
This document is copyright (C) Stanford Computer Science, Adam Keppler and Joel Ramirez, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Nick Troccoli and Chris Gregg.

CS107, Lecture 14
Privacy and Trust, Optimization, & Basic Architecture

2

Privacy and Trust

• Our learning about assembly and program execution helps us better
understand computer security (the protection of data, devices, and networks
from disruption, harm, theft, unauthorized access or modification).

• Computer security is important in part because it enables privacy.

• In understanding computer security, it’s essential to understand the context in
which it comes up (privacy and trust).

3

Data Breaches

Privacy/trust example: data breaches

• California list of data security breaches: link

• How does a data breach make a customer feel?

https://oag.ca.gov/privacy/databreach/list

4

Privacy

What is privacy? 4 possible framings in two categories:

Individualist: the value of privacy as an individual right

• Privacy as control of information – controlling how our private information is
shared with others.

• Privacy as autonomy – capacity to choose/decide for ourselves what is
valuable.

Social: the value of privacy for a group

• Privacy as social good – social life would be unlivable without privacy.

• Privacy (protection) as based in trust – privacy enables trusting relationships

5

Privacy

Privacy as control of information – controlling how our
information is communicated to others.
• Consent requires free choice with available alternatives and informed

understanding of what is being offered.

• How many of you just skip past the terms of service for new online services
you sign up for?

• Do you feel in control of your information with the services you choose to use?
Why or why not? If you’re working on a service, how can you respect privacy
while achieving product goals?

• Control over personal data being collected (e.g. data exports from services you
use, privacy dashboards, device privacy protections)

6

Privacy

https://gdpr-info.eu/art-1-gdpr/
https://techcrunch.com/2018/04/24/instagram-export/
https://reportcontent.google.com/forms/rtbf
https://www.theverge.com/2021/3/3/22311990/apple-icloud-photo-google-transfer-how-to

7

Privacy

Privacy as autonomy – capacity to choose/decide for
ourselves what is valuable.

• Links to autonomy over our own lives and our ability to lead them as we
choose.

• Do you feel that your autonomy is always respected when using products and
services? Why or why not?

“[P]rivacy is valuable because it acknowledges our respect for persons as
autonomous beings with the capacity to love, care and like—in other words,
persons with the potential to freely develop close relationships” (Innes 1992)

8

Individualist Models of Privacy

Privacy as autonomy and privacy as control over information
focus the value of privacy at an individual level.

• Individual privacy can conflict with interests of society or the state.

• Many debates over ”privacy vs. security” – whether one should be sacrificed
for the other
• Apple v. FBI case re: unlocking iPhones (link)

• Debates around encryption (link)

• Where do your beliefs fall in balancing privacy and security? When (if at all) is
it ok to sacrifice one, and how much?

https://www.cnbc.com/2016/03/29/apple-vs-fbi-all-you-need-to-know.html
https://www.nytimes.com/2019/11/19/technology/end-to-end-encryption.html

9

Privacy

Privacy as social good – social life would be unlivable without
privacy.

• Privacy has a social value in bringing about the kind of society we want to live
in.

• What would society look like without privacy?

10

Privacy

Privacy (protection) as based in trust – privacy enables
trusting relationships

• Privacy may help enable trusting relationships essential for cooperation.
• For instance, a fiduciary: someone who stands in a legal or ethical relationship of trust

with another person (or group). The fiduciary must act for the benefit of and in the best
interest of the other person. E.g. tax filer with access to your bank account
• Should anyone who has access to personal info have a fiduciary responsibility? (Richards & Hartzog

2020).

• This model of privacy stresses the essential relationship of trust placed in any
holder of personal data and the responsibilities that result from this trust.

11

Models of Privacy

Individualist

 Models

Social Models

of Privacy

Privacy as
Control over
Information

Privacy as
Respect for
Autonomy

Privacy as a
Social Good

Privacy as based on
Trust

12

Who Should We Trust?

Both security and privacy rely on trusted people (who administer security,
perform penetration tests, submit vulnerabilities to databases, or keep private
information secret). The final piece of the security puzzle is understanding trust.

Trust = Reliance + Risk of Betrayal

What makes trust unique to relationships between people is that trust exposes
one to being betrayed or being let down (Baier 1986).

13

Penetration Testing & Trust

Penetration testing is the practice of encouraging or hiring security researchers
/ contractors to find vulnerabilities in one’s own code or system.

• Position of trust – tester is given access to the system and encouraged to find
exploitable vulnerabilities, expected to share what they have found with you.

• Means relying on their skill at finding vulnerabilities and trusting that their
ethical compass will lead them to tell you and to act as a trustworthy fiduciary
(guardian of your interests).

In Assignment 5, you have the opportunity to explore this further!

14

Loss of Privacy

Loss of privacy can cause us various harms, including:

• Aggregation: combining personal information from various sources to build a
profile of someone

• Exclusion: not knowing how our information is being used, or being unable to
access or modify it (Google removing personal info from search – link)

• Secondary Use: using your information for purposes other than what was
intended without permission.

https://mashable.com/article/how-to-remove-personal-info-from-google-search-results

15

Mitigation: Differential Privacy

Differential privacy is a formal measure of privacy for datasets to try and
protect individuals from aggregation by making them harder to identify (Dwork
2008).

• Imagine a large database, e.g., a medical database, with personal information
and records of past activity tied to a name.

• The records might be useful for research purposes, or to train a machine
learning model to predict future health outcomes, but what if giving access to
the records exposed the privacy of individual person’s health records?

• Differential privacy adds inconsequential noise (e.g., changing a birthday from
2001 to 2002) or removes records to make individuals harder to identify while
preserving the utility of the dataset overall.

16

Trust Models

In every evaluation of privacy, we can ask: who is trusted? Who is distrusted?
Does this model concentrate trust (and therefore power) in a single individual or
small group, or does it distribute trust?

17

Differential Privacy’s Trust Model

Differential privacy assumes that the only threat to privacy is an external user
querying the database who must be prevented from aggregating data that could
identify a user.

• In other words, the trust model of differential privacy is that the database
owners and maintainers are to be fully trusted, and no one else.

• But is that the only threat? Differential privacy does not protect against
improper use by people with full access to data or against leaks of the whole
database, which may be the primary data exposure risks.

Differential privacy also does not question the assumption that amassing &
storing large amounts of personal data is worth the risk of inevitable leaks
(Rogaway 2015).

GCC Optimizations

22

Optimization

Most of what you need to do with optimization can be summarized by:

1) If doing something seldom and only on small inputs, do whatever is simplest
to code, understand, and debug

2) If doing things a lot, or on big inputs, make the primary algorithm’s Big-O cost
reasonable

3) Let gcc do its magic from there

4) Optimize explicitly as a last resort

GCC For Loop Output

24

Possible Alternative

Initialization
Jump to test
Body
Update
Test
Jump to body if success

GCC Common For Loop Output

Initialization
Test
Jump past loop if success
Body
Update
Jump to test

GCC For Loop Output

GCC Common For Loop Output

Initialization
Test
Jump past loop if success
Body
Update
Jump to test

Possible Alternative

Initialization
Jump to test
Body
Update
Test
Jump to body if success

for (int i = 0; i < n; i++) // n = 100

25

GCC For Loop Output

GCC Common For Loop Output

Initialization
Test
Jump past loop if success
Body
Update
Jump to test

Possible Alternative

Initialization
Jump to test
Body
Update
Test
Jump to body if success

for (int i = 0; i < n; i++)

Body
Update
Jump
...

to test

26

// n = 100

Initialization
Test

No jump
Body
Update
Jump to test
Test
No jump

GCC For Loop Output

GCC Common For Loop Output

Initialization
Test
Jump past loop if success
Body
Update
Jump to test

Possible Alternative

Initialization
Jump to test
Body
Update
Test
Jump to body if success

for (int i = 0; i < n; i++)

Body
Update
Jump
...

to test

27

// n = 100

Initialization
Test

No jump
Body
Update
Jump to test
Test
No jump

GCC For Loop Output

GCC Common For Loop Output

Initialization
Test
Jump past loop if passes
Body
Update
Jump to test

Possible Alternative

Initialization
Jump to test
Body
Update
Test
Jump to body if success

for (int i = 0; i < n; i++) // n = 100

Initialization
Jump to test
Test
Jump to body
Body
Update
Test

Jump to body
Body
Update
Test
Jump to body
... 28

GCC For Loop Output

GCC Common For Loop Output

Initialization
Test
Jump past loop if passes
Body
Update
Jump to test

Possible Alternative

Initialization
Jump to test
Body
Update
Test
Jump to body if success

for (int i = 0; i < n; i++) // n = 100

Initialization
Jump to test
Test
Jump to body
Body
Update
Test
Jump to body
Body
Update
Test
Jump to body
... 29

GCC For Loop Output

GCC Common For Loop Output

Initialization
Test
Jump past loop if passes
Body
Update
Jump to test

Possible Alternative

Initialization
Jump to test
Body
Update
Test
Jump to body if success

Which instructions are better when n = 0? n = 1000?

for (int i = 0; i < n; i++)
30

Optimizing Instruction Counts

31

• Both versions have the same static instruction count (# of written instructions).

• But they have different dynamic instruction counts (# of executed instructions
when program is run).
• If n = 0, left (GCC common output) is best b/c fewer instructions

• If n is large, right (alternative) is best b/c fewer instructions

• The compiler may emit a static instruction count that is several times longer
than an alternative, but it may be more efficient if loop executes many times.

• Does the compiler know that a loop will execute many times? (in general, no)

• So what if our code had loops that always execute a small number of times?
How do we know when gcc makes a bad decision?

• (take EE108, EE180, CS316 for more!)

Optimizations

32

• Conditional Moves can sometimes eliminate “branches” (jumps), which are
particularly inefficient on modern computer hardware.

• Processors try to predict the future execution of instructions for maximum
performance. This is difficult to do with jumps.

33

GCC Optimization

• Today, we’ll be comparing two levels of optimization in the gcc compiler:
• gcc –O0 // mostly just literal translation of C

• gcc –O2 // enable nearly all reasonable optimizations

• (we also use –Og, like –O0 but more debugging friendly)

• There are other custom and more aggressive levels of optimization, e.g.:
• -O3 //more aggressive than O2, trade size for speed

• -Os //optimize for size

• -Ofast //disregard standards compliance (!!)

• Exhaustive list of gcc optimization-related flags:
• https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

34

Compiler optimizations

https://stackoverflow.co
m/questions/1778538/ho
w-many-gcc-optimization-
levels-are-there

Gcc supports numbers up to
3. Anything above is
interpreted as 3

https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there

35

GCC Optimizations

• Constant Folding

• Common Sub-expression Elimination

• Dead Code

• Strength Reduction

• Code Motion

• Tail Recursion

• Loop Unrolling

36

Constant Folding

Constant Folding pre-calculates constants at compile-time where possible.

int seconds = 60 * 60 * 24 * n_days;

37

Constant Folding

int fold(int param) {
 char arr[5];
 int a = 0x107;
 int b = a * sizeof(arr);
 int c = sqrt(2.0);
 return a * param + (a + 0x15 / c + strlen("Hello") * b - 0x37) / 4;
}

38

Constant Folding: Before (-O0)
00000000000011b9 <fold>:
 11b9: 55 push %rbp
 11ba: 48 89 e5 mov %rsp,%rbp
 11bd: 41 54 push %r12
 11bf: 53 push %rbx
 11c0: 48 83 ec 30 sub $0x30,%rsp
 11c4: 89 7d cc mov %edi,-0x34(%rbp)
 11c7: c7 45 ec 07 01 00 00 movl $0x107,-0x14(%rbp)
 11ce: 8b 45 ec mov -0x14(%rbp),%eax
 11d1: 48 98 cltq
 11d3: 89 c2 mov %eax,%edx
 11d5: 89 d0 mov %edx,%eax
 11d7: c1 e0 02 shl $0x2,%eax
 11da: 01 d0 add %edx,%eax
 11dc: 89 45 e8 mov %eax,-0x18(%rbp)
 11df: 48 8b 05 2a 0e 00 00 mov 0xe2a(%rip),%rax # 2010 <_IO_stdin_used+0x10>
 11e6: 66 48 0f 6e c0 movq %rax,%xmm0
 11eb: e8 b0 fe ff ff callq 10a0 <sqrt@plt>
 11f0: f2 0f 2c c0 cvttsd2si %xmm0,%eax
 11f4: 89 45 e4 mov %eax,-0x1c(%rbp)
 11f7: 8b 45 ec mov -0x14(%rbp),%eax
 11fa: 0f af 45 cc imul -0x34(%rbp),%eax
 11fe: 41 89 c4 mov %eax,%r12d
 1201: b8 15 00 00 00 mov $0x15,%eax
 1206: 99 cltd
 1207: f7 7d e4 idivl -0x1c(%rbp)
 120a: 89 c2 mov %eax,%edx
 120c: 8b 45 ec mov -0x14(%rbp),%eax
 120f: 01 d0 add %edx,%eax
 1211: 48 63 d8 movslq %eax,%rbx
 1214: 48 8d 3d ed 0d 00 00 lea 0xded(%rip),%rdi # 2008 <_IO_stdin_used+0x8>
 121b: e8 20 fe ff ff callq 1040 <strlen@plt>
 1220: 8b 55 e8 mov -0x18(%rbp),%edx
 1223: 48 63 d2 movslq %edx,%rdx
 1226: 48 0f af c2 imul %rdx,%rax
 122a: 48 01 d8 add %rbx,%rax
 122d: 48 83 e8 37 sub $0x37,%rax
 1231: 48 c1 e8 02 shr $0x2,%rax
 1235: 44 01 e0 add %r12d,%eax
 1238: 48 83 c4 30 add $0x30,%rsp
 123c: 5b pop %rbx
 123d: 41 5c pop %r12
 123f: 5d pop %rbp
 1240: c3 retq

39

Constant Folding: After (-O2)
00000000000011b0 <fold>:
 11b0: 69 c7 07 01 00 00 imul $0x107,%edi,%eax
 11b6: 05 a5 06 00 00 add $0x6a5,%eax
 11bb: c3 retq

What is the consequence of this for you as a programmer? What should you do

differently or the same knowing that compilers can do this for you?

40

GCC Optimizations

• Constant Folding

• Common Sub-expression Elimination

• Dead Code

• Strength Reduction

• Code Motion

• Tail Recursion

• Loop Unrolling

41

Common Sub-Expression Elimination

Common Sub-Expression Elimination prevents the recalculation of the same
thing many times by doing it once and saving the result.

int a = (param2 + 0x107);

int b = param1 * (param2 + 0x107) + a;

return a * (param2 + 0x107) + b * (param2 + 0x107);

42

Common Sub-Expression Elimination

Common Sub-Expression Elimination prevents the recalculation of the same
thing many times by doing it once and saving the result.

int a = (param2 + 0x107);

int b = param1 * (param2 + 0x107) + a;

return a * (param2 + 0x107) + b * (param2 + 0x107);

// = 2 * a * a + param1 * a * a

00000000000011b0 <subexp>: // param1 in %edi, param2 in %esi

 11b0: lea 0x107(%rsi),%eax // %eax stores a

 11b6: imul %eax,%edi // param1 * a

 11b9: lea (%rdi,%rax,2),%esi // 2 * a + param1 * a

 11bc: imul %esi,%eax // a * (2 * a + param1 * a)

 11bf: retq

43

Common Sub-Expression Elimination

Why should we bother saving repeated calculations in variables if the compiler
has common subexpression elimination?

• The compiler may not always be able to optimize every instance. Plus, it can
help reduce redundancy!

• Makes code more readable!

44

GCC Optimizations

• Constant Folding

• Common Sub-expression Elimination

• Dead Code

• Strength Reduction

• Code Motion

• Tail Recursion

• Loop Unrolling

45

Dead Code

Dead code elimination removes code that doesn’t serve a purpose:

if (param1 < param2 && param1 > param2) {
 printf("This test can never be true!\n");
}

// Empty for loop
for (int i = 0; i < 1000; i++);

// If/else that does the same operation in both cases
if (param1 == param2) {
 param1++;
} else {
 param1++;
}

// If/else that more trickily does the same operation in both cases
if (param1 == 0) {
 return 0;
} else {
 return param1;
}

46

Dead Code: Before (-O0)
00000000000011a9 <dead_code>:
 11a9: 55 push %rbp
 11aa: 48 89 e5 mov %rsp,%rbp
 11ad: 48 83 ec 20 sub $0x20,%rsp
 11b1: 89 7d ec mov %edi,-0x14(%rbp)
 11b4: 89 75 e8 mov %esi,-0x18(%rbp)
 11b7: 8b 45 ec mov -0x14(%rbp),%eax
 11ba: 3b 45 e8 cmp -0x18(%rbp),%eax
 11bd: 7d 19 jge 11d8 <dead_code+0x2f>
 11bf: 8b 45 ec mov -0x14(%rbp),%eax
 11c2: 3b 45 e8 cmp -0x18(%rbp),%eax
 11c5: 7e 11 jle 11d8 <dead_code+0x2f>
 11c7: 48 8d 3d 36 0e 00 00 lea 0xe36(%rip),%rdi # 2004 <_IO_stdin_used+0x4>
 11ce: b8 00 00 00 00 mov $0x0,%eax
 11d3: e8 68 fe ff ff callq 1040 <printf@plt>
 11d8: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
 11df: eb 04 jmp 11e5 <dead_code+0x3c>
 11e1: 83 45 fc 01 addl $0x1,-0x4(%rbp)
 11e5: 81 7d fc e7 03 00 00 cmpl $0x3e7,-0x4(%rbp)
 11ec: 7e f3 jle 11e1 <dead_code+0x38>
 11ee: 8b 45 ec mov -0x14(%rbp),%eax
 11f1: 3b 45 e8 cmp -0x18(%rbp),%eax
 11f4: 75 06 jne 11fc <dead_code+0x53>
 11f6: 83 45 ec 01 addl $0x1,-0x14(%rbp)
 11fa: eb 04 jmp 1200 <dead_code+0x57>
 11fc: 83 45 ec 01 addl $0x1,-0x14(%rbp)
 1200: 83 7d ec 00 cmpl $0x0,-0x14(%rbp)
 1204: 75 07 jne 120d <dead_code+0x64>
 1206: b8 00 00 00 00 mov $0x0,%eax
 120b: eb 03 jmp 1210 <dead_code+0x67>
 120d: 8b 45 ec mov -0x14(%rbp),%eax
 1210: c9 leaveq
 1211: c3 retq

47

Dead Code: After (-O2)

00000000000011b0 <dead_code>:
 11b0: 8d 47 01 lea 0x1(%rdi),%eax
 11b3: c3 retq

48

GCC Optimizations

• Constant Folding

• Common Sub-expression Elimination

• Dead Code

• Strength Reduction

• Code Motion

• Tail Recursion

• Loop Unrolling

49

Strength Reduction

Strength reduction changes divide to multiply, multiply to add/shift, and mod to
AND to avoid using instructions that cost many cycles (multiply and divide).

int a = param2 * 32;

int b = a * 7;

int c = b / 2;

int d = param2 % 2;

for (int i = 0; i <= param2; i++) {

 c += param1[i] + 0x107 * i;

}

return c + d;

50

Shifting into Shifts

• int a = param2 * 32;
Becomes:

• int a = param2 * 32;

• int b = a * 7;
Becomes:

• int b = a + (a << 2) + (a << 1);

• int c = b / 2;
Becomes

• int c = b >> 1

51

GCC Optimizations

• Constant Folding

• Common Sub-expression Elimination

• Dead Code

• Strength Reduction

• Code Motion

• Tail Recursion

• Loop Unrolling

52

Code Motion

Code motion moves code outside of a loop if possible.

for (int i = 0; i < n; i++) {

sum += arr[i] + foo * (bar + 3);

}

Common subexpression elimination deals with expressions that appear multiple
times in the code. Here, the expression appears once, but is calculated each
loop iteration, even though none of its values change during the loop.

53

Code Motion

Code motion moves code outside of a loop if possible.

int temp = foo * (bar + 3);
for (int i = 0; i < n; i++) {

sum += arr[i] + temp;

}

Moving it out of the loop allows the computation to happen only once.

54

Practice: GCC Optimization

int char_sum(char *s) {
 int sum = 0;
 for (size_t i = 0; i < strlen(s); i++) {
 sum += s[i];
 }
 return sum;
}

What is the bottleneck? What (if anything) can GCC do?

55

Practice: GCC Optimization

int char_sum(char *s) {
 int sum = 0;
 for (size_t i = 0; i < strlen(s); i++) {
 sum += s[i];
 }
 return sum;
}

What is the bottleneck? What (if anything) can GCC do?

strlen is called every loop iteration – code motion can pull it out of the loop

56

Tail Recursion

Tail recursion is an example of where GCC can identify recursive patterns that
can be more efficiently implemented iteratively.

long factorial(int n) {

if (n <= 1) {

return 1;

}

else return n * factorial(n - 1);

}

57

Tail recursion example: Lab6 bonus

Recall the factorial problem from assembly lectures:

unsigned int factorial(unsigned int n) {
 if (n <= 1) {
 return 1;
 }
 return n * factorial(n - 1);

}

What happens with factorial(-1)?
• Infinite recursion → Literal

stack overflow!
• Compiled with -0g!

58

Factorial: -Og

401146 <+0>: cmp $0x1,%edi
401149 <+3>: jbe 0x40115b <factorial+21>
40114b <+5>: push %rbx
40114c <+6>: mov %edi,%ebx
40114e <+8>: lea -0x1(%rdi),%edi
401151 <+11>: callq 0x401146 <factorial>
401156 <+16>: imul %ebx,%eax
401159 <+19>: pop %rbx
40115a <+20>: retq
40115b <+21>: mov $0x1,%eax
401160 <+26>: retq 4011e0 <+0>: mov $0x1,%eax

4011e5 <+5>: cmp $0x1,%edi
4011e8 <+8>: jbe 0x4011fd <factorial+29>
4011ea <+10>: nopw 0x0(%rax,%rax,1)
4011f0 <+16>: mov %edi,%edx
4011f2 <+18>: sub $0x1,%edi
4011f5 <+21>: imul %edx,%eax
4011f8 <+24>: cmp $0x1,%edi
4011fb <+27>: jne 0x4011f0 <factorial+16>
4011fd <+29>: retq

-02:
• What happened?
• Did the compiler “fix” the

infinite recursion?

vs –O2

59

Breaking Down the –O2

4011e0 <+0>: mov $0x1,%eax # Initialize %eax with 1.
4011e5 <+5>: cmp $0x1,%edi # Compare input value (%edi) with 1.
4011e8 <+8>: jbe 0x4011fd <factorial+29> # If input <= 1 (unsigned check), jump to return.
4011ea <+10>: nopw 0x0(%rax,%rax,1) # No operation (probably for alignment).
4011f0 <+16>: mov %edi,%edx # Copy current value of %edi to %edx.
4011f2 <+18>: sub $0x1,%edi # Decrement %edi.
4011f5 <+21>: imul %edx,%eax # Multiply %eax by %edx and store result in %eax.
4011f8 <+24>: cmp $0x1,%edi # Compare decremented value of %edi with 1.
4011fb <+27>: jne 0x4011f0 <factorial+16> # If %edi is not 1, repeat the multiplication.
4011fd <+29>: retq # Return with the result in %eax.

-02:
• Recursive -> Iterative
• No Stack Overflow, Saves Memory and Operations

60

GCC Optimizations

• Constant Folding

• Common Sub-expression Elimination

• Dead Code

• Strength Reduction

• Code Motion

• Tail Recursion

• Loop Unrolling

61

Loop Unrolling

Loop Unrolling: Do n loop iterations’ worth of work per actual loop iteration, so
we save ourselves from doing the loop overhead (test and jump) every time, and
instead incur overhead only every n-th time.

for (int i = 0; i <= n - 4; i += 4) {

 sum += arr[i];

 sum += arr[i + 1];

 sum += arr[i + 2];

 sum += arr[i + 3];

} // after the loop handle any leftovers

Some Extra Reading

72

Into the Architecture!

73

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)scanf / printf

Program Specific Interactions

74

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

GCC

Where GCC Gets Its Name

75

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Start

How far GCC can reach

Run a.out

76

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

GNU Assembler (Inside GCC)

AS/GAS

77

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

OS Manages Program -> Hardware

RUN

78

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Processing the Machine Code

RUN

79

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

VLSI

Very-Large-Scale Integration

80

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

RTL

RTL (Register-Transfer Level)

81

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Many
Steps

Floorplanning

82

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Many
Steps

Wire Routing
– Don’t Cross the Wires

83

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Many
Steps

Clock Tree Synthesis – Got to
Time it Just Right

84

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Many
Steps

Heat & Capacitance

85

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

ASML

Checkout EUV Lithography

86

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Which layer throws
a segfault?

87

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

HAL IS
WATCHING

Program Memory Managed
By The OS

88

More on the Compiler

89

How Does GCC Work?

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227

• One Unix Command – A lot of steps!

gcc hello.c -o hello

90

How Does GCC Work?

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227

• Preprocessing – Handle Programmer Conveniences
• #Macros convert to normal C code

• Lines split by \ are joined

• Comments are removed
• NOTE: Some comments are added, but our comments are removed

• Bring in functions and variables from the headers
• This is how the #include is resolved

gcc -E hello.c > pre_processed_hello

91

How Does GCC Work?

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227

• Compilation – C to Assembly

gcc -S hello.c

• Will generate intermediate ‘human-readable’ assembly

• There are different styles/syntax for x86, we use AT&T
• AT&T is also the gcc default

92

How Does GCC Work?

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227

• Object Generation – C to Object File

gcc -c hello.c

• “Just compile; Don't link"

• This outputs a non-human readable Object File
• It is defined as a type of incomplete machine code

• With extra metadata to power linking

• Using objdump –d hello.o , we can see the assembly

93

How Does GCC Work?

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227

• Linking – Bringing All the pieces together
• Object Files & Libraries -> Fully Executable Machine Code

gcc hello.o -o hello

ld -o hello hello.o -lc -dynamic-linker /lib64/ld-linux-x86-64.so.2
/usr/lib/x86_64-linux-gnu/crt1.o /usr/lib/x86_64-linux-gnu/crti.o
/usr/lib/x86_64-linux-gnu/crtn.o

• NOTE: We can get our .o in more than one-way

gcc -c hello.c

OR

as hello.s

94

What does the Assembler Do?

95

A Two Step Process

• Pass 1: Setup Memory Addresses
• The program reads in the assembly program identifying and tracking:

• Labels

• Literals

• Data Variables

• Pass 2: Generate the Machine Code (Byte/Binary Code)
• Identify Opcode from the mnemonic assembly

• Resolve labels/literals/variables using the tables from Step 1

• Convert Data to Binary

• Identifies External (Out of Program) References and places markers for the Linker

• Setup Metadata for linking if this program has loadable parts

Final Output is not runnable, but has all the parts need if linking can complete

96

Why do we need a linker?

97

Many Links

• Every C file corresponds to a .o

• Libraries can also be made into linkable formats

• We don’t want to have to write all our code in 1 file and we want to use the STL

• The linker makes this all possible

98

How Does GCC Work?

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227

• Multi-Step Process -> Multiple Failure Points

• Compilation can fail for many reasons at different points

• Mainly two areas that fail ‘Compilation’ or Linking

• If compilation succeeds, Intermediate Assembly will be good!

99

Peeking at Memory

100

Speed vs Space

• CPU is the most important place
• Closer to CPU, less travel time

• But limited space, so bottleneck getting there

• Think of the CPU like downtown, generally
expensive and highly desirable real estate

• The BUS (actual technical name) is our transit
system around the computer

• Places close to the CPU are more limited and more
valuable, since they can get to the CPU faster

101

Speed vs Space

• All of Memory (Temporary Storage on the right)
and the registers is rent only, so data is constantly
moving around

• Many algorithms developed to decide which data
gets to live where and for how long

• Proper access makes a huge difference on
performance

102

Speed vs Space

• Approximate Access Times
Resource Latency Time

Register 0 Cycles (already here)

Level 1 Cache ~0.5 ns

Level 2 Cache ~7 ns (14x L1)

RAM ~100 ns (20x L2, 200x L1)

SSD ~100-150 us (~14Kx L2, 200Kx L1)

Hard (Spinning) Disk ~10 ms (~2.8Mx L2, 40Mx L1)

Network Packet CA -> Netherlands ->
CA

~150 ms (~21Mx L2, 300Mx L1)

Average Human Response Time to
Visual Stimulus

~200 ms (~28Mx L2, 400Mx L1)

For more on speed checkout:
https://www.cs.princeton.edu/courses/archive/spring20/cos217/lectures/20_Mem_Storage_Hierarchy.pdf

https://gist.github.com/jboner/2841832

https://www.cs.princeton.edu/courses/archive/spring20/cos217/lectures/20_Mem_Storage_Hierarchy.pdf
https://gist.github.com/jboner/2841832

103

Speed vs Space

• Pre-emptive requests and moving of data is critical

• Orders of Magnitude Improvements from high
locality

• Every part of the pyramid is working on making
this faster

• Better BUS, faster storage(both temporary and
permanent), bigger RAM, better algorithms

104

What is Locality?

• Temporal Locality
• Has the data been used recently? Then we expect to be used again soon

• Spatial Locality
• The data appears close together in the program/memory, so it will likely be needed at

the same time.

• Hardware and OS designers consider algorithms to predict and leverage
locality to optimize management of memory resources

• Cache in particular is a limited resource and must be used effectively to
leverage benefits

105

Who Gets to Manage the Memory?

• Registers – Managed by the Compiler/Assembler

• Cache – Managed by Hardware Designers

• Memory – Mainly the OS, influenced by hardware

• Disk – Managed by the user and occasionally OS

106

Architecture & The ISA

107

Programming Levels

Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon

Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Processor

These levels are integrally linked

108

A ‘Simple’ Example

• MIC-1 Architecture (Tanenbaum -
Structured Computer Organization 6th
Edition)

• IJVM ISA – Subset of the Java Virtual
Machine

• A ‘Vanilla’ processor design

109

A ‘Simple’ Example

• Control Store is the most important part!

• Our ISA is defined by that unit

• 9 wires in -> 2**9 possible combinations,
2**9 (512) possible commands

• Each command drives 36 wires to control
the chip

• Assembly/Machine Language is defined by
the hardware

110

A ‘Simple’ Example

• ALU – Arithmetic & Logic Unit
• Performs Math & Logic Operations

• MAR – H are the registers

• B + Decoder – Enables Register to load onto B Bus

• Z and N act similar to our condition codes, but in a
much more limited/simple way

• C controls the C Bus, informing the destination
register to receive its value

111

A ‘Simple’ Example

• Notice how the ALU is only able to take in
the left operand from the H register

• All two operand ALU operations, would
need to first load the left operand to H

• This would be an example of a hardware
based constraint

112

Better Design Better Performance

• The MIC-2 Fixes this issue by adding
another BUS improving the Datapath

• Design directly impacts the ISA that we can
make available

	Slide 1: CS107, Lecture 14 Privacy and Trust, Optimization, & Basic Architecture
	Slide 2: Privacy and Trust
	Slide 3: Data Breaches
	Slide 4: Privacy
	Slide 5: Privacy
	Slide 6: Privacy
	Slide 7: Privacy
	Slide 8: Individualist Models of Privacy
	Slide 9: Privacy
	Slide 10: Privacy
	Slide 11: Models of Privacy
	Slide 12: Who Should We Trust?
	Slide 13: Penetration Testing & Trust
	Slide 14: Loss of Privacy
	Slide 15: Mitigation: Differential Privacy
	Slide 16: Trust Models
	Slide 17: Differential Privacy’s Trust Model
	Slide 21
	Slide 22: Optimization
	Slide 24: GCC For Loop Output
	Slide 25: GCC For Loop Output
	Slide 26: GCC For Loop Output
	Slide 27: GCC For Loop Output
	Slide 28: GCC For Loop Output
	Slide 29: GCC For Loop Output
	Slide 30: GCC For Loop Output
	Slide 31: Optimizing Instruction Counts
	Slide 32: Optimizations
	Slide 33: GCC Optimization
	Slide 34: Compiler optimizations
	Slide 35: GCC Optimizations
	Slide 36: Constant Folding
	Slide 37: Constant Folding
	Slide 38: Constant Folding: Before (-O0)
	Slide 39: Constant Folding: After (-O2)
	Slide 40: GCC Optimizations
	Slide 41: Common Sub-Expression Elimination
	Slide 42: Common Sub-Expression Elimination
	Slide 43: Common Sub-Expression Elimination
	Slide 44: GCC Optimizations
	Slide 45: Dead Code
	Slide 46: Dead Code: Before (-O0)
	Slide 47: Dead Code: After (-O2)
	Slide 48: GCC Optimizations
	Slide 49: Strength Reduction
	Slide 50: Shifting into Shifts
	Slide 51: GCC Optimizations
	Slide 52: Code Motion
	Slide 53: Code Motion
	Slide 54: Practice: GCC Optimization
	Slide 55: Practice: GCC Optimization
	Slide 56: Tail Recursion
	Slide 57: Tail recursion example: Lab6 bonus
	Slide 58: Factorial: -Og
	Slide 59: Breaking Down the –O2
	Slide 60: GCC Optimizations
	Slide 61: Loop Unrolling
	Slide 62
	Slide 72
	Slide 73: Programming Levels
	Slide 74: Programming Levels
	Slide 75: Programming Levels
	Slide 76: Programming Levels
	Slide 77: Programming Levels
	Slide 78: Programming Levels
	Slide 79: Programming Levels
	Slide 80: Programming Levels
	Slide 81: Programming Levels
	Slide 82: Programming Levels
	Slide 83: Programming Levels
	Slide 84: Programming Levels
	Slide 85: Programming Levels
	Slide 86: Programming Levels
	Slide 87: Programming Levels
	Slide 88
	Slide 89: How Does GCC Work?
	Slide 90: How Does GCC Work?
	Slide 91: How Does GCC Work?
	Slide 92: How Does GCC Work?
	Slide 93: How Does GCC Work?
	Slide 94
	Slide 95: A Two Step Process
	Slide 96
	Slide 97: Many Links
	Slide 98: How Does GCC Work?
	Slide 99
	Slide 100: Speed vs Space
	Slide 101: Speed vs Space
	Slide 102: Speed vs Space
	Slide 103: Speed vs Space
	Slide 104: What is Locality?
	Slide 105: Who Gets to Manage the Memory?
	Slide 106
	Slide 107: Programming Levels
	Slide 108: A ‘Simple’ Example
	Slide 109: A ‘Simple’ Example
	Slide 110: A ‘Simple’ Example
	Slide 111: A ‘Simple’ Example
	Slide 112: Better Design Better Performance

