
CS107, Lecture 13
Control Flow: When in doubt just JMP!

Reading: B&O 3.1-3.4

This document is copyright (C) Stanford Computer Science, Adam Keppler, and Olayinka Adekola licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Joel Ramirez, Nick Troccoli, Chris Gregg

Learning Goals

• Learn about how assembly stores comparison and operation results in
condition codes

• Understand how assembly implements loops and control flow

2

cmov: Conditional move
cmovx src,dst conditionally moves data in src to data in dst.
• Mov src to dst if condition x holds; no change otherwise
• src is memory address/register, dst is register
• May be more efficient than branch (i.e., jump)
• Often seen with C ternary operator: result = test ? then: else;

int max(int x, int y) {
return x > y ? x : y;

}

cmp
mov

%edi,%esi
%edi, %eax

cmovge %esi, %eax
retq

3

cmov: Conditional move
Instruction Synonym Move Condition

cmove S,R cmovz Equal / zero (ZF = 1)

cmovne S,R cmovnz Not equal / not zero (ZF = 0)

cmovs S,R Negative (SF = 1)

cmovns S,R NonnegaOve (SF = 0)

cmovg S,R cmovnle Greater (signed >) (SF = 0 and SF = OF)

cmovge S,R cmovnl Greater or equal (signed >=) (SF = OF)

cmovl S,R cmovnge Less (signed <) (SF != OF)

cmovle S,R cmovng Less or equal (signed <=) (ZF = 1 or SF! = OF)

cmova S,R cmovnbe Above (unsigned >) (CF = 0 and ZF = 0)

cmovae S,R cmovnb Above or equal (unsigned >=) (CF = 0)

cmovb S,R cmovnae Below (unsigned <) (CF = 1)

cmovbe S,R cmovna Below or equal (unsigned <=) (CF = 1 or ZF = 1)

4

Practice: Fill in the blanks
<+0>: mov $0x1,%eax
<+5>: cmp %rsi,%rdi
<+8>: jge 0x1151 <loop+24>
<+10>: lea (%rdi,%rsi,1),%rdx
<+14>: imul %rdx,%rax
<+18>: add $0x1,%rdi
<+22>: jmp 0x113e <loop+5>
<+24>: retq

long loop(long a, long b) {
long result = (1) ;
while ((2)) {

result = (3) ;
a = (4) ;

}
return result;

}

GCC common while loop construction:
Test
Jump past loop if fails
Body
Jump to test

https://godbolt.org/z/zrW6c5MGa 5

Practice: Fill in the blanks
<+0>: mov $0x1,%eax
<+5>: cmp %rsi,%rdi
<+8>: jge 0x1151 <loop+24>
<+10>: lea (%rdi,%rsi,1),%rdx
<+14>: imul %rdx,%rax
<+18>: add $0x1,%rdi
<+22>: jmp 0x113e <loop+5>
<+24>: retq

long loop(long a, long b) {
long result = (1) ;
while ((2)) {

result = (3) ;
a = (4) ;

}
return result;

}

GCC common while loop construction:
Test
Jump past loop if fails
Body
Jump to test

6

Practice: Fill in the blanks
long loop(long a, long b) {

long result = 1 ;
while (a < b) {

result = result*(a+b) ;
a = a + 1 ;

}
return result;

}

<+0>: mov $0x1,%eax

<+5>: cmp %rsi,%rdi
<+8>: jge 0x1151 <loop+24>

<+10>: lea (%rdi,%rsi,1),%rdx
<+14>: imul %rdx,%rax
<+18>: add $0x1,%rdi

<+22>: jmp 0x113e <loop+5>

<+24>: retq

7

Warm-up: Reverse Engineering
int elem_arithmetic(int nums[], int y) {
 int z = nums[________] * ________;

 z -= ________;

 return ________;
}

// nums in %rdi, y in %esi
elem_arithmetic:
 movl %esi, %eax
 imull 4(%rdi), %eax
 movslq %esi, %rsi
 subl (%rdi,%rsi,4), %eax
 lea 2(%rax, %rax), %eax
 ret

8

Warm-up: Reverse Engineering
int elem_arithmetic(int nums[], int y) {
 int z = nums[1] * y;

 z -= ________;

 return ________;
}

// nums in %rdi, y in %esi
elem_arithmetic:
 movl %esi, %eax // copy y into %eax
 imull 4(%rdi), %eax // multiply %eax by nums[1]
 movslq %esi, %rsi // sign-extend %esi to %rsi
 subl (%rdi,%rsi,4), %eax
 lea 2(%rax, %rax), %eax
 ret

9

Warm-up: Reverse Engineering
int elem_arithmetic(int nums[], int y) {
 int z = nums[1] * y;

 z -= nums[y];

 return 2 * z + 2;
}

// nums in %rdi, y in %esi
elem_arithmetic:
 movl %esi, %eax // copy y into %eax
 imull 4(%rdi), %eax // multiply %eax by nums[1]
 movslq %esi, %rsi // sign-extend %esi to %rsi
 subl (%rdi,%rsi,4), %eax // subtract nums[y] from %eax
 lea 2(%rax, %rax), %eax // multiply %rax by 2, and add 2
 ret

10

test practice: What’s the C code?
0x400546
0x400548

<test_func>
<test_func+2>

test
jns

%edi,%edi
0x400550 <test_func+10>

0x40054a
0x40054f
0x400550
0x400555

<test_func+4>
<test_func+9>
<test_func+10>
<test_func+15>

mov
retq
mov
retq

$0xfeed,%eax

$0xaabbccdd,%eax

11

test practice: What’s the C code?
0x400546
0x400548

<test_func>
<test_func+2>

test
jns

%edi,%edi
0x400550 <test_func+10>

0x40054a
0x40054f
0x400550
0x400555

<test_func+4>
<test_func+9>
<test_func+10>
<test_func+15>

mov
retq
mov
retq

$0xfeed,%eax

$0xaabbccdd,%eax

int test_func(int x) {
if (x < 0) {

return 0xfeed;
}
return 0xaabbccdd;

}
(or anything like this)

12

Practice: “Escape Room”

returns true (1) and not false (0)? Just figure out the big picture!

<escape_room+0> lea (%rdi,%rdi,1),%eax
<escape_room+3> cmp $0x5,%eax
<escape_room+6> jg 0x114c <escape_room+19>
<escape_room+8> cmp $0x1,%edi
<escape_room+11> je 0x1152 <escape_room+25>
<escape_room+13> mov $0x0,%eax
<escape_room+18> retq
<escape_room+19> mov $0x1,%eax
<escape_room+24> retq
<escape_room+25> mov $0x1,%eax
<escape_room+30> retq

What must be passed to the
escapeRoom function such that it

You don’t have to reverse-engineer C
code exactly!

13

Practice: “Escape Room”

returns true (1) and not false (0)?

<escape_room+0> lea (%rdi,%rdi,1),%eax
<escape_room+3> cmp $0x5,%eax
<escape_room+6> jg 0x114c <escape_room+19>
<escape_room+8> cmp $0x1,%edi
<escape_room+11> je 0x1152 <escape_room+25>
<escape_room+13> mov $0x0,%eax
<escape_room+18> retq
<escape_room+19> mov $0x1,%eax
<escape_room+24> retq
<escape_room+25> mov $0x1,%eax
<escape_room+30> retq

First param > 2 or == 1.
What must be passed to the
escapeRoom function such that it

14

%rip

15

• %rip is a special register that points to the next instruction to execute.

• Let’s dive deeper into how %rip works, and how jumps modify it.

%rip
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

0x40113f <+0>: b8 00 00 00 00 mov $0x0,%eax
0x401144 <+5>: 83 f8 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
0x401149 <+10>: 83 c0 01 add $0x1,%eax
0x40114c
0x40114e

<+13>:
<+15>:

eb
c3

f6 jmp
retq

401144 <loop2+5>

16

%rip
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

0x40113f <+0>: b8 00 00 00 00 mov $0x0,%eax
0x401144 <+5>: 83 f8 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
0x401149 <+10>: 83 c0 01 add $0x1,%eax
0x40114c
0x40114e

<+13>:
<+15>:

eb
c3

f6 jmp
retq

401144 <loop2+5>

These are 0-based offsets in bytes
(hex) for each instruction relative
to the start of this function.

17

%rip
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

0x40113f <+0>: b8 00 00 00 00 mov $0x0,%eax
0x401144 <+5>: 83 f8 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
0x401149 <+10>: 83 c0 01 add $0x1,%eax
0x40114c
0x40114e

<+13>:
<+15>:

eb
c3

f6 jmp
retq

401144 <loop2+5>

These are bytes for the machine
code instructions. Instructions are
variable length.

18

0x40113f <+0>: b8 00 00 00 00 mov $0x0,%eax
0x401144 <+5>: 83 f8 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
0x401149 <+10>: 83 c0 01 add $0x1,%eax
0x40114c
0x40114e

<+13>:
<+15>:

eb
c3

f6 jmp
retq

401144 <loop2+5>

%rip
void loop() {

int i = 0;
while (i < 100) {

i++;
}

}

19

0x40113f <+0>: b8 00 00 00 00 mov $0x0,%eax
0x401144 <+5>: 83 f8 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
0x401149 <+10>: 83 c0 01 add $0x1,%eax
0x40114c
0x40114e

<+13>:
<+15>:

eb
c3

f6 jmp
retq

401144 <loop2+5>

%rip

20

0x40113f <+0>: b8 00 00 00 00 mov $0x0,%eax
0x401144 <+5>: 83 f8 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
0x401149 <+10>: 83 c0 01 add $0x1,%eax
0x40114c
0x40114e

<+13>:
<+15>:

eb
c3

f6 jmp
retq

401144 <loop2+5>

%rip

0x7f means jg.

21

0x40113f <+0>: b8 00 00 00 00 mov $0x0,%eax
0x401144 <+5>: 83 f8 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
0x401149 <+10>: 83 c0 01 add $0x1,%eax
0x40114c
0x40114e

<+13>:
<+15>:

eb
c3

f6 jmp
retq

401144 <loop2+5>

%rip

0x05 is the number of
instruction bytes to
jump relative to %rip.

With no jump, %rip would
advance to the next line.
This jg says to then go 5
bytes further!

22

0x40113f <+0>: b8 00 00 00 00 mov $0x0,%eax
0x401144 <+5>: 83 f8 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
0x401149 <+10>: 83 c0 01 add $0x1,%eax
0x40114c
0x40114e

<+13>:
<+15>:

eb
c3

f6 jmp
retq

401144 <loop2+5>

%rip

0x05 is the number of
instruction bytes to
jump relative to %rip.

With no jump, %rip would
advance to the next line.
This jg says to then go 5
bytes further!

23

0x40113f <+0>: b8 00 00 00 00 mov $0x0,%eax
0x401144 <+5>: 83 f8 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
0x401149 <+10>: 83 c0 01 add $0x1,%eax
0x40114c
0x40114e

<+13>:
<+15>:

eb
c3

f6 jmp
retq

401144 <loop2+5>

%rip

0xeb means jmp.

24

0x40113f <+0>: b8 00 00 00 00 mov $0x0,%eax
0x401144 <+5>: 83 f8 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
0x401149 <+10>: 83 c0 01 add $0x1,%eax
0x40114c
0x40114e

<+13>:
<+15>:

eb
c3

f6 jmp
retq

401144 <loop2+5>

%rip

0xf6 is the number of
instruction bytes to jump
relative to %rip. This is -10
(in two’s complement!).

With no jump, %rip
would advance to the
next line. This jmp says
to then go 10 bytes back!

25

0x40113f <+0>: b8 00 00 00 00 mov $0x0,%eax
0x401144 <+5>: 83 f8 63 cmp $0x63,%eax
0x401147 <+8>: 7f 05 jg 40114e <loop2+15>
0x401149 <+10>: 83 c0 01 add $0x1,%eax
0x40114c
0x40114e

<+13>:
<+15>:

eb
c3

f6 jmp
retq

401144 <loop2+5>

%rip

0xf6 is the number of
instruction bytes to jump
relative to %rip. This is -10
(in two’s complement!).

With no jump, %rip
would advance to the
next line. This jmp says
to then go 10 bytes back!

26

Summary: Instruction Pointer

27

• Machine code instructions live in main memory, just like stack and heap data.
• %rip is a register that stores a number (an address) of the next instruction to

execute. It marks our place in the program’s instructions.
• To advance to the next instruction, special hardware adds the size of the

current instruction in bytes.
• jmp instructions work by adjusting %rip by a specified amount.

How do we call functions in
assembly?

28

Calling Functions In Assembly
To call a function in assembly, we must do a few things:
• Pass Control – %rip must be adjusted to execute the callee’s instructions, and

then resume the caller’s instructions afterwards.
• Pass Data – we must pass any parameters and receive any return value.
• Manage Memory – we must handle any space needs of the callee on the

stack.

Terminology: caller function calls the callee function.

How does assembly
interact with the stack?

29

%rsp
• %rsp is a special register that stores the address of the current “top” of the

stack (the bottom in our diagrams, since the stack grows downwards).
Main Memory

main()

myfunction()

%rsp

Heap

Data

Text (code)
0x0 30

%rsp
• %rsp is a special register that stores the address of the current “top” of the

stack (the bottom in our diagrams, since the stack grows downwards).
Main Memory

main()

myfunction()

%rsp

Heap

Data

Text (code)
0x0 31

foo()

%rsp
• %rsp is a special register that stores the address of the current “top” of the

stack (the bottom in our diagrams, since the stack grows downwards).
Main Memory

main()

myfunction()

%rsp foo()

foo2()

Heap

Data

Text (code)
0x0 32

%rsp
• %rsp is a special register that stores the address of the current “top” of the

stack (the bottom in our diagrams, since the stack grows downwards).
Main Memory

main()

myfunction()

%rsp

Heap

Data

Text (code)
0x0 33

foo()

%rsp

main()

Heap

myfunction()

• %rsp is a special register that stores the address of the current “top” of the
stack (the bottom in our diagrams, since the stack grows downwards).

Main Memory

%rsp

Key idea: %rsp must
point to the same place
before a function is
called and after that
function returns, since
stack frames go away
when a function finishes.Data

Text (code)
0x0 34

push
• The push instruction pushes the data at the specified source onto the top of

the stack, adjusting %rsp accordingly.

Instruction Effect

35

pushq S R[%rsp] ⟵ R[%rsp] – 8;
M[R[%rsp]] ⟵ S

push
• The push instruction pushes the data at the specified source onto the top of

the stack, adjusting %rsp accordingly.

Instruction Effect

36

pushq S R[%rsp] ⟵ R[%rsp] – 8;
M[R[%rsp]] ⟵ S

push
• The push instruction pushes the data at the specified source onto the top of

the stack, adjusting %rsp accordingly.

Instruction Effect

37

pushq S R[%rsp] ⟵ R[%rsp] – 8;
M[R[%rsp]] ⟵ S

push

• This behavior is equivalent to the following, but pushq is a shorter instruction:
subq $8, %rsp
movq S, (%rsp)

• Sometimes, you’ll see instructions just explicitly decrement the stack pointer
to make room for future data.

• The push instruction pushes the data at the specified source onto the top of
the stack, adjusting %rsp accordingly.

Instruction Effect

38

pushq S R[%rsp] ⟵ R[%rsp] – 8;
M[R[%rsp]] ⟵ S

pop

• Note: this does not remove/clear out the data! It just increments %rsp to
indicate the next push can overwrite that location.

• The pop instruction pops the topmost data from the stack and stores it in the
specified destination, adjusting %rsp accordingly.

Instruction Effect

39

popq D D ⟵ M[R[%rsp]]
R[%rsp] ⟵ R[%rsp] + 8;

pop

• This behavior is equivalent to the following, but popq is a shorter instruction:
movq (%rsp), D
addq $8, %rsp

• Sometimes, you’ll see instructions just explicitly increment the stack pointer to
pop data.

• The pop instruction pops the topmost data from the stack and stores it in the
specified destination, adjusting %rsp accordingly.

Instruction Effect

40

popq D D ⟵ M[R[%rsp]]
R[%rsp] ⟵ R[%rsp] + 8;

Stack Example
Initially

%rax 0x123

%rdx 0

%rsp 0x108

Stack “bottom”

Stack “top”0x108

Increasing
addresses

pushq %rax
%rax 0x123

%rdx 0

%rsp 0x100

Stack “bottom”

Stack “top”

Increasing
addresses

popq %rdx
%rax 0x123

%rdx 0x123

%rsp 0x108

Stack “bottom”

Increasing
addresses

0x108
0x100

0x123

Stack “top”

0x108
0x100

0x123

41

Calling Functions In Assembly

42

To call a function in assembly, we must do a few things:
• Pass Control – %rip must be adjusted to execute the callee’s instructions, and

then resume the caller’s instructions afterwards.
• Pass Data – we must pass any parameters and receive any return value.
• Manage Memory – we must handle any space needs of the callee on the

stack.

Terminology: caller function calls the callee function.

Remembering Where We Left Off
Problem: %rip points to the
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.
Solution: push the next value of
%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue
executing.

…

…

Stack

0xff20%rsp

main()

0x3021%rip

E.g. main() calls foo():

43

Remembering Where We Left Off
Problem: %rip points to the
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.
Solution: push the next value of
%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue
executing.

…

…

0x3026

Stack

main()

0xff18%rsp

0x3021%rip

E.g. main() calls foo():

44

Remembering Where We Left Off
Problem: %rip points to the
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.
Solution: push the next value of
%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue
executing.

…

…

0x3026

…

Stack

main()

foo()

0xff08%rsp

0x4058%rip

E.g. main() calls foo():

45

Remembering Where We Left Off
Problem: %rip points to the
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.
Solution: push the next value of
%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue
executing.

…

…

0x3026

Stack

0xff18%rsp

0x4058%rip

main()

46

E.g. main() calls foo():

Remembering Where We Left Off
Problem: %rip points to the
next instruction to execute. To
call a function, we must
remember the next caller
instruction to resume at after.
Solution: push the next value of
%rip onto the stack. Then call
the function. When it is
finished, put this value back
into %rip and continue
executing.

…

…

Stack

main()

0xff20%rsp

0x3026%rip

E.g. main() calls foo():

47

Call And Return
The call instruction pushes the address of the instruction immediately following
the call instruction onto the stack and sets %rip to point to the beginning of the
specified function’s instructions.

call Label
call *Operand

The ret instruction pops this instruction address from the stack and stores it in
%rip.

ret
The stored %rip value for a function is called its return address. It is the address
of the instruction at which to resume the function’s execution. (not to be
confused with return value, which is the value returned from a function). 48

Calling Functions In Assembly

49

To call a function in assembly, we must do a few things:
• Pass Control – %rip must be adjusted to execute the function being called and

then resume the caller function afterwards.
• Pass Data – we must pass any parameters and receive any return value.
• Manage Memory – we must handle any space needs of the callee on the

stack.

Terminology: caller function calls the callee function.

Register Restrictions

50

There is only one copy of registers for all programs and functions.
• Problem: what if funcA is building up a value in register %r10, and calls funcB

in the middle, which also has instructions that modify %r10? funcA’s value will
be overwritten!

• Solution: make some “rules of the road” that callers and callees must follow
when using registers so they do not interfere with one another.

• These rules define two types of registers: caller-owned and callee-owned

Caller/Callee

main

function1

function2

Caller/callee is
terminology that
refers to a pair of
functions. A single
function may be
both a caller and
callee
simultaneously (e.g.
function1 at right).

calls

calls

main is the caller,
and function1 is
the callee.

function1 is
the caller, and
function2 is
the callee.

51

Register Restrictions

52

Caller-Owned
• Callee must save the existing value

and restore it when done.
• Caller can store values and assume

they will be preserved across
function calls.

Callee-Owned
• Callee does not need to save the

existing value.
• Caller’s values could be overwritten

by a callee! The caller may consider
saving values elsewhere before
calling functions.

Caller-Owned Registers

main

function1

calls

main can use caller-owned
registers and know that
function1 will not permanently
modify their values.

If function1 wants to use any
caller-owned registers, it must
save the existing values and
restore them before returning.

53

Caller-Owned Registers

function1:
push %rbp
push %rbx
...
pop %rbx
pop %rbp
retq

main

function1

calls

54

Callee-Owned Registers

main can use callee-owned
registers but calling function1
may permanently modify their
values.

If function1 wants to use any
callee-owned registers, it can do
so without saving the existing
values.

main

function1

calls

55

Callee-Owned Registers

main

function1

calls

56

main:
...
push %r10
push %r11
callq function1
pop %r11
pop %r10
...

A Day In the Life of function1

main

function1

function2

calls

57

calls

Caller-owned registers:
• function1 must save/restore existing values

of any it wants to use.
• function1 can assume that calling

function2 will not permanently change their
values.

Callee-owned registers:
• function1 does not need to save/restore

existing values of any it wants to use.
• calling function2 may permanently change

their values.

Parameters and Return

58

• There are special registers that store parameters and the return value.
• To call a function, we must put any parameters we are passing into the correct

registers. (%rdi, %rsi, %rdx, %rcx, %r8, %r9, in that order)
• Parameters beyond the first 6 are put on the stack.
• If the caller expects a return value, it looks in %rax after the callee completes.

Calling Functions In Assembly

59

To call a function in assembly, we must do a few things:
• Pass Control – %rip must be adjusted to execute the function being called and

then resume the caller function afterwards.
• Pass Data – we must pass any parameters and receive any return value.
• Manage Memory – we must handle any space needs of the callee on the

stack.

Terminology: caller function calls the callee function.

Parameters and Return
...main()int main(int argc, char *argv[]) {

int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

60

Parameters and Return
...main()

0xffea08

0x40054f

%rsp

%rip

int main(int
int i1 =

argc, char *argv[]) {
1;

int i2 = 2;
int i3 =
int i4 =

3;
4;

int result = func(&i1, &i2, &i3, &i4,
i1, i2, i3, i4);

…
}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x40054f <+0>:
0x400553 <+4>:
0x40055b <+12>:
0x400563 <+20>:
0x40056b <+28>:

sub $0x18,%rsp
movl $0x1,0xc(%rsp)
movl $0x2,0x8(%rsp)
movl $0x3,0x4(%rsp)
movl $0x4,(%rsp) 61

Parameters and Return
...

0xffe9f0

main()

0xffe9f0

0x400553

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x40056b <+28>: movl $0x4,(%rsp)

0x40054f
0x400553
0x40055b
0x400563

<+0>:
<+4>:
<+12>:
<+20>:

sub
movl
movl
movl

$0x18,%rsp
$0x1,0xc(%rsp)
$0x2,0x8(%rsp)
$0x3,0x4(%rsp)

62

Parameters and Return
...

0xffe9fc 1

0xffe9f0

main()

0xffe9f0

0x40055b

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 =
int i2 =

1;
2;

int i3 =
int i4 =

3;
4;

int result = func(&i1, &i2, &i3, &i4,
i1, i2, i3, i4);

…
}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x40056b <+28>: movl $0x4,(%rsp)

0x40054f
0x400553
0x40055b
0x400563

<+0>:
<+4>:
<+12>:
<+20>:

sub
movl
movl
movl

$0x18,%rsp
$0x1,0xc(%rsp)
$0x2,0x8(%rsp)
$0x3,0x4(%rsp)

63

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2

0xffe9f0

main()

0xffe9f0

0x400563

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 =
int i2 =

1;
2;

int i3 =
int i4 =

3;
4;

int result = func(&i1, &i2, &i3, &i4,
i1, i2, i3, i4);

…
}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x40056b <+28>: movl $0x4,(%rsp)

0x40054f
0x400553
0x40055b
0x400563

<+0>:
<+4>:
<+12>:
<+20>:

sub
movl
movl
movl

$0x18,%rsp
$0x1,0xc(%rsp)
$0x2,0x8(%rsp)
$0x3,0x4(%rsp)

64

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0

main()

0xffe9f0

0x40056b

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x400553 <+4>:
0x40055b <+12>:
0x400563 <+20>:

movl
movl
movl

$0x1,0xc(%rsp)
$0x2,0x8(%rsp)
$0x3,0x4(%rsp)

0x400572 <+35>: pushq $0x4
0x40056b <+28>: movl $0x4,(%rsp)

65

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

main()

0xffe9f0

0x400572

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x40055b <+12>:
0x400563 <+20>:
0x40056b <+28>:

movl
movl
movl

$0x2,0x8(%rsp)
$0x3,0x4(%rsp)
$0x4,(%rsp)

0x400574 <+37>: pushq $0x3
0x400572 <+35>: pushq $0x4

66

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

main()

0xffe9e8

0x400574

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x400563 <+20>:
0x40056b <+28>:

movl
movl

$0x3,0x4(%rsp)
$0x4,(%rsp)

0x400576 <+39>: mov $0x2,%r9d

0x400572 <+35>:
0x400574 <+37>:

pushq
pushq

$0x4
$0x3

67

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x400576

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x40056b <+28>: movl $0x4,(%rsp)
0x400572 <+35>: pushq $0x4

0x40057c <+45>: mov $0x1,%r8d

0x400574 <+37>:
0x400576 <+39>:

pushq
mov

$0x3
$0x2,%r9d

68

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x40057c

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x400572 <+35>: pushq $0x4
0x400574 <+37>: pushq $0x3

0x400582 <+51>: lea 0x10(%rsp),%rcx

0x400576 <+39>:
0x40057c <+45>:

mov
mov

$0x2,%r9d
$0x1,%r8d

69

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x400572 <+35>:
0x400574 <+37>:

pushq $0x4
pushq $0x3

0x400582 <+51>: lea 0x10(%rsp),%rcx

0x400576 <+39>:
0x40057c <+45>:

mov
mov

$0x2,%r9d
$0x1,%r8d 0x40057c

70

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x40057c

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x400572 <+35>:
0x400574 <+37>:

pushq
pushq

$0x4
$0x3

0x400576 <+39>: mov $0x2,%r9d
0x40057c <+45>: mov $0x1,%r8d
0x400582 <+51>: lea 0x10(%rsp),%rcx

2

%r9d

71

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x400582

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x400574 <+37>:
0x400576 <+39>:

pushq
mov

$0x3
$0x2,%r9d

0x40057c <+45>: mov $0x1,%r8d
0x400582 <+51>: lea 0x10(%rsp),%rcx
0x400587 <+56>: lea 0x14(%rsp),%rdx

2

%r9d

1

%r8d

72

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x400587

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x400576 <+39>: mov
0x40057c <+45>: mov
0x400582 <+51>: lea

$0x2,%r9d
$0x1,%r8d
0x10(%rsp),%rcx

2

%r9d

1

%r8d

0xffe9f0

%rcx

0x40058c <+61>: lea 0x18(%rsp),%rsi
0x400587 <+56>: lea 0x14(%rsp),%rdx

73

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x40058c

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x40057c <+45>: mov
0x400582 <+51>: lea
0x400587 <+56>: lea

$0x1,%r8d
0x10(%rsp),%rcx
0x14(%rsp),%rdx

2

%r9d

1

%r8d

0xffe9f0

%rcx

0xffe9f4

%rdx

0x400591 <+66>: lea 0x1c(%rsp),%rdi
0x40058c <+61>: lea 0x18(%rsp),%rsi

74

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x400591

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x400582 <+51>: lea
0x400587 <+56>: lea
0x40058c <+61>: lea

0x10(%rsp),%rcx
0x14(%rsp),%rdx
0x18(%rsp),%rsi

2

%r9d

1

%r8d

0xffe9f0

%rcx

0xffe9f4

%rdx

0xffe9f8

%rsi

0x400596 <+71>: callq 0x400546 <func>
0x400591 <+66>: lea 0x1c(%rsp),%rdi

75

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x400596

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x400587 <+56>: lea
0x40058c <+61>: lea
0x400591 <+66>: lea

0x14(%rsp),%rdx
0x18(%rsp),%rsi
0x1c(%rsp),%rdi

2

%r9d

1

%r8d

0xffe9f0

%rcx

0xffe9f4

%rdx

0xffe9fc

%rdi
0xffe9f8

%rsi

0x40059b <+76>: add $0x10,%rsp
0x400596 <+71>: callq 0x400546 <func>

76

Parameters and Return
...

0xffe9fc 1
0xffe9f8 2
0xffe9f4 3
0xffe9f0 4

0xffe9e8
4

0xffe9e0
3

main()

0xffe9e0

0x400596

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x40058c <+61>:
0x400591 <+66>:
0x400596 <+71>:
0x40059b <+76>:
…

add $0x10,%rsp
77

lea 0x18(%rsp),%rsi
lea 0x1c(%rsp),%rdi
callq 0x400546 <func>

2

%r9d

1

%r8d

0xffe9f0

%rcx

0xffe9f4

%rdx

0xffe9fc

%rdi
0xffe9f8

%rsi

Parameters and Return
...

1
2
3
4

4

3

0x40059b

0xffe9fc

0xffe9f8

0xffe9f4

0xffe9f0

0xffe9e8

0xffe9e0

main()

0xffe9d8

0x400596

%rsp

%rip

int main(int argc, char *argv[]) {
int i1 = 1;
int i2 = 2;
int i3 = 3;
int i4 = 4;
int result = func(&i1, &i2, &i3, &i4,

i1, i2, i3, i4);
…

}

int func(int *p1, int *p2, int *p3, int *p4,
int v1, int v2, int v3, int v4) {

…
}

0x40058c <+61>:
0x400591 <+66>:
0x400596 <+71>:

lea 0x18(%rsp),%rsi
lea 0x1c(%rsp),%rdi
callq 0x400546 <func>

2

%r9d

1

%r8d

0xffe9f0

%rcx

0xffe9f4

%rdx

0xffe9fc

%rdi
0xffe9f8

0x40059b <+76>:
…

add $0x10,%rsp
78

%rsi

Local Storage

79

• So far, we’ve often seen local variables stored directly in registers, rather than
on the stack as we’d expect. This is for optimization reasons.

• There are three common reasons that local data must be in memory:
• We’ve run out of registers
• The ‘&’ operator is used on it, so we must generate an address for it
• They are arrays or structs (need to use address arithmetic)

Our First Assembly
int sum_array(int arr[], int nelems) {

int sum = 0;
for (int i = 0; i < nelems; i++) {

sum += arr[i];
}
return sum;

}

0000000000401136 <sum_array>:
401136 <+0>: mov $0x0,%eax
40113b <+5>: mov $0x0,%edx
401140 <+10>: cmp %esi,%eax
401142 <+12>: jge 0x40114f <sum_array+25>
401144 <+14>: movslq %eax,%rcx
401147 <+17>: add (%rdi,%rcx,4),%edx
40114a <+20>: add $0x1,%eax
40114d <+23>: jmp 0x401140 <sum_array+10>
40114f <+25>: mov %edx,%eax
401151 <+27>: retq

We’re done with all our assembly lectures! Now we
can fully understand what’s going on in the
assembly below, including how someone would call
sum_array in assembly and what the ret instruction
does.

80

Optimizations you’ll see
nop
• nop/nopl are “no-op” instructions – they do nothing!
• Intent: Make functions align on address boundaries that are nice multiples of 8.
• “Sometimes, doing nothing is how to be most productive” – Philosopher Nick

mov %ebx,%ebx
• Zeros out the top 32 register bits (because a mov on an e-register zeros out rest

of 64 bits).

xor %ebx,%ebx
• Optimizes for performance as well as code size (read more here):

b8 00 00 00 00 mov $0x0,%eax
31 c0 xor %eax,%eax 81

GCC For Loop Output

82

Possible Alternative
Initialization
Jump to test
Body
Update
Test
Jump to body if success

GCC Common For Loop Output
Initialization
Test
Jump past loop if success
Body
Update
Jump to test

GCC For Loop Output

GCC Common For Loop Output
Initialization
Test
Jump past loop if success
Body
Update
Jump to test

Possible Alternative
Initialization
Jump to test
Body
Update
Test
Jump to body if success

for (int i = 0; i < n; i++) // n = 100

83

GCC For Loop Output

GCC Common For Loop Output
Initialization
Test
Jump past loop if success
Body
Update
Jump to test

Possible Alternative
Initialization
Jump to test
Body
Update
Test
Jump to body if success

for (int i = 0; i < n; i++)

Body
Update
Jump
...

to test

84

// n = 100

Initialization
Test
No jump
Body
Update
Jump to test
Test
No jump

GCC For Loop Output

GCC Common For Loop Output
Initialization
Test
Jump past loop if success
Body
Update
Jump to test

Possible Alternative
Initialization
Jump to test
Body
Update
Test
Jump to body if success

for (int i = 0; i < n; i++)

Body
Update
Jump
...

to test

85

// n = 100

Initialization
Test
No jump
Body
Update
Jump to test
Test
No jump

GCC For Loop Output

GCC Common For Loop Output
Initialization
Test
Jump past loop if passes
Body
Update
Jump to test

Possible Alternative
Initialization
Jump to test
Body
Update
Test
Jump to body if success

for (int i = 0; i < n; i++) // n = 100

Initialization
Jump to test
Test
Jump to body
Body
Update
Test
Jump to body
Body
Update
Test
Jump to body
... 86

GCC For Loop Output

GCC Common For Loop Output
Initialization
Test
Jump past loop if passes
Body
Update
Jump to test

Possible Alternative
Initialization
Jump to test
Body
Update
Test
Jump to body if success

for (int i = 0; i < n; i++) // n = 100

Initialization
Jump to test
Test
Jump to body
Body
Update
Test
Jump to body
Body
Update
Test
Jump to body
... 87

GCC For Loop Output

GCC Common For Loop Output
Initialization
Test
Jump past loop if passes
Body
Update
Jump to test

Possible Alternative
Initialization
Jump to test
Body
Update
Test
Jump to body if success

Which instructions are better when n = 0? n = 1000?

for (int i = 0; i < n; i++)
88

Optimizing Instruction Counts

89

• Both versions have the same static instruction count (# of written instructions).
• But they have different dynamic instruction counts (# of executed instructions

when program is run).
• If n = 0, left (GCC common output) is best b/c fewer instructions
• If n is large, right (alternative) is best b/c fewer instructions

• The compiler may emit a static instruction count that is several times longer
than an alternative, but it may be more efficient if loop executes many times.

• Does the compiler know that a loop will execute many times? (in general, no)
• So what if our code had loops that always execute a small number of times?

How do we know when gcc makes a bad decision?
• (take EE108, EE180, CS316 for more!)

Optimizations

90

• Conditional Moves can sometimes eliminate “branches” (jumps), which are
particularly inefficient on modern computer hardware.

• Processors try to predict the future execution of instructions for maximum
performance. This is difficult to do with jumps.

Data Alignment
• Computer systems often put restrictions on the allowable addresses for primitive

data types, requiring that the address for some objects must be a multiple of some
value K (normally 2, 4, or 8).

• These alignment restrictions simplify the design of the hardware.
• For example, suppose that a processor always fetches 8 bytes from the memory

system, and an address must be a multiple of 8. If we can guarantee that any
double will be aligned to have its address as a multiple of 8, then we can read or
write the values with a single memory access.

• For x86-64, Intel recommends the following alignments for best performance:

K Types

1 char

2 short

4 int, float

8 long, double, char *
91

Data Alignment
• The compiler enforces alignment by making sure that every data type is organized

in such a way that every field within the struct satisfies the alignment restrictions.
• For example, let's look at the following struct:
struct S1 {

int i;
char c;
int j;

};
• If the compiler used a minimal allocation:
• This would make it impossible to align fields i (offset 0) and j (offset 5). Instead,

the compiler inserts a 3-byte gap between fields c and j:

Offset 0 4 5 9

Contents i c j

Offset 0 4 5 8 12

Contents i c j

• So, don't be surprised if your structs have a sizeof() that is larger than you expect!
92

Some Extra Reading

93

Key GDB Tips For Assembly

94

• Examine 4 giant words (8 bytes) on the stack:
(gdb) x/4g $rsp
0x7fffffffe870: 0x0000000000000005 0x0000000000400559
0x7fffffffe880: 0x0000000000000000 0x0000000000400575

• display/undisplay (prints out things every time you step/next)
(gdb) display/4w $rsp
1: x/4xw $rsp
0x7fffffffe8a8:
0xf7a2d830 0x00007fff 0x00000000 0x00000000

Key GDB Tips For Assembly

95

• stepi/finish: step into current function call/return to caller:
(gdb) finish

• Set register values during the run
(gdb) p $rdi = $rdi + 1

(Might be useful to write down the original value of $rdi somewhere)
• Tui things

• refresh
• focus cmd – use up/down arrows on gdb command line (vs focus asm, focus
regs)

• layout regs, layout asm

gdb tips

layout split
info reg Print all registers

p $eax Print register value
p $eflags Print all condition codes currently set

b *0x400546 Set breakpoint at assembly instruction
b *0x400550 if $eax > 98 Set conditional breakpoint

ni Next assembly instruction
si Step into assembly instruction (will step

into function calls)

View C, assembly, and gdb (lab5)(ctrl-x a: exit,
ctrl-l: resize)

96

gdb tips
p/x $rdi
p/t $rsi

x $rdi
x/4bx $rdi
x/4wx $rdi

Print register value in hex
Print register value in binary

Examine the byte stored at this address
Examine 4 bytes starting at this address
Examine 4 ints starting at this address

97

Array Allocation and Access
• Arrays in C map in a fairly straightforward way to X86 assembly code, thanks to

the addressing modes available in instructions.
• When we perform pointer arithmetic, the assembly code that is produced will have

address computations built into them.
• Optimizing compilers are very good at simplifying the address computations (in lab

you will see another optimizing compiler benefit in the form of division — if the
compiler can avoid dividing, it will!). Because of the transformations, compiler-
generated assembly for arrays often doesn't look like what you are expecting.

• Consider the following form of a data type T and integer constant N:

• The starting location is designated as xA
• The declaration allocates N * sizeof(T) bytes, and gives us an identifier that

we can use as a pointer (but it isn't a pointer!), with a value of xA.

T A[N]

98

Array Allocation and Access
• Example:

char A[12];
char *B[8];
int C[6];
double *D[5]

Array Element Size Total Size Start address Element i

A 1 12 xA xA + i

B 8 64 xB xB + 8i

C 4 24 xC xC + 4i

D 8 40 xD xD + 8i

• The memory referencing operations in x86-64 are designed to simplify array
access. Suppose we wanted to access C[3] above. If the address of C is in
register %rdx, and 3 is in register %rcx

• The following copies C[3] into %eax,

movl (%rdx,%rcx,4), %eax

99

Pointer Arithmetic
• C allows arithmetic on pointers, where the computed value is calculated according

to the size of the data type referenced by the pointer.
• The array reference A[i] is identical to *(A+i)
• Example: if the address of array E is in %rdx, and the integer index, i, is in %rcx,

the following are some expressions involving E:

Expression Type Value Assembly Code

E int * xE movq %rdx, %rax

E[0]
int
int M[xE] movl (%rdx), %eax

E[i] int M[xE+4i] movl (%rdx,%rcx,4) %eax

&E[2] int * xE+8 leaq 8(%rdx), %rax

E+i-1 int * xE+4i-4 leaq -4(%rdx,%rcx,4), %rax

*(E+i-3) int M[xE+4i-12] movl -12(%rdx,%rcx,4) %eax

&E[i]-E long i movq %rcx,%rax 100

Pointer Arithmetic
• Practice: xS is the address of a short integer array, S, stored in %rdx, and a long

integer index, i, is stored in register %rcx.
• For each of the following expressions, give its type, a formula for its value, and an

assembly-code implementation. The result should be stored in %rax if it is a
pointer, and the result should be in register %ax if it has a data type short.

Expression Type Value Assembly Code

S+1 short * xS + 2 leaq 2(%rdx),%rax

S[3] short M[xS + 6] movw 6(%rdx),%ax

&S[i] short * xS + 2i leaq (%rdx,%rcx,2),%rax

S[4*i+1] short M[xS + 8i + 2] movw 2(%rdx,%rcx,8),%ax

S+i-5 short * xS + 2i - 10 leaq -10(%rdx,%rcx,2),%rax
101

References and Advanced
Reading• References:

•

•
•
•

• Stanford guide to x86-64: https://web.stanford.edu/class/cs107/guide/
x86-64.html
CS107 one-page of x86-64: https://web.stanford.edu/class/cs107/resources/
onepage_x86-64.pdf
gdbtui: https://beej.us/guide/bggdb/
More gdbtui: https://sourceware.org/gdb/onlinedocs/gdb/TUI.html
Compiler explorer: https://gcc.godbolt.org

• Advanced Reading:

•

•
•

• Stack frame layout on x86-64: https://eli.thegreenplace.net/2011/09/06/stack-
frame-layout-on-x86-64
x86-64 Intel Software Developer manual: https://software.intel.com/sites/
default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
history of x86 instructions: https://en.wikipedia.org/wiki/X86_instruction_listings
x86-64 Wikipedia: https://en.wikipedia.org/wiki/X86-64

102

	CS107, Lecture 13
Control Flow: When in doubt just JMP!
	Learning Goals
	cmov: Conditional move
	cmov: Conditional move
	Practice: Fill in the blanks
	Practice: Fill in the blanks
	Practice: Fill in the blanks
	Warm-up: Reverse Engineering
	Warm-up: Reverse Engineering
	Warm-up: Reverse Engineering
	test practice: What’s the C code?
	test practice: What’s the C code?
	Practice: “Escape Room”
	Practice: “Escape Room”
	%rip
	%rip
	%rip
	%rip
	%rip
	%rip
	%rip
	%rip
	%rip
	%rip
	%rip
	%rip
	Summary: Instruction Pointer
	How do we call functions in assembly?
	Calling Functions In Assembly
	%rsp
	%rsp
	%rsp
	%rsp
	%rsp
	push
	push
	push
	push
	pop
	pop
	Stack Example
	Calling Functions In Assembly
	Remembering Where We Left Off
	Remembering Where We Left Off
	Remembering Where We Left Off
	Remembering Where We Left Off
	Remembering Where We Left Off
	Call And Return
	Calling Functions In Assembly
	Register Restrictions
	Caller/Callee
	Register Restrictions
	Caller-Owned Registers
	Caller-Owned Registers
	Callee-Owned Registers
	Callee-Owned Registers
	A Day In the Life of function1
	Parameters and Return
	Calling Functions In Assembly
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Parameters and Return
	Local Storage
	Our First Assembly
	Optimizations you’ll see
	GCC For Loop Output
	GCC For Loop Output
	GCC For Loop Output
	GCC For Loop Output
	GCC For Loop Output
	GCC For Loop Output
	GCC For Loop Output
	Optimizing Instruction Counts
	Optimizations
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Key GDB Tips For Assembly
	Key GDB Tips For Assembly
	gdb tips
	gdb tips
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	References and Advanced Reading

