CS107, Lecture 13
Control Flow: When in doubt just JMP!

Reading: B&0 3.1-3.4

This document is copyright (C) Stanford Computer Science, Adam Keppler, and Olayinka Adekola licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Joel Ramirez, Nick Troccoli, Chris Gregg

Learning Goals

* Learn about how assembly stores comparison and operation results in
condition codes

* Understand how assembly implements loops and control flow

cmov: Conditional move

cmovx src,dst conditionally moves data in src to data in dst.

* Mov src to dst if condition x holds; no change otherwise

* src is memory address/register, dst is register

* May be more efficient than branch (i.e., jump)

e Often seen with C ternary operator: result = test ? then: else;

. . . cm %edi,%esi
int max(int x, int y) { mos Vedi, %eax
o k) o

return x >y ? X : Vy; ,
’ cmovge %esi, %eax

) retq

cmov: Conditional move

Instruction Synonym Move Condition

cmove S,R cmovz Equal / zero (ZF = 1)

cmovne S,R cmovnz Not equal / not zero (ZF = 0)

cmovs S,R Negative (SF = 1)

cmovns S,R NonnegaOve (SF = 0)

cmovg S,R cmovnle Greater (signed >) (SF = 0 and SF = OF)
cmovge S,R cmovnl Greater or equal (signed >=) (SF = OF)
cmovl S,R cmovnge Less (signed <) (SF != OF)

cmovle S,R cmovng Less or equal (signed <=) (ZF = 1 or SF! = OF)
cmova S,R cmovnbe Above (unsigned >) (CF = 0 and ZF = 0)
cmovae S,R cmovnb Above or equal (unsigned >=) (CF = 0)
cmovb S,R cmovnae Below (unsigned <) (CF = 1)

cmovbe S,R cmovna Below or equal (unsigned <=) (CF =1 or ZF = 1)

Practice: Fill in the blanks

long loop(long a, long b) {

long result = __ (1) ;
while (___ (2)___) {
result = (3) ;
a=_ (4)_;
}
return result;
}
GCC hile | ruction:
Test
Jump past loop if fails
Body

Jump to test

<+0>:
<+5>:
<+8>:

<+10>:
<+14>:
<+18>:
<+22>:
<+24>:

mov $0x1, %eax
cmp %rsi,srdi

jge Ox1151 <loop+24>
lea (%rdi,%rsi,1),%rdx
imul %rdx, %rax

add $0x1,%rdi

jmp Ox113e <loop+5>
retqg

https://godbolt.org/z/zr'W6c5MGa

Practice: Fill in the blanks

long loop(long a, long b) {

long result = __ (1) ;
while (___ (2)___) {
result = (3) ;
a=_ (4)_;
}
return result;
}
GCC hile | ruction:
Test
Jump past loop if fails
Body

Jump to test

<+0>:
<+5>:
<+8>:

<+10>:
<+14>:
<+18>:
<+22>:
<+24>:

mov
cmp
jge
lea
imul
add
jmp
retqg

$0x1,%eax
%rsi,%rdi

Ox1151 <loop+24>
(%rdi,%rsi,1),%rdx
%rdx, %rax
$0x1,%rdi

Ox113e <loop+5>

Practice: Fill in the blanks

long loop(long a, long b) {

long result = 1 ;
while (_a_< b) {

result = result*(a+b) ;

a = + 1 5

}

return result;

<+0>:

<+5>:
<+8>:

<+10>:
<+14>:
<+18>:
<+22>:

<+24>:

mov

cmp
jge
lea

imul
add

Jmp

retqg

$0x1, %eax

%rsi,snrdi
©x1151 <loop+24>

(%rdi,%rsi,1),%rdx
%rdx, %rax
$0x1,%rdi

Ox113e <loop+5>

Warm-up: Reverse Engineering

int elem arithmetic(int nums[], int y) {
int z = nums|] *

)

// nums 1in %rdi, y 1in %esi
elem arithmetic:
movl %esi, %eaX
imull 4(%rdi), %eax
movslqg %esi, %rsi
subl (%rdi,%rsi,4), %eax
lea 2(%rax, %rax), %eax
ret

Warm-up: Reverse Engineering

int elem_arithmetic(int nums[], int y) {
int z = nums[1] * y;

// nums in %rdi, y in %esi
elem arithmetic:

movl %esi, %eax // copy y into %eax
imull 4(%rdi), %eax // multiply %eax by nums[1]
movslqg %esi, %rsi // sign-extend %esi to %rsi

subl (%rdi,%rsi,4), %eax
lea 2(%rax, %rax), %eax
ret

Warm-up: Reverse Engineering

int elem_arithmetic(int nums[], int y) {
int z = nums[1] * y;

z -= nums[y];

return 2 * z + 2;

// nums in %rdi, y in %esi
elem arithmetic:

movl %esi, %eax // copy y into %eax
imull 4(%rdi), %eax // multiply %eax by nums[1]
movslqg %esi, %rsi // sign-extend %esi to %rsi

subl (%rdi,%rsi,4), %eax // subtract nums[y] from %eax
lea 2(%rax, %rax), %eax // multiply %rax by 2, and add 2

ret
10

test practice: What's the C code?

Ox400546 <test func> test %edi,%edi

Ox400548 <test func+2> jns Ox400550 <test func+10>
Ox40054a <test func+4> mov $0xfeed, %eax

0x40054f <test_func+9> retg

Ox400550 <test func+10> mov $0xaabbccdd, %eax

Ox400555 <test func+15> retgq

test practice: What's the C code?

Ox400546 <test func> test %edi,%edi

Ox400548 <test func+2> jns Ox400550 <test func+10>
Ox40054a <test func+4> mov $0xfeed, %eax

0x40054f <test_func+9> retg

Ox400550 <test func+10> mov $0xaabbccdd, %eax

Ox400555 <test func+15> retgq

int test func(int x) {
if (x < 0) {
return Oxfeed;
}

return Oxaabbccdd; (or anything like this)

12

Practice: "Escape Room”

<escape_room+0> lea (%rdi,%rdi,1),%eax
<escape_room+3> cmp $0x5, %eax
<escape_room+6> jg ©x114c <escape room+19>
<escape_room+8> cmp $0x1,%edi

<escape room+11> je Ox1152 <escape_room+25>
<escape room+13> mov $0x0, %eax
<escape_room+18> retqg

<escape room+19> mov $0x1, %eax
<escape_room+24> retqg

<escape_room+25> mov $0x1, %eax

<escape_ room+30> retqg

What must be passed to the You don’t have to reverse-engineer C

escapeRoom function such that it | [code exactly!
returns true (1) and not false (0)?

13

Practice: "Escape Room”

<escape_room+0> lea (%rdi,%rdi,1),%eax
<escape_room+3> cmp $0x5, %eax
<escape_room+6> jg ©x114c <escape room+19>
<escape_room+8> cmp $0x1,%edi

<escape room+11> je Ox1152 <escape_room+25>
<escape room+13> mov $0x0, %eax
<escape_room+18> retqg

<escape room+19> mov $0x1, %eax
<escape_room+24> retqg

<escape_room+25> mov $0x1, %eax

<escape_ room+30> retqg

What must be passed to the
escapeRoom function such that it First param > 2 or == 1.
returns true (1) and not false (0)?

14

* %rip is a special register that points to the next instruction to execute.

* Let’s dive deeper into how %rip works, and how jumps modify it.

15

void loop() {
int 1 = 0;
while (i < 100) {
i++;
}

0x40113f
0x401144
0x401147
0x401149
0x40114c
0x40114e

<+0>:
<+5>:
<+8>:

<+10>:
<+13>:
<+15>:

b8
83
7f
83
eb
c3

00
f8
05
co
6

00 00 00
63

01

mov
cmp
Jg
add
jmp
retq

$0x0, %eax
$0x63, %eax
40114e <loop2+15>
$0x1, %eax
401144 <loop2+5>

16

void loop() {
int 1 = 0;
while (i < 100) {
i++;
}

Ox40113f
0x401144
0x401147
0x401149
0x40114c
0x40114e

<+0>:
<+5>:

<+8>:

<+10>:
<+13>:
<+15>:

b8 00
83 8
7f 05
83 cO
eb f6
c3

00 00 00
63

01

mov
cmp
Jg
add
Jjmp
retq

$0x0, %eax
$0x63, %eax
40114e <loop2+15>
$0x1, %eax
401144 <loop2+5>

These are 0-based offsets in bytes
(hex) for each instruction relative
to the start of this function.

17

void loop() {
int 1 = 0;
while (i < 100) {
i++;
}

0x40113f
0x401144
0x401147
0x401149
0x40114c
0x40114e

<+0>:
<+5>:
<+8>:

<+10>:
<+13>:
<+15>:

b8 00
83 8
7f 05
83 cO
eb f6
c3

00 00 00
63

01

mov
cmp
Jg
add
jmp
retq

$0x0, %eax
$0x63, %eax
40114e <loop2+15>
$0x1, %eax
401144 <loop2+5>

These are bytes for the machine
code instructions.
variable length.

Instructions are

18

void loop() {
int 1 = 0;
while (i < 100) {
i++;
}

0x40113f
0x401144
0x401147
0x401149
0x40114c
0x40114e

<+0>:
<+5>:
<+8>:

<+10>:
<+13>:
<+15>:

b8
83
7f
83
eb
c3

00
8
05
co
6

00 00 00
63

01

mov
cmp
Jg
add
jmp
retq

$0x0, %eax
$0x63, %eax
40114e <loop2+15>
$0x1, %eax
401144 <loop2+5>

19

Ox40113f <+0>: b8 00 00 00 0O mov $Ox0,%eax

0x401144 <+5>: 83 {8 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
0x401149 <+10>: 83 cO 01 add $0x1,%eax
Ox40114c <+13>: eb f6 jmp 401144 <loop2+5>

Ox40114e <+15>: C3 retqg

20

Ox40113f <+0>: b8 00 00 00 PO mov $0Ox0,%eax

0x401144 <+5>: 83 {8 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
0x401149 183 co 01 add $0x1,%eax
©x40114c . eb f6 jmp 401144 <loop2+5>
Ox40114e c3 retqg

Ox7f means jg.

21

Ox40113f <+0>: b8 00 00 00 0O mov $Ox0,%eax
0x401144 <+5>: 83 {8 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
Ox401149 <+10>: co 01 add $0x1, %eax
Ox40114c <+13>: 6 jmp 401144 <loop2+5>

Ox40114e <+15 retq
0x05 is the number of With no jump, %rip would
instruction bytes to advance to the next line.
jump relative to %rip. This jg says to then go 5
bytes further!

22

Ox40113f <+0>: b8 00 00 00 0O mov $Ox0,%eax
0x401144 <+5>: 83 8 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
Ox401149 <+10>: co 01 add $0x1, %eax
Ox40114c <+13>: 6 jmp 401144 <loop2+5>

Ox40114e <+15~ retq
0x05 is the number of With no jump, %rip would
instruction bytes to advance to the next line.
jump relative to %rip. This jg says to then go 5
bytes further!

23

Ox40113f <+0>: b8 00 00 00 PO mov $0Ox0,%eax

0x401144 <+5>: 83 8 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
0x401149 <+10>: 83 cO 01 add $0x1,%eax
0x40114c <+13>: eb f6 jmp 401144 <loop2+5>

Ox40114e y'c?, retq

Oxeb means jmp.

24

Ox40113f <+0>: b8 00 00 00 0O mov $Ox0,%eax

0x401144 <+5>: 83 8 63 cmp $0x63,%eax

0x401147 <+8>: 7f 05 jg 40114e <loop2+15>

Ox401149 <+10>: 83 cO 01 add $0x1, %eax

0x40114c <+13>: eb f6 jmp 401144 <loop2+5>

Ox40114e <+1%;;/;3?' retq
0xf6 is the number of With no jump, %rip
iInstruction bytes to jump would advance to the
relative to %rip. This is -10 next line. This jmp says
(in two’s complement!). to then go 10 bytes back!

25

Ox40113f <+0>: b8 00 00 00 00 mov $Ox0,%eax

0x401144 <+5>: 83 f8 63 cmp $0x63,%eax

0x401147 <+8>: 7f 05 jg 40114e <loop2+15>

Ox401149 <+10>: 83 cO 01 add $0x1, %eax

Ox40114c <+13>: eb f6 jmp 401144 <loop2+5>

Ox40114e <+1%:;/;3)' retq
0xf6 is the number of With no jump, %rip
iInstruction bytes to jump would advance to the
relative to %rip. This is -10 next line. This jmp says
(in two’s complement!). to then go 10 bytes back!

26

Summary: Instruction Pointer

* Machine code instructions live in main memory, just like stack and heap data.

* %rip is a register that stores a number (an address) of the next instruction to
execute. It marks our place in the program’s instructions.

* To advance to the next instruction, special hardware adds the size of the
current instruction in bytes.

* jmp instructions work by adjusting %rip by a specified amount.

27

How do we call functions in
assembly?

Calling Functions In Assembly

To call a function in assembly, we must do a few things:

* Pass Control — %rip must be adjusted to execute the callee’s instructions, and
then resume the caller’s instructions afterwards.

* Pass Data — we must pass any parameters and receive any return value.

 Manage Memory — we must handle any space needs of the callee on the
stack.

How does assembly
interact with the stack?

Terminology: caller function calls the callee function.

29

* %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

Main Memory

main()

myfunction()

%rsp

Heap

[
Data

Text (code)

0x0 30

* %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

Main Memory

main()

myfunction()

%rsp foo()

Heap

Data

Text (code)

0x0 31

* %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

Main Memory

main()

myfunction()

foo()

%rsp

foo2()

Heap

Data

Text (code)

0x0 32

* %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

Main Memory

main()

myfunction()

%rsp foo()

Heap

Data

Text (code)

0x0 33

* %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

%rsp

—

Main Memory

main()

myfunction()

Heap
e —
Data
1

Text (code)
e —

Key idea: %rsp must
point to the same place
before a function is
called and after that
function returns, since
stack frames go away

when a function finishes.

34

* The push instruction pushes the data at the specified source onto the top of
the stack, adjusting %rsp accordingly.

Instruction Effect
pushg S |R[%rsp] <« R[%rsp] - 8;
M[R[%rsp]] «<— S

35

* The push instruction pushes the data at the specified source onto the top of
the stack, adjusting %rsp accordingly.

Instruction Effect
pushqg S |R[%rsp] <« R[%rsp] - 8;

36

* The push instruction pushes the data at the specified source onto the top of
the stack, adjusting %rsp accordingly.

Instruction Effect

pushg S
M[R[%rsp]] < S

37

* The push instruction pushes the data at the specified source onto the top of
the stack, adjusting %rsp accordingly.

Instruction

Effect

pushg S

R[%rsp] «— R[%rsp] - 8;
M[R[%rsp]] < S

* This behavior is equivalent to the following, but pushq is a shorter instruction:

subg $8, %rsp
movq S, (%rsp)

* Sometimes, you’ll see instructions just explicitly decrement the stack pointer
to make room for future data.

38

* The pop instruction pops the topmost data from the stack and stores it in the
specified destination, adjusting %rsp accordingly.

Instruction Effect

popg D |D «— M[R[%rsp]]
R[%rsp] «— R[%rsp] + 8;

* Note: this does not remove/clear out the data! It just increments %rsp to
indicate the next push can overwrite that location.

39

* The pop instruction pops the topmost data from the stack and stores it in the
specified destination, adjusting %rsp accordingly.

Instruction Effect

popg D |D «— M[R[%rsp]]
R[%rsp] «— R[%rsp] + 8;

* This behavior is equivalent to the following, but popq is a shorter instruction:
movq (%rsp), D
addq $8, %rsp
* Sometimes, you’ll see instructions just explicitly increment the stack pointer to
pop data.

40

Stack Example

Initially

%Brax Ox123

%rdx 5]

%rsp Ox108

Stack “bottom”
Increasing
addresses
0x108

Stack “top”

pushqg 7%rax
Jrax 0x123
%rdx %)
%rsp 0x100
Stack “bottom”
Increasing
addresses
0x108 Ox123
0x100
Stack “top”

popq %rdx
%Brax 0x123
%rdx Ox123
%rsp 0x108
Stack “bottom”
Increasing
addresses
0x108 Ox123
0x100

o~
Stack “top”)41

Calling Functions In Assembly

To call a function in assembly, we must do a few things:

* Pass Control — %rip must be adjusted to execute the callee’s instructions, and
then resume the caller’s instructions afterwards.

Terminology: caller function calls the callee function.

42

Remembering Where We Left Off

Problem: %rip points to the E.g. main() calls foo(): Stack
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.

main()

Solution: push the next value of
%rip onto the stack. Then call
the function. When it is J
finished, put this value back '
into %rip and continue
executing.

%rsp | 0xff20

%rip | 0x3021

43

Remembering Where We Left Off

Problem: %rip points to the E.g. main() calls foo(): Stack
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.

main()

Solution: push the next value of
%rip onto the stack. Then call 9x3026
the function. When it is
finished, put this value back
into %rip and continue
executing.

%rsp | Oxff18

%rip | 0x3021

44

Remembering Where We Left Off

Problem: %rip points to the E.g. main() calls foo(): Stack
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.

main()

Solution: push the next value of
%rip onto the stack. Then call 9x3026
the function. When it is
finished, put this value back
into %rip and continue
executing.

foo()

%rsp | Oxffo8

%rip | 0x4058

45

Remembering Where We Left Off

Problem: %rip points to the E.g. main() calls foo(): Stack
next instruction to execute. To
call a function, we must
remember the next caller

. . main()

instruction to resume at after.

Solution: push the next value of

%rip onto the stack. Then call 9x3026
the function. When it is

finished, put this value back

into %rip and continue

. %rsp | Oxff18
executing.

%rip | 0x4058

46

Remembering Where We Left Off

Problem: %rip points to the E.g. main() calls foo(): Stack
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.

main()

%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue
executing.

Solution: push the next value of l

%rsp | 0xff20

%rip | 0x3026

47

Call And Return

The call instruction pushes the address of the instruction immediately following
the call instruction onto the stack and sets %rip to point to the beginning of the
specified function’s instructions.

call Label
call *Operand

The ret instruction pops this instruction address from the stack and stores it in
%rip.

ret
The stored %rip value for a function is called its return address. [t is the address

of the instruction at which to resume the function’s execution. (not to be
confused with return value, which is the value returned from a function).

48

Calling Functions In Assembly

To call a function in assembly, we must do a few things:

* Pass Data — we must pass any parameters and receive any return value.

Terminology: caller function calls the callee function.

49

Register Restrictions

There is only one copy of registers for all programs and functions.

* Problem: what if funcA is building up a value in register %r10, and calls funcB
in the middle, which also has instructions that modify %r10? funcA’s value will
be overwritten!

e Solution: make some “rules of the road” that callers and callees must follow
when using registers so they do not interfere with one another.

* These rules define two types of registers: caller-owned and callee-owned

50

Caller/Callee

Caller/callee is
terminology that
refers to a pair of
functions. A single
function may be
both a caller and functionl
callee
simultaneously (e.g.
functionl at right).

main IS the caller,
and functionl iIs
the callee.

functionl Is

: the caller, and
function2 function2 is

the callee.

51

Register Restrictions

Caller-Owned Callee-Owned

* Callee must save the existing value Callee does not need to save the
and restore it when done. existing value.

 Caller can store values and assume * Caller’s values could be overwritten
they will be preserved across by a callee! The caller may consider
function calls. saving values elsewhere before

calling functions.

52

Caller-Owned Registers

main can use caller-owned
registers and know that
functionl will not permanently
modify their values.

If function1 wants to use any
caller-owned registers, it must
save the existing values and
restore them before returning.

53

Caller-Owned Registers

functionl:
push %rbp
push %rbx

pop 7%rbx
pop %rbp
retq

54

Callee-Owned Registers

main can use callee-owned
registers but calling functionl
may permanently modify their
values.

If function1 wants to use any
callee-owned registers, it can do
so without saving the existing
values.

55

Callee-Owned Registers

main:

push %rile

push %rll

callg functionl
pop %rll

pop %rl1e

56

A Day In the Life of functionl

functionl

function2

Caller-owned registers:
« functionl must save/restore existing values

of any it wants to use.

 functionl can assume that calling
function2 will not permanently change their

values.

Callee-owned registers:
* functionl does not need to save/restore

existing values of any it wants to use.
« calling function2 may permanently change
their values.

7

Parameters and Return

* There are special registers that store parameters and the return value.

* To call a function, we must put any parameters we are passing into the correct
registers. (%rdi, %rsi, %rdx, %rcx, %r8, %r9, in that order)

* Parameters beyond the first 6 are put on the stack.
* If the caller expects a return value, it looks in %rax after the callee completes.

58

Calling Functions In Assembly

To call a function in assembly, we must do a few things:

* Manage Memory — we must handle any space needs of the callee on the
stack.

Terminology: caller function calls the callee function.

59

Parameters and Return

int main(int argc, char *argv[]) { maln() C
int i1 = 1; J/
int 12 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&il, &i2, &i3, &i4,
il, i2, i3, i4);

}

int func(int *pl, int *p2, int *p3, int *p4,
int vl, int v2, int v3, int v4) {

60

Parameters and Return

int main(int argc, char *argv[]) { maln() C
int i1 = 1; J,
int 12 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&il, &i2, &i3, &i4,
i1, i2, i3, i4);

} %rsp
Oxffea08

int func(int *pl, int *p2, int *p3, int *p4,

int vl1, int v2, int v3, int v4 .
J J J) { %r‘lp

} 0x40054f

0x40054f <+0>: sub $0x18,%rsp

Ox400553 <+4>: movl $0x1,0xc(%rsp)
0x40055b <+12>: movl $0x2,0x8(%rsp)
Ox400563 <+20>: movl $0x3,0x4(%rsp)
Ox40056b <+28>: movl $0x4, (%rsp) 61

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1;
int i2 = 2;
int i3 = 3; main()
int i4 = 4;

int result = func(&il, &i2, &i3, &i4,
i1, i2, i3, i4);

Oxffeofo
} J, %rsp
Oxffe9f0
int func(int *pl, int *p2, int *p3, int *p4,
int vl1, int v2, int v3, int v4) { %rip
} 0x400553

0x40054f <+0>: sub $0x18,%rsp

Ox400553 <+4>: movl $0x1,0xc(%rsp)
Ox40055b <+12>: movl $0x2,0x8(%rsp)
Ox400563 <+20>: movl $0x3,0x4(%rsp)

0x40056b <+28>: movl $0x4, (%rsp) 62

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1; oxffeofc 1
int i2 = 2;

int i3 = 3; main()

int i4 = 4;

int result = func(&il, &i2, &i3, &i4,
il, i2, i3, i4);

Oxffe9ofo
} ‘l, %rsp
Oxffe9f0
int func(int *pl, int *p2, int *p3, int *p4,
int vl, int v2, int v3, int v4) { %rip
} 0x40055b

0x40054f <+0>: sub $0x18,%rsp

Ox400553 <+4>: movl $0x1,0xc(%rsp)
Ox40055b <+12>: movl $0x2,0x8(%rsp)
Ox400563 <+20>: movl $0x3,0x4(%rsp)

Ox40056b <+28>: movl $0x4, (%rsp) 63

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1; oxffeofc 1
int i2 = 2;
int i3 = 3; main() Oxffeof8 2
int i4 = 4;

int result = func(&il, &i2, &i3, &i4,
il, i2, i3, i4);

Oxffe9fo
} ‘l, %rsp
Oxffe9f0
int func(int *pl, int *p2, int *p3, int *p4,
int vl1, int v2, int v3, int v4 .

)) J) { %r‘lp
} 0x400563
0x40054f <+0>: sub $0x18,%rsp
Ox400553 <+4>: movl $0x1,0xc(%rsp)

Ox40055b <+12>: movl $0x2,0x8(%rsp)
Ox400563 <+20>: movl $0x3,0x4(%rsp)
Ox40056b <+28>: movl $0x4, (%rsp) 64

Parameters and Return

int main(int argc, char *argv[]) {
int i1l = 1; oxffe9fc 1
int i2 = 2;
int i3 = 3; main() Oxffeof8
int i4 = 4; 3
int result = func(&i1, &i2, &i3, &i4, oxffeof4
11, 12, 13, 14); Oxffe9fo
. .
} ‘l, %rsp
Oxffe9f0
int func(int *pl, int *p2, int *p3, int *p4,
int vl1, int v2, int v3, int v4) { %rip
(o]
} 0x40056b
0x400563 <+20>: movl $0x3,0x4(%rsp)
Ox40056b <+28>: movl $0x4, (%rsp)
Ox400572 <+35>: pushg $0x4 o

Parameters and Return

int main(int argc, char *argv[]) {
int i1l = 1; oxffe9fc 1
int i2 = 2;
int i3 = 3; main() Oxffeof8 2
int i4 = 4; 3
int result = func(&i1, &i2, &i3, &i4, oxffeof4
11, 12, 13, 14); Oxffeofo 4
} ‘l, %rsp
Oxffe9f0
int func(int *pl, int *p2, int *p3, int *p4,
int vl1, int v2, int v3, int v4) { %rip
(o]
} 0x400572
0x40056b <+28>: movl $0x4, (%rsp)
Ox400572 <+35>: pushqg $ox4
Ox400574 <+37>: pushg $0x3 66

Parameters and Return

int main(int argc, char *argv[]) {
int 11 = 1; Oxffe9fc 1
int 12 = 2;
int i3 = 3; main() oxffeofs 2
int i4 = 4;
int result = func(&il1l, &i2, &i3, &i4, oxffeot4 3
11, 12, 13, 14); Oxffeofo 4
} %rsp
4 Oxffe9e8
int func(int *pl, int *p2, int *p3, int *p4, OxFfe9e8
int vl1, int v2, int v3, int v4) { o .
J, %rip
} 0x400574
0x400572 <+35>: pushq $0x4
Ox400574 <+37>: pushg $0x3
Px400576 <+39>: mov $0x2, %rod 67

Parameters and Return

int main(int argc, char *argv[]) {
int i1 = 1; oxffeofc 1
int 12 = 2;
int i3 = 3; main() oxffeofs 2
int i4 = 4; 3
int result = func(&i1, &i2, &i3, &i4, oxffeot4
11, 12, 13, 14); Oxffeofo 4
} %rsp
4 Oxffe9e0
int func(int *pl, int *p2, int *p3, int *p4, OxFfe9e8
int vl1, int v2, int v3, int v4) { %rip
(o]
} 3 0x400576
Oxffe9e0
)
0x400574 <+37>: pushq $0x3
Ox400576 <+39>: mov $0x2,%r9d
Ox40057¢c <+45>: mov $0x1,%r8d 68

Parameters and Return

int main(int argc, char *argv[]) {
int 11 = 1; Oxffe9fc 1
int 12 = 2;
int i3 = 3; main() oxffeofs 2
int i4 = 4; 3
int result = func(&i1, &i2, &i3, &i4, oxffeot4
11, 12, 13, 14); Oxffeofo 4
} %rsp
4 Oxffe9e0
int func(int *pl, int *p2, int *p3, int *p4, OxFfe9e8
int vl1, int v2, int v3, int v4) { %rip
(o]
} 3 0x40057¢
Oxffe9e0d
\
0x400576 <+39>: mov $0x2,%rod
0x40057c <+45>: mov $0x1, %r8d
0x400582 <+51>: lea Ox10(%rsp),%rcx 69

Parameters and Return

int main(int argc, char *argv[]) {
int 11 = 1; Oxffe9fc 1
int 12 = 2;
int i3 = 3; main() oxffeofs 2
int i4 = 4; 3
int result = func(&i1, &i2, &i3, &i4, oxffeot4
11, 12, 13, 14); Oxffeofo 4
}
4
int func(int *pl, int *p2, int *p3, int *p4, OxFfe9e8
int vl1, int v2, int v3, int v4) {
} 3 %rsp
Oxffe9e0 H Oxffe9e0
} .
o*1p
0x400576 <+39>: mov $0x2,%rod
OX40057C <+45>: mov $0x1,%rsd 0x40057¢
©x400582 <+51>: lea Ox10(%rsp),%rcx ‘ 70

Parameters and Return

int main(int argc, char *argv[]) {
int i1 = 1; Oxffeofc 1
int i2 = 2;
int i3 = 3; main() oxffeofs 2
int i4 = 4; 3
int result = func(&il, &i2, &i3, &i4, oxffeof4
11, 12, 13, 14); oxffeofo 4
} 4
(o)
int func(int *pl, int *p2, int *p3, int *p4, Oxffe9e8 %r9d
int v1, int v2, int v3, int v4) { 2
} 3 %rsp
Oxffe9e0 H Oxffe9e0
| -
o*1p
0x400576 <+39>: mov $0x2,%rod
40057
Ox40057C <+45>: mov $0x1,%r8d 0x40057c
0x400582 <+51>: lea Ox10(%rsp),%rcx ‘ 71

Parameters and Return

int main(int argc, char *argv[]) {
int i1 = 1; Oxffeofc 1
int i2 = 2;
int i3 = 3; main() oxffeofs 2
int i4 = 4; 3
int result = func(&il, &i2, &i3, &i4, oxffeof4
i1, 12, 13, 14); oxffeofo 4 %r8d
} A 1
(o)
int func(int *pl, int *p2, int *p3, int *p4, Oxffe9e8 %r9d
int v1, int v2, int v3, int v4) { 2
} 3 %rsp
Oxffe9e0 H Oxffe9e0
J -
o*1p
Ox40057c <+45>: mov $0x1, %rsd
4 2
Ox400582 <+51>: lea @x10(%rsp),%rcx 0x40058
Ox400587 <+56>: lea Ox14(%rsp),%rdx ¥~

Parameters and Return

int main(int argc, char *argv[]) {
int i1 = 1; Oxffedfc 1
int 12 = 2;
int i3 = 3; rnajj1() Oxffeof8 2 %rcx
int i4 = 4;
Oxffe9f0
int result = func(&il, &i2, &i3, &i4, Oxtteot4 3 X
11, 12, 13, 14); oxFfeofo 4 %r8d
} 1
: : : : : 4 %r9od
int func(int *pl, int *p2, int *p3, int *p4, oxffe9es8
int v1, int v2, int v3, int v4) { 2
} 3 %rsp
Oxffe9e0 H Oxffe9e0
J’ %rip
0x400582 <+51>: lea 0x10(%rsp) ,%rcx 0x400587
Ox400587 <+56>: lea Ox14(%rsp),%rdx
Ox40058c <+61>: lea ox18(%rsp),%rsi ‘ 73

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1;
int 12 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&il, &i2, &i3, &i4,
i1, i2, i3, i4);

}

int func(int *pl, int *p2, int *p3, int *p4,
int vl, int v2, int v3, int v4) {

0x400587 <+56>: lea ox14(%rsp) ,%rdx
Ox40058c <+61>: lea Ox18(%rsp),%rsi
Ox400591 <+66>: lea Ox1c(%rsp),%rdi

main()

Oxffeofc

Oxffe9f8

Oxffeof4

Oxffeofo

Oxffe9e8

Oxffe9e0

%rdx

Oxffe9f4

%rcx

Oxffe9of0

ArITW|IN|ER

%r8d

1

%rod

%rip

0x40058c

‘[74

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1;
int 12 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&il, &i2, &i3, &i4,
i1, i2, i3, i4);

}

int func(int *pl, int *p2, int *p3, int *p4,
int vl, int v2, int v3, int v4) {

0x40058c <+61>: lea Ox18(%rsp),%rsi
Ox400591 <+66>: lea Ox1c(%rsp),%rdi

Ox400596 <+71>: callg ©x400546 <func>

main()

%rsi

Oxffe9of8

Oxffeofc

Oxffe9f8

Oxffeof4

Oxffeofo

Oxffe9e8

Oxffe9e0

%rdx

Oxffe9f4

%rcx

Oxffe9of0

Nlw|Nn|R

%r8d

1

%rod

%rip

0x400591

‘[75

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1;
int 12 = 2;
int i3 = 3;
int i4 = 4;

int result = func(&il, &i2, &i3, &i4,
i1, i2, i3, i4);

}

int func(int *pl, int *p2, int *p3, int *p4,
int vl, int v2, int v3, int v4) {

0x400591 <+66>: lea Ox1c(%rsp),%rdi
0x400596 <+71>: callg ©x400546 <func>
0x40059b <+76>: add $0x10, %rsp

main()

%rsi

Oxffeofc
Oxffe9of8
Oxffeof4

Oxffeofo

Oxffe9e8

Oxffe9e0

»rdi

Oxffe9of8

Oxffe9fc

%rdx

Oxffe9f4

%rcx

Oxffe9of0

ArITW|IN|ER

%r8d

1

%rod

%rip

0x400596

‘t76

Parameters and Return

int main(int argc, char *argv[]) { %rdx
int i1 = 1; OxFfe9fc 1 Oxffe9f4
int 12 = 2;
int i3 = 3; main() Oxffe9f8 2 %X
int i4 = 4;
Oxffe9f0
int result = func(&il, &i2, &i3, &i4, Oxtteot4 3 Xe
i1, i2, i3, i4); OxFFe9fo 4 %r8d
} A 1
int func(int *pl, int *p2, int *p3, int *p4, Oxffe9e8 %r9d
int v1, int v2, int v3, int v4) { 2
} 3 %rsp
Oxffe9e0 H Oxffe9e0
%rsi %rdi J’ %rip
0x400596 <+71>: callg 0©x400546 <func> Oxffeofs Oxffe9fc 0x400596
Ox40059b <+76>: add $0x10, %rsp
‘ 77

Parameters and Return

int main(int argc, char *argv[]) {

int i1 = 1;
int 12 = 2;
int i3 = 3;
int 14 = 4;

int result = func(&il, &i2, &i3, &i4,
il, i2, i3, i4);

}

int func(int *pl1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

0x400596 <+71>: callg 0©x400546 <func>
Ox40059b <+76>: add $0x10, %rsp

main()

%rsi

Oxffeofc
Oxffeof8
Oxffeof4

Oxffeofo

Oxffe9e8

Oxffe9e0

»rdi

Oxffe9of8

Oxffe9fc

%rdx

Oxffe9f4

%rcx

Oxffe9of0

ArITWIN|R

%r8d

1

%rod

2

%rsp

Ox40059b

Oxffe9d8

%rip

\’

0x400596

‘t78

Local Storage

* So far, we’ve often seen local variables stored directly in registers, rather than
on the stack as we’d expect. This is for optimization reasons.

* There are three common reasons that local data must be in memory:

* We've run out of registers
* The ‘&’ operator is used on it, so we must generate an address for it
* They are arrays or structs (need to use address arithmetic)

79

Our First Assembly

int sum_array(int arr[], int nelems) { |We’re done with all our assembly lectures! Now we
int sum = 0; can fully understand what’s going on in the
for (int i = @; i < nelems; i++) { assembly below, including how someone would call
sum += arr[i]; sum_array in assembly and what the ret instruction
} does.

return sum;

¥

0000000000401136 <sum_array>:
401136 <+0>: mov $0x0, %eax
40113b <+5>: mov $0x0, %edx
401140 <+10>: cmp %esi,%eax
401142 <+12>: jge 0x40114f <sum_array+25>
401144 <+14>: movslqg %eax,%srcx
401147 <+17>: add (%rdi,%rcx,4),%edx
40114a <+20>: add $0x1, %eax
40114d <+23>: jmp 0x401140 <sum_array+10>
40114f <+25>: mov %edx, seax
401151 <+27>: retq 80

Optimizations you’ll see

nop

* nop/nopl are “no-op” instructions — they do nothing!

* Intent: Make functions align on address boundaries that are nice multiples of 8.
* “Sometimes, doing nothing is how to be most productive” — Philosopher Nick

mov 7%ebx,%ebx

e Zeros out the top 32 register bits (because a mov on an e-register zeros out rest
of 64 bits).

xor 7%ebx,%ebx

e Optimizes for performance as well as code size (read more here):

b8 00 00 00 00 mov $0x0,%eax
31 cO XOr 7%eax,seax 81

GCC For Loop Output

GCC Common For Loop Output Possible Alternative
Initialization Initialization
Test Jump to test
Jump past loop 1f success Body

Body Update

Update Test

Jump to test Jump to body if success

82

GCC For Loop Output

for (inti=0;i<n; i+t) // n=100

GCC Common For Loop Output

Initialization

Test

Jump past loop 1if success
Body

Update

Jump to test

83

GCC For Loop Output

GCC Common For Loop Output
Initialization
Test

Jump past loop 1if success
Body
Update

Jump to test

for (inti=0;i<n; i+t)

Initialization
Test

No jump

Body

Update

Jump to test
Test

No jump

Body

Update

Jump to test

// n=100

84

GCC For Loop Output

for (inti=0;i<n; i+t) // n=100
GCC Common For Loop Output
Initialization Test
Test . No jump
Jump past loop 1if success Body
Body Update
Update Jump to test
Jump to test

Body

Update

Jump to test

85

GCC For Loop Output

for (inti=0;i<n; it++) // n=100

Initialization
Jump to test
Test

Jump to body
Body

Update

Test

Jump to body
Body

Update

Test

Jump to body

Possible Alternative

Initialization

Jump to test

Body

Update

Test

Jump to body if success

86

GCC For Loop Output

for (inti=0;i<n; it++) // n=100
Possible Alternative
Initialization
Jump to test
Body
Body Update
Update Test
Test Jump to body if success

Jump to body

87

GCC For Loop Output

GCC Common For Loop Output Possible Alternative
Initialization Initialization

Test Jump to test

Jump past loop 1if passes Body

Body Update

Update Test

Jump to test Jump to body if success

Which instructions are better when n=0? n = 10007

for (inti=0;i<n; i++)

88

Optimizing

Instruction Counts

* Both versions have the same static instruction count (# of written instructions).

* But they have different dynamic instruction counts (# of executed instructions

when program is run).

e If n =0, left (GCC common output) is best b/c fewer instructions
* If nislarge, right (alternative) is best b/c fewer instructions

* The compiler may emit a static instruction count that is several times longer
than an alternative, but it may be more efficient if loop executes many times.

* Does the compiler know that a

* So what if our code had loops t
How do we know when gcc ma

oop will execute many times? (in general, no)

nat always execute a small number of times?

kes a bad decision?

 (take EE108, EE180, CS316 for more!)

89

Optimizations

* Conditional Moves can sometimes eliminate “branches” (jumps), which are
particularly inefficient on modern computer hardware.

* Processors try to predict the future execution of instructions for maximum
performance. This is difficult to do with jumps.

90

Data Alignment

- Computer systems often put restrictions on the allowable addresses for primitive

data types, requiring that the address for some objects must be a multiple of some
value K (normally 2, 4, or 8).

- These alignment restrictions simplify the design of the hardware.

- For example, suppose that a processor always fetches 8 bytes from the memory
system, and an address must be a multiple of 8. If we can guarantee that any
double will be aligned to have its address as a multiple of 8, then we can read or

write the values with a single memory access.
- For x86-64, Intel recommends the following alignments for best performance:

Types

K

1 char

2 short

4 int, float
8

long, double, char *
91

Data Alignment

- The compiler enforces alignment by making sure that every data type is organized
in such a way that every field within the struct satisfies the alignment restrictions.

- For example, let's look at the following struct:
struct S1 {

int 1;

char c;

int 7j;
}; Offset 0 4 |5 9
, Contents i C j

- If the compiler used a minimal allocation:
- This would make it impossible to align fields i (offset 0) and 7 (offset 5). Instead,

the compiler inserts a 3-byte gap between fields ¢ and 7:

Offset 0 4 |5 8 12

Contents i C j

- S0, don't be surprised if your structs have a sizeof () thatis larger than you expect!
92

Some Extra Reading

Key GDB Tips For Assembly

* Examine 4 giant words (8 bytes) on the stack:
(gdb) x/4g $%$rsp
OX7fffffffe870: 0Ox00000VOVLOVLOVOS OX0000000000400559
OX7FFffffffe880: Ox0000VVVOVOVLOLO OX0000000000400575

* display/undisplay (prints out things every time you step/next)
(gdb) display/4w $rsp
1: x/4xw $rsp
ox7fffffffe8a8:
Oxt7a2d830 OXx00007fff OxX00000000 OXx00000000

94

Key GDB Tips For Assembly

e stepi/finish: step into current function call/return to caller:
(gdb) finish
* Set register values during the run
(gdb) p $rdi = $rdi + 1
(Might be useful to write down the original value of Srdi somewhere)
* Tui things

e refresh

 focus cmd — use up/down arrows on gdb command line (vs focus asm, focus
regs)
 layout regs, layout asm

95

gdb tips) & &

(ctrl-x a: exit,

layout split (r1-1: resize) View C, assembly, and gdb (lab5)

info reg Print all registers

p $eax Print register value

p $eflags Print all condition codes currently set

b *0x400546 Set breakpoint at assembly instruction
b *0x400550 if $eax > 98 Set conditional breakpoint

ni Next assembly instruction

si Step into assembly instruction (will step

into function calls) %6

p/x $rdi
p/t $rsi

X $rdi
x/4bx $rdi
X/4wx $rdi

Print register value in hex

Print register value in binary

Examine the byte stored at this address
Examine 4 bytes starting at this address
Examine 4 ints starting at this address

97

Array Allocation and Access

- Arrays in C map in a fairly straightforward way to X86 assembly code, thanks to
the addressing modes available in instructions.

- When we perform pointer arithmetic, the assembly code that is produced will have
address computations built into them.

- Optimizing compilers are very good at simplifying the address computations (in lab
you will see another optimizing compiler benefit in the form of division — if the
compiler can avoid dividing, it will!). Because of the transformations, compiler-
generated assembly for arrays often doesn't look like what you are expecting.

- Consider the following form of a data type T and integer constant N:

T A[N]

- The starting location is designated as xa
- The declaration allocates N * sizeof (T) bytes, and gives us an identifier that

we can use as a pointer (but it isn't a pointer!), with a value of xa.

98

Array Allocation and Access

- Example:
Array Element Size Total Size Start address Element |
char All2]; =~ 1 12 XA XAt i
char *B[8]; B 8 64 XB X + 8i
int Clo]; C 4 24 XC Xc + 4i
double *D[5. D 8 40 XD XD + 8

- The memory referencing operations in x86-64 are designed to simplify array
access. Suppose we wanted to access C[3] above. If the address of C is in

register $rdx, and 3 is in register $rcx
- The following copies C[3] into $eax,

movl (%Srdx,%rcx,4), %eax

99

Pointer Arithmetic

.- C allows arithmetic on pointers, where the computed value is calculated according

to the size of the data type referenced by the pointer.
- The array reference A[i] is identical to * (A+1)
- Example: if the address of array E is in $rdx, and the integer index, i, isin $rcx,

the following are some expressions involving E:

Expression Type Value Assembly Code
E int * XE movqg %rdx, %$rax
int
E[O] int M[Xe] movl (%rdx), %eax
E[1] int M[xe+4i] movl (%rdx,%rcx,4) %eax
&E[2] int * Xg+8 leag 8 (%rdx), %rax
E+i-1 int * Xet+4i-4 leaq -4 (%rdx, %rcx,4), %rax

*(E+1-3) int M[xe+4i-12] movl -12(%rdx, srcx,4) %Seax

SE[1]-E long | movg %Srcx, srax 100

Pointer Arithmetic

- Practice: xs is the address of a short integer array, S, stored in $rdx, and a long
Integer index, 1, Is stored in register $rcx.

- For each of the following expressions, give its type, a formula for its value, and an
assembly-code implementation. The result should be stored in $rax ifitis a
pointer, and the result should be in register $ax if it has a data type short.

Expression Type Value Assembly Code
S+1 short * Xs + 2 leag 2 (%rdx), srax

S[3] short M[xs + 0] movw 6 (%rdx), %ax

&S[1] short * Xs + 21 leag (%rdx, %rcx,?2),%rax
S[4*i+1] short M[xs + 81 + 2] movw 2 (%rdx, $rcx, 8), %ax

S+1-5 short * xs + 21 - 10 leag -10 (%rdx, %rcx,2),%rax
101

References and Advanced

- References:

- Stanford guide to x86-64: https://web.stanford.edu/class/cs107/gquide/
x86-64.html

- CS107 one-page of x86-64: https://web.stanford.edu/class/cs107/resources/
onepage x86-64.pdf

- gdbtui: https://beej.us/quide/bggdb/

- More gdbtui: https://sourceware.org/gdb/onlinedocs/qgdb/TUl.html
- Compiler explorer: https://gcc.godbolt.org

- Advanced Reading:

. Stack frame layout on x86-64: https://eli.thegreenplace.net/2011/09/06/stack-
frame-layout-on-x86-64

- Xx86-64 Intel Software Developer manual: https://software.intel.com/sites/
default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf

- history of x86 instructions: https://en.wikipedia.org/wiki/X86 instruction_listings

- Xx86-64 Wikipedia: https://en.wikipedia.org/wiki/X86-64

102

	CS107, Lecture 13
Control Flow: When in doubt just JMP!
	Learning Goals
	cmov: Conditional move
	cmov: Conditional move
	Practice: Fill in the blanks
	Practice: Fill in the blanks
	Practice: Fill in the blanks
	Warm-up: Reverse Engineering
	Warm-up: Reverse Engineering
	Warm-up: Reverse Engineering
	test practice: What’s the C code?
	test practice: What’s the C code?
	Practice: “Escape Room”
	Practice: “Escape Room”
	%rip
	%rip
	%rip
	%rip
	%rip
	%rip
	%rip
	%rip
	%rip
	%rip
	%rip
	%rip
	Summary: Instruction Pointer
	How do we call functions in assembly?
	Calling Functions In Assembly
	%rsp
	%rsp
	%rsp
	%rsp
	%rsp
	push
	push
	push
	push
	pop
	pop
	Stack Example
	Calling Functions In Assembly
	Remembering Where We Left Off
	Remembering Where We Left Off
	Remembering Where We Left Off
	Remembering Where We Left Off
	Remembering Where We Left Off
	Call And Return
	Calling Functions In Assembly
	Register Restrictions
	Caller/Callee
	Register Restrictions
	Caller-Owned Registers
	Caller-Owned Registers
	Callee-Owned Registers
	Callee-Owned Registers
	A Day In the Life of function1
	Parameters and Return
	Calling Functions In Assembly
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Local Storage
	Our First Assembly
	Optimizations you’ll see
	GCC For Loop Output
	GCC For Loop Output
	GCC For Loop Output
	GCC For Loop Output
	GCC For Loop Output
	GCC For Loop Output
	GCC For Loop Output
	Optimizing Instruction Counts
	Optimizations
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Key GDB Tips For Assembly
	Key GDB Tips For Assembly
	gdb tips
	gdb tips
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	References and Advanced Reading

