x401161 <loop+5>
} Ox000000000040116b <+15>: retq

Jump to another instruction.

60

Loops and Control Flow

void loop() { 0xX000000000040115Cc <+0>: mov $0x0, %eax
ti=0: 0x0000000000401161 <+5>: cmp $0x63, %eax
in) 0x0000000000401164 <+8>: jg Ox40116b <loop+15>
while (i < 100) { OX000000000R401166 <+10>: add $0x1,%eax
i++; 0Xx0000000000401169 <+13>: jmp 0x401161 <loop+5>
} 0x000000000040116b <+15>: retq

Compare %eax (i) to 0x63 (99)
by calculating %eax — 0x63.
Thisis 1 —99 =-98, so it sets
the Sign Flag to 1.

61

Loops and Control Flow

void loop() {
int 1 = 0;
while (i < 100) {
i++;
}

0x000000000040115C <+0>: mov $0x0, %eax
0x0000000000401161 <+5>: cmp $0x63, %eax
0x0000000000401164 <+8>: jg Ox40116b <loop+15>

0Xx0000000000401166 <+10>: add $0x1,%eax
0x0000000000401169 <+13>: jmp ©x401161 <loop+5>
0Xx000000000040116b <+15>: retq

We continue in this pattern until
we make this conditional jump.
When will that be?

62

Loops and Control Flow

void 100p() { 0x000000000040115Cc <+0>: mov $0x0, heax
ti=o: 0X0000000PRR401161 <+5>: cmp $0x63,%eax
in ’ 0X0000000000401164 <+8>: jg @x40116b <loop+15>
while (i < 100) { PX0000000000401166 <+10>: add $0x1,%eax
1++; 0x0000000000401169 <+13>: jmp Ox401161 <loop+5>
} 0X000000000040116b <+15>: retq

We will stop looping when this
comparison says that %eax — 0x63 > 0!

63

Loops and Control Flow

void]_OOp() { 0Xx000000000040115Cc <+0>: mov $0x0, %eax
ti=0: 0x0000000000401161 <+5>: cmp $0X63, %eax
in ’ OXx0000000000401164 <+8>: jg 0x40116b <loop+15>
while (i < 100) { 0Xx0000000000401166 <+10>: add $0x1,%eax
i++; 0x0000000000401169 <+13>: jmp 0x401161 <loop+5>
} OXx000000000040116b <+15>: retq

Then, we return from the function.

64

GCC Common While Loop Construction

c Assembly
while (test) { Test
body Skip loop if test passes
) Body
Jump back to test

From Previous Slide:

0x0000000000401161 <+5>: cmp $0x63, %eax
0x0000000000401164 <+8>: jg Ox40116b <loop+15>

0x0000000000401166 <+10>: add $0x1, %eax
0Xx0000000000401169 <+13>: jmp Ox401161 <loop+5>

65

GCC Other While Loop Construction

c Assembly
while (test) { Jump to test
body Body
} Test
Jump to body if test passes

From Previous Slide:

0x0000000000400575 <+5>: jmp Ox40057a <loop+10>
0x0000000000400577 <+7>: add $0x1, %eax
0x000000000040057a <+10>: cmp $0x63,%eax

0x000000000040057d <+13>: jle Ox400577 <loop+7>

66

Lecture Plan

* Assembly Execution and %rip

e Control Flow Mechanics

e Condition Codes
* Assembly Instructions

e If statements
* Loops

* While loops
* For loops

e Other Instructions That Depend On Condition Codes

67

Common For Loop Construction

C For loop

for (init; test; update) {
body

}

C Equivalent While Loop
init
while(test) {

body

update

Assembly pseudocode

Skip loop if test passes
Body

mmm) Update

Jump back to test

For loops and while loops are
treated (essentially) the same
when compiled down to assembly.

68

Back to Our First Assembly

int sum_array(int arr[], int nelems) { |1 Which registeris C code’s sum?

int sum = 0; : : : , .
for (int i = @; i < nelems; i++) { |2 Whichregisteris Ccode’s 1?

sum += arr[i]; 3. Which assembly instruction is C
ieturn sum: code’s sum += arr[i]?
} 4. What are the cmp and jge

instructions doing?
0000000000401136 <sum_array>: .]]
401136 <+0>: mov $0x0 , %eax (jge: signed jump greater than/equal)

40113b <+5>: mov $0x0 , %edx
401140 <+10>: cmp %esi,%eax
401142 <+12>: jge Ox40114f <sum_array+25>

401144 <+14>: movslq %eax,%srcx
401147 <+17>: add (%rdi,%rcx,4),%edx

40114a <+20>: add $0x1, %eax =D
40114d <+23>: jmp 0x401140 <sum_array+10> (12;)
40114F <+25>: mov %edx , %eax -

401151 <+27>: retq 69

gdb tips & & 1

(ctrl-x a: exit,

layout split (r1-1: resize) View C, assembly, and gdb (lab5)

info reg Print all registers

p $eax Print register value

p $eflags Print all condition codes currently set

b *0x400546 Set breakpoint at assembly instruction
b *0x400550 if $eax > 98 Set conditional breakpoint

ni Next assembly instruction

si Step into assembly instruction (will step

into function calls) 70

p/x $rdi
p/t $rsi

X $rdi
x/4bx $rdi
xX/4wx $rdi

Print register value in hex

Print register value in binary

Examine the byte stored at this address
Examine 4 bytes starting at this address
Examine 4 ints starting at this address

71

Lecture Plan

* Assembly Execution and %rip

e Control Flow Mechanics

e Condition Codes
* Assembly Instructions

e If statements
* Loops

* While loops
* For loops

* Other Instructions That Depend On Condition Codes

72

Condition Code-Dependent Instructions

There are three common instruction types that use condition codes:
e jmp instructions conditionally jump to a different next instruction
* set instructions conditionally set a bytetoOor 1

* new versions of mov instructions conditionally move data

73

set: Read condition codes

set instrucnons condinonally set a byte to 0 or 1.

e Reads current state of flags

* Desnnanon is a single-byte register (e.g., %al) or single-byte memory locanon
* Does not perturb other bytes of register

 Typically followed by movzbl to zero those bytes

cmp $0xf,%edi
setle %al

movzbl %al, %eax
retqg

int small(int x) {
return X < 16;

}

74

set: Read condition codes

Instruction Synonym Set Condition (1 if true, 0 if false)
sete D setz Equal / zero

setne D setnz Not equal / not zero

sets D Negative

setns D Nonnegative

setg D setnle Greater (signed >)

setge D setnl Greater or equal (signed >=)
setl D setnge Less (signed <)

setle D setng Less or equal (signed <=)
seta D setnbe Above (unsigned >)

setae D setnb Above or equal (unsigned >=)
setb D setnae Below (unsigned <)

setbe D setna Below or equal (unsigned <=)

75

cmov: Conditional move

cmovx src,dst conditionally moves data in src to data in dst.

* Mov src to dst if condition x holds; no change otherwise

* src is memory address/register, dst is register

* May be more efficient than branch (i.e., jump)

e Often seen with C ternary operator: result = test ? then: else;

. . . cm %edi,%esi
int max(int x, int y) { mos Vedi, %eax
(o] k) o

return x >y ? X : Vy; ,
) ’ cmovge %esi, %eax

retq

76

cmov: Conditional move

Instruction Synonym Move Condition

cmove S,R cmovz Equal / zero (ZF = 1)

cmovne S,R cmovnz Not equal / not zero (ZF = 0)

cmovs S,R Negative (SF = 1)

cmovns S,R NonnegaOve (SF = 0)

cmovg S,R cmovnle Greater (signed >) (SF = 0 and SF = OF)
cmovge S,R cmovnl Greater or equal (signed >=) (SF = OF)
cmovl S,R cmovnge Less (signed <) (SF != OF)

cmovle S,R cmovng Less or equal (signed <=) (ZF = 1 or SF! = OF)
cmova S,R cmovnbe Above (unsigned >) (CF = 0 and ZF = 0)
cmovae S,R cmovnb Above or equal (unsigned >=) (CF = 0)
cmovb S,R cmovnae Below (unsigned <) (CF = 1)

cmovbe S,R cmovna Below or equal (unsigned <=) (CF=1or ZF = 1)

77

Last Lab: Conditional Move

int signed division(int x) {

return x / 4;

signed division:
leal 3(%rdi), %eax
testl %edi, %edi
cmovns %edi, %»eax
sarl $2, %eax
ret

Put x + 3 into %eax
Check the sign of x

If X is positive, put x into %eax
Divide %eax by 4

78

Recap

* Assembly Execution and %rip

e Control Flow Mechanics

e Condition Codes
* Assembly Instructions

e If statements
* Loops

* While loops
* For loops

e Other Instructions That Depend On Condition Codes

79

* How to remember cmp/jmp

e CMP S1, S2isS2 - S1 (justsets condition codes). But generally:

cmp S1, S2
Jg

S2 > S1 S2 - S1 > ©

Instruction Synonym Jump condition Description
jmp Label 1 Direct jump
jmp *Operand 1 Indirect jump
o M h | . b je Label jz ZF Equal / zero
uch less Important to remember PN T S
141 js Label SF Negative
exact condition codes ds) fan Newi.
* Yes, they fully explain conditional jmp J Label gule ~SF-0F)E-ZF Greater (signed)
4 e jge Label jnl ~(8F ~ OF) Greater or equal (signed >=)
. jl1 Label jnge SF ~ OF L ione
* ...but more important to know how to A4 anel BT i s e R U
translate assembly back into C ja Label jmbe ~CFa-zF Above (unsigned >)
, .] .}:5 ijz:; J:nb ;?F Above or equal (unsigned >=)
* |[f you’re interested, B&O p. 206 has details A ek o A e

Figure 3.15 The jump instructions. These instructions jump to a labeled destination

when the jump condition holds. Some instructions have “synonyms,” alternate names
for the same machine instruction. 80

¥ Remember test exists

e TEST S1, S2 isS2 & S1

t e St o/o e d i o/oe d i Instruction Synonym Jump condition Description
J

jmp Label 1 Direct jump
. jmp *Operand 1 Indirect jump
J ns °ee je Label jz ZF Equal / zero
jne Label jnz ~ZF Not equal / not zero
js Label SF Negative
jns Label ~SF Nonnegative
jg Label jnle ~(SF~OF) & ~ZF Greater (signed >)
jge Label jnl ~(SF ~ OF) Greater or equal (signed >=)
j1 Label jnge SF ~ OF Less (signed <)
jle Label jng (SF~0F) | ZF Less or equal (signed <=)
(o) . o : : 1 . !
sedl & %edl 1s nonnegative s tod me wrw Ao (nsimed)
jae Label jnb ~CF

Above or equal (unsigned >=)
o R R R jb Label jnae CF Below (unsigned <)
%#edl 1s nonnegative oo Lol g iz Below o cqual (unsigned <-)

Figure 3.15 The jump instructions. These instructions jJump to a labeled destination
when the jump condition holds. Some instructions have “synonyms,”
for the same machine instruction.

alternate names

81

Practice: Fill in the blanks

long loop(long a, long b) {

long result = __ (1) ;
while (___ (2)___) {
result = (3) ;
a=_ (4)_;
}
return result;
}
GCC hile | ruction:
Test
Jump past loop if fails
Body

Jump to test

<+0>:
<+5>:
<+8>:

<+10>:
<+14>:
<+18>:
<+22>:
<+24>:

mov $0x1, %eax
cmp %rsi,srdi

jge Ox1151 <loop+24>
lea (%rdi,%rsi,1),%rdx
imul %rdx, %rax

add $0x1,%rdi

jmp Ox113e <loop+5>
retqg

https://godbolt.org/z/zr'W6c5MGa 82

Practice: Fill in the blanks

long loop(long a, long b) {

long result = __ (1) ;
while (___ (2)___) {
result = (3) ;
a=_ (4)_;
}
return result;
}
GCC hile | ruction:
Test
Jump past loop if fails
Body

Jump to test

<+0>:
<+5>:
<+8>:

<+10>:
<+14>:
<+18>:
<+22>:
<+24>:

mov
cmp
jge
lea
imul
add
jmp
retqg

$0x1,%eax
%rsi,%rdi

Ox1151 <loop+24>
(%rdi,%rsi,1),%rdx
%rdx, %rax
$0x1,%rdi

Ox113e <loop+5>

83

Practice: Fill in the blanks

J

long loop(long a, long b) {
long result = ;
while () {
result =
a = 5
}

return result;

<+0>:

<+5>:
<+8>:

<+10>:
<+14>:
<+18>:
<+22>:

<+24>:

mov

cmp
jge
lea

imul
add

Jjmp

retqg

$0x1,%eax

%rsi,%srdi
©x1151 <loop+24>

(%rdi,%rsi,1),%rdx
%rdx, %rax
$0x1,%rdi

Ox113e <loop+5>

84

Practice: Fill in the blanks

long loop(long a, long b) {

long result = 1 ;
while (_a_< b) {

result = result*(a+b) ;

a = + 1 5

}

return result;

<+0>:

<+5>:
<+8>:

<+10>:
<+14>:
<+18>:
<+22>:

<+24>:

mov

cmp
jge
lea

imul
add

Jmp

retqg

$0x1, %eax

%rsi,snrdi
©x1151 <loop+24>

(%rdi,%rsi,1),%rdx
%rdx, %rax
$0x1,%rdi

Ox113e <loop+5>

85

test practice: What's the C code?

Ox400546 <test func> test %edi,%edi

Ox400548 <test func+2> jns Ox400550 <test func+10>
Ox40054a <test func+4> mov $0xfeed, %eax

0x40054f <test_func+9> retg

Ox400550 <test func+10> mov $0xaabbccdd, %eax

Ox400555 <test func+15> retgq

test practice: What's the C code?

Ox400546 <test func> test %edi,%edi

Ox400548 <test func+2> jns Ox400550 <test func+10>
Ox40054a <test func+4> mov $0xfeed, %eax

0x40054f <test_func+9> retg

Ox400550 <test func+10> mov $0xaabbccdd, %eax

Ox400555 <test func+15> retgq

int test func(int x) {
if (x < 0) {
return Oxfeed;
}

return Oxaabbccdd; (or anything
} like this)

87

Practice: "Escape Room”

<escape_room+0> lea (%rdi,%rdi,1),%eax
<escape_room+3> cmp $0x5, %eax
<escape_room+6> jg ©x114c <escape room+19>
<escape_room+8> cmp $0x1,%edi

<escape room+11> je Ox1152 <escape_room+25>
<escape room+13> mov $0x0, %eax
<escape_room+18> retqg

<escape room+19> mov $0x1, %eax
<escape_room+24> retqg

<escape_room+25> mov $0x1, %eax

<escape_ room+30> retqg

What must be passed to the You don’t have to reverse-engineer C

escapeRoom function such that it | [code exactly!
returns true (1) and not false (0)?

88

Practice: "Escape Room”

<escape_room+0> lea (%rdi,%rdi,1),%eax
<escape_room+3> cmp $0x5, %eax
<escape_room+6> jg ©x114c <escape room+19>
<escape_room+8> cmp $0x1,%edi

<escape room+11> je Ox1152 <escape_room+25>
<escape room+13> mov $0x0, %eax
<escape_room+18> retqg

<escape room+19> mov $0x1, %eax
<escape_room+24> retqg

<escape_room+25> mov $0x1, %eax

<escape_ room+30> retqg

What must be passed to the
escapeRoom function such that it First param > 2 or == 1.
returns true (1) and not false (0)?

89

	Slide Number 1
	Learning Assembly
	Learning Goals
	Lecture Plan
	Lecture Plan
	Executing Instructions
	Executing Instructions
	Register Responsibilities
	Instructions Are Just Bytes!
	Instructions Are Just Bytes!
	Instructions Are Just Bytes!
	4004fd
	%rip
	%rip
	%rip
	%rip
	%rip
	%rip
	Going In Circles
	Jump!
	Jump!
	Jump!
	Jump!
	Jump!
	jmp
	“Interfering” with %rip
	Lecture Plan
	Control
	Control
	Control
	Conditional Jumps
	Control
	Control
	Control
	Condition Codes
	Condition Codes
	Setting Condition Codes
	Control
	Conditional Jumps
	Setting Condition Codes
	Condition Codes
	Exercise 1: Conditional jump
	Exercise 1: Conditional jump
	Exercise 2: Conditional jump
	Exercise 2: Conditional jump
	Lecture Plan
	If Statements
	Practice: Fill In The Blank
	Practice: Fill In The Blank
	Common If-Else Construction
	Practice: Fill in the Blank
	Practice: Fill in the Blank
	If-Else Construction Variations
	Lecture Plan
	Loops and Control Flow
	Loops and Control Flow
	Loops and Control Flow
	Loops and Control Flow
	Loops and Control Flow
	Loops and Control Flow
	Loops and Control Flow
	Loops and Control Flow
	Loops and Control Flow
	Loops and Control Flow
	GCC Common While Loop Construction
	GCC Other While Loop Construction
	Lecture Plan
	Common For Loop Construction
	Back to Our First Assembly
	gdb tips
	gdb tips
	Lecture Plan
	Condition Code-Dependent Instructions
	set: Read condition codes
	set: Read condition codes
	cmov: Conditional move
	cmov: Conditional move
	Last Lab: Conditional Move
	Recap
	How to remember cmp/jmp
	Remember test exists
	Practice: Fill in the blanks
	Practice: Fill in the blanks
	Practice: Fill in the blanks
	Practice: Fill in the blanks
	test practice: What’s the C code?
	test practice: What’s the C code?
	Practice: “Escape Room”
	Practice: “Escape Room”

