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Privacy and Trust

* Our learning about assembly and program execution helps us better
understand computer security (the protection of data, devices, and networks
from disruption, harm, theft, unauthorized access or modification).

 Computer security is important in part because it enables privacy.

* In understanding computer security, it’s essential to understand the context in
which it comes up (privacy and trust).



Data Breaches

Privacy/trust example: data breaches
 California list of data security breaches: link
* How does a data breach make a customer feel?


https://oag.ca.gov/privacy/databreach/list

What is privacy? 4 possible framings in two categories:

Individualist: the value of privacy as an individual right

* Privacy as control of information — controlling how our private information is
shared with others.

* Privacy as autonomy — capacity to choose/decide for ourselves what is
valuable.

Social: the value of privacy for a group
* Privacy as social good — social life would be unlivable without privacy.
* Privacy (protection) as based in trust — privacy enables trusting relationships
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Privacy as control of information — controlling how our
information is communicated to others.

* Consent requires free choice with available alternatives and informed
understanding of what is being offered.

* How many of you just skip past the terms of service for new online services
you sign up for?
* Do you feel in control of your information with the services you choose to use?

Why or why not? If you’re working on a service, how can you respect privacy
while achieving product goals?

* Control over personal data being collected (e.g. data exports from services you
use, privacy dashboards, device privacy protections)



Art.1 GDPR
Subject-matter and objectives

1. This Regulation lays down rules relating to the protection of natural persons with regard to
the processing of personal data and rules relating to the free movement of personal data.

2. This Regulation protects fundamental rights and freedoms of natural persons and in
particular their right to the protection of personal data.

3. The free movement of personal data within the Union shall be neither restricted nor
prohibited for reasons connected with the protection of natural persons with regard to the
processing of personal data.

Media & Entertainment

Instagram launches “Data
Download” tool to let you
leave

Josh Constine / 9:44 AM PDT « April 24, 2018 ] comment

[©] Image Credits: Bryce Durbin/TechCrunch /

TECH / APPLE / GOOGLE

Apple now lets you automatically transfer

your iCloud Photo Library to Google Photos
/ Not everything can come along for the ride,
though

By Mitchell Clark
Mar 3, 2021 at 1:10 PM PST

Google Report content on Google

Personal Data Removal Request Form

For privacy and data protection reasons (such as pursuant to the EU General Data Protection Regulation) you
may have the right to ask for certain personal data relating to you to be removed.

This form is for requesting the removal of specific results for queries that include your name from Google
Search. Google LLC is the controller responsible for the processing of personal data carried out in the
context of determining the results shown by Google Search, as well as handling delisting requests sent
through this form.


https://gdpr-info.eu/art-1-gdpr/
https://techcrunch.com/2018/04/24/instagram-export/
https://reportcontent.google.com/forms/rtbf
https://www.theverge.com/2021/3/3/22311990/apple-icloud-photo-google-transfer-how-to

Privacy as autonomy — capacity to choose/decide for
ourselves what is valuable.

* Links to autonomy over our own lives and our ability to lead them as we
choose.

* Do you feel that your autonomy is always respected when using products and
services? Why or why not?

“[P]rivacy is valuable because it acknowledges our respect for persons as
autonomous beings with the capacity to love, care and like—in other words,
persons with the potential to freely develop close relationships” (Innes 1992)
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Individualist Models of Privacy

Privacy as autonomy and privacy as control over information
focus the value of privacy at an individual level.

* Individual privacy can conflict with interests of society or the state.

* Many debates over "privacy vs. security” —whether one should be sacrificed
for the other

* Apple v. FBI case re: unlocking iPhones (link)
* Debates around encryption (link)

* Where do your beliefs fall in balancing privacy and security? When (if at all) is
it ok to sacrifice one, and how much?


https://www.cnbc.com/2016/03/29/apple-vs-fbi-all-you-need-to-know.html
https://www.nytimes.com/2019/11/19/technology/end-to-end-encryption.html

Privacy as social good — social life would be unlivable without
privacy.

* Privacy has a social value in bringing about the kind of society we want to live
In.

* What would society look like without privacy?



Privacy (protection) as based in trust — privacy enables
trusting relationships

* Privacy may help enable trusting relationships essential for cooperation.

* For instance, a fiduciary: someone who stands in a legal or ethical relationship of trust
with another person (or group). The fiduciary must act for the benefit of and in the best
interest of the other person. E.g. tax filer with access to your bank account

» Should anyone who has access to personal info have a fiduciary responsibility? (Richards & Hartzog
2020).

* This model of privacy stresses the essential relationship of trust placed in any
holder of personal data and the responsibilities that result from this trust.
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Models of Privacy

Individualist
Models

Social Models
of Privacy

Privacy as
Control over
Information

Privacy as a
Social Gooo

Privacy as
Respect for
Autonomy

Privacy as based on
Trust
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Who Should We Trust?

Both security and privacy rely on trusted people (who administer security,
perform penetration tests, submit vulnerabilities to databases, or keep private
information secret). The final piece of the security puzzle is understanding trust.

Trust = Reliance + Risk of Betrayal

What makes trust unique to relationships between people is that trust exposes
one to being betrayed or being let down (Baier 1986).
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Penetration Testing & Trust

Penetration testing is the practice of encouraging or hiring security researchers
/ contractors to find vulnerabilities in one’s own code or system.

* Position of trust — tester is given access to the system and encouraged to find
exploitable vulnerabilities, expected to share what they have found with you.

* Means relying on their skill at finding vulnerabilities and trusting that their

ethical compass will lead them to tell you and to act as a trustworthy fiduciary
(guardian of your interests).

In Assignment 5, you have the opportunity to explore this further!
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Loss of Privacy

Loss of privacy can cause us various harms, including:

* Aggregation: combining personal information from various sources to build a
profile of someone

» Exclusion: not knowing how our information is being used, or being unable to
access or modify it (Google removing personal info from search — link)

* Secondary Use: using your information for purposes other than what was
intended without permission.
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https://mashable.com/article/how-to-remove-personal-info-from-google-search-results

Mitigation: Differential Privacy

Differential privacy is a formal measure of privacy for datasets to try and
protect individuals from aggregation by making them harder to identify (Dwork
2008).

* Imagine a large database, e.g., a medical database, with personal information
and records of past activity tied to a name.

* The records might be useful for research purposes, or to train a machine
learning model to predict future health outcomes, but what if giving access to
the records exposed the privacy of individual person’s health records?

e Differential privacy adds inconsequential noise (e.g., changing a birthday from
2001 to 2002) or removes records to make individuals harder to identify while

preserving the utility of the dataset overall.
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Trust Models

In every evaluation of privacy, we can ask: who is trusted? Who is distrusted?
Does this model concentrate trust (and therefore power) in a single individual or
small group, or does it distribute trust?
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Differential Privacy’s Trust Model

Differential privacy assumes that the only threat to privacy is an external user
querying the database who must be prevented from aggregating data that could
identify a user.

* In other words, the trust model of differential privacy is that the database
owners and maintainers are to be fully trusted, and no one else.

e But is that the only threat? Differential privacy does not protect against
improper use by people with full access to data or against leaks of the whole
database, which may be the primary data exposure risks.

Differential privacy also does not question the assumption that amassing &
storing large amounts of personal data is worth the risk of inevitable leaks
(Rogaway 2015).

17



GCC Optimizations



Optimization

Most of what you need to do with optimization can be summarized by:

1) If doing something seldom and only on small inputs, do whatever is simplest
to code, understand, and debug

2) If doing things a lot, or on big inputs, make the primary algorithm’s Big-O cost
reasonable

3) Let gcc do its magic from there
4) Optimize explicitly as a last resort
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GCC For Loop Output

GCC Common For Loop Output Possible Alternative
Initialization Initialization
Test Jump to test
Jump past loop if success Body

Body Update

Update Test

Jump to test Jump to body if success
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GCC For Loop Output

for (inti=0;i<n;it++) // n=100

GCC Common For Loop Output

Initialization

Test

Jump past loop if success
Body

Update

Jump to test
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GCC For Loop Output

GCC Common For Loop Output

Initialization

Test

Jump past loop if success
Body

Update

Jump to test

for (inti=0;i<n;i++)

Initialization
Test

No jump

Body

Update

Jump to test
Test

No jump

Body

Update

Jump to test

// n=100
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GCC For Loop Output

GCC Common For Loop Output

Initialization

Test

Jump past loop if success
Body

Update

Jump to test

for (inti=0;i<n;i++)

Initialization
Test

No jump

Body

Update

Jump to test
Test

No jump

Body

Update

Jump to test

// n=100
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GCC For Loop Output

for (inti=0;i<n;i++) // n=100

Initialization
Jump to test
Test

Jump to body
Body

Update

Test

Jump to body
Body

Update

Test

Jump to body

Possible Alternative

Initialization

Jump to test

Body

Update

Test

Jump to body if success
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GCC For Loop Output

for (inti=0;i<n;i++) // n =100
Possible Alternative
Initialization
Jump to test
Body
Body Update
Update Test
Test Jump to body if success

Jump to body

29



GCC For Loop Output

GCC Common For Loop Output Possible Alternative
Initialization Initialization

Test Jump to test

Jump past loop if passes Body

Body Update

Update Test

Jump to test Jump to body if success

Which instructions are better when n =0? n = 10007

for (inti=0;i<n;i++)
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Optimizing

Instruction Counts

* Both versions have the same static instruction count (# of written instructions).

e But they have different dynamic instruction counts (# of executed instructions

when program is run).

* If n=0, left (GCC common output) is best b/c fewer instructions
* If nis large, right (alternative) is best b/c fewer instructions

* The compiler may emit a static instruction count that is several times longer
than an alternative, but it may be more efficient if loop executes many times.

* Does the compiler know that a

* So what if our code had loops t
How do we know when gcc ma

oop will execute many times? (in general, no)

hat always execute a small number of times?

kes a bad decision?

* (take EE108, EE180, CS316 for more!)

31



Optimizations

e Conditional Moves can sometimes eliminate “branches” (jumps), which are
particularly inefficient on modern computer hardware.

* Processors try to predict the future execution of instructions for maximum
performance. This is difficult to do with jumps.
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GCC Optimization

* Today, we’ll be comparing two levels of optimization in the gcc compiler:
e gcc -00 // mostly just literal translation of C
e gcc -02 // enable nearly all reasonable optimizations
* (we also use —0g, like =00 but more debugging friendly)

* There are other custom and more aggressive levels of optimization, e.g.:
« -03 //more aggressive than 02, trade size for speed
e -Os //optimize for size
e -Ofast //disregard standards compliance (!!)

 Exhaustive list of gcc optimization-related flags:
* https://gcc.gnu.org/onlinedocs/gec/Optimize-Options.html

33


https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Compiler optimizations

How many GCC optimization levels are there? Gce supports numbers up to

Asked 11 years, 3 months ago Active 5 months ago Viewed 62k times 3. Anyth|ng above is

interpreted as 3
How many GCC optimization levels are there?

109 |tried gcc -O1, gce -02, gec -03, and gec -O4
If | use a really large number, it won't work.

However, | have tried

gcc ~0100 https://stackoverflow.co
m/questions/1778538/ho
and it compiled. W-many-gcc-optimization-

How many optimization levels are there? levels-are-there

34


https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there
https://stackoverflow.com/questions/1778538/how-many-gcc-optimization-levels-are-there

GCC Optimizations

e Constant Folding

e Common Sub-expression Elimination
* Dead Code

e Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling
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Constant Folding

Constant Folding pre-calculates constants at compile-time where possible.

int seconds = 60 * 60 * 24 * n_days;
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Constant Folding

int fold(int param) {
char arr[5];

int a = 0x107;
int b = a * sizeof(arr);
int ¢ = sqrt(2.0);

return a * param + (a + 0x15 / ¢ + strlen("Hello") * b - 0x37) / 4;
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Constant Folding: Before (-00)

00000000000011b9 <fold>:

11b9: 55 push  %rbp

1lba: 48 89 e5 mov %rsp,%rbp

11bd: 41 54 push  %ri2

11bf: 53 push  %rbx

11co: 48 83 ec 30 sub $0x30,%rsp

11c4: 89 7d cc mov %edi, -0x34(%rbp)
11c7: c7 45 ec 07 01 00 00 movl  $0x107,-0x14(%rbp)
llce: 8b 45 ec mov -0x14(%rbp), %eax
11d1: 48 98 cltq

11d3: 89 c2 mov %eax,kedx

11d5: 89 do mov %edx,%eax

11d7: cl e0 02 shl $0x2, %eax

1lda: 01 do add %edx,%eax

1ldc: 89 45 e8 mov %eax, -0x18(%rbp)
11df: 48 8b 05 2a ©e 00 00 mov oxe2a(%rip) ,%rax # 2010 <_IO_stdin_used+0x10>
1le6: 66 48 Of 6e cO movq %rax, %xmmeo

1lleb: e8 bo fe ff ff callg 10a@ <sqrt@plt>
11fo: f2 of 2c co cvttsd2si %xmmo,%eax
11f4: 89 45 e4 mov %eax, -0x1lc(%rbp)
11f7: 8b 45 ec mov —0x14§%rbp;,%eax
11fa: of af 45 cc imul -0x34(%rbp), %eax
11fe: 41 89 c4 mov %»eax, %rl2d

1201: b8 15 00 00 00 mov $0x15 ,%eax

1206: 99 cltd

1207: f7 7d e4 idivl -@x1c(%rbp)
120a: 89 c2 mov %eax,%edx

120c: 8b 45 ec mov -0x14(%rbp), %eax
120f: 01 do add %edx,%eax

1211: 48 63 d8 movslq %eax,%rbx

1214: 48 8d 3d ed od 00 00 lea oxded (%rip) ,%rdi # 2008 <_I0_stdin_used+0x8>
121b: e8 20 fe ff ff callg 1040 <strlen@plt>
1220: 8b 55 e8 mov -0x18(%rbp), %edx
1223: 48 63 d2 movslq %edx,%rdx

1226: 48 of af c2 imul %rdx,%rax

122a: 48 01 d8 add %rbx,%rax

122d: 48 83 e8 37 sub $0x37,%rax

1231: 48 cl1 e8 02 shr $0x2, %rax

1235: 44 01 eo0 add %r12d,%eax

1238: 48 83 c4 30 add $0x30,%rsp

123c: 5b pop %rbx

123d: 41 5c pop %r12

123f: 5d pop %rbp

1240: c3 retq 38



Constant Folding: After (-02)

00000000000011b0 <fold>:

11bo: 69 c7 07 01 00 00 imul  $0x107,%edi,%eax
11b6: 05 a5 06 00 00 add $0x6a5, %eax
11bb: c3 retq

What is the consequence of this for you as a programmer? What should you do

differently or the same knowing that compilers can do this for you?
39



GCC Optimizations

e Constant Folding

* Common Sub-expression Elimination
* Dead Code

e Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling
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Common Sub-Expression Elimination

Common Sub-Expression Elimination prevents the recalculation of the same
thing many times by doing it once and saving the result.

int a = (param2 + 0x107);
int b = paraml * (param2 + 0x107) + a;
return a * (param2 + 0x107) + b * (param2 + 0x107);
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Common Sub-Expression Elimination

Common Sub-Expression Elimination prevents the recalculation of the same
thing many times by doing it once and saving the result.

int a = (param2 + 0x107);

int b = paraml * (param2 + 0x107) + a;

return a * (param2 + 0x107) + b * (param2 + 0x107);
// = 2*a*a+paraml *a*a

00000PPPOR11bO <subexp>: // paraml in %edi, param2 in %esi

11b0: lea 0x107 (%rsi) ,%eax // %eax stores a

11b6: 1imul  %eax,%edi // paraml * a

11b9: lea (%rdi,%rax,2),%esi // 2 * a + paraml * a

11bc: 1imul  %esi,%eax // a* (2 * a + paraml * a)

11bf: retg 42



Common Sub-Expression Elimination

Why should we bother saving repeated calculations in variables if the compiler
has common subexpression elimination?

* The compiler may not always be able to optimize every instance. Plus, it can
help reduce redundancy!

* Makes code more readable!
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GCC Optimizations

e Constant Folding

e Common Sub-expression Elimination
* Dead Code

e Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling
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Dead Code

Dead code elimination removes code that doesn’t serve a purpose:

if (paraml < param2 && paraml > param2) {
printf("This test can never be truel!\n");
¥

// Empty for loop
for (int i = 0; i < 1000; i++);

// If/else that does the same operation in both cases
if (paraml == param2) {
paraml++;

} else {
paraml++;
}

// If/else that more trickily does the same operation in both cases
if (paraml == 0) {
return 9;

} else {
return paraml;

} 45



Dead Code: Before (-00)

0@6@00@@@0%?11a9 <dead_ code>:

11a9

11laa:
1l1ad:
11b1:
11b4:
11b7:
11ba:
11bd:
11bf:
11c2:
11c5:
11c7:
llce:
11d3:
11d8:
11df:
1llel:
11e5:
llec:
llee:
11f1:
11f4:
11f6:
11fa:
11fc:
1200:
1204
1206:
1260b:
120d:
1210:
1211:

48
48
89
89
8b
3b
7d
8b
3b
7e
48
b8
e8
c7
eb
83
81
7e
8b
3b
75
83
eb
83
83
75
b8
eb
8b
c9
c3

89
83
7d
75
45
45
19
45
45
11
8d
00
68
45
04
45
7d
f3
45
45
06
45
04
45
7d
07
00
03
45

e5
ec
ec
e8
ec
e8

ec
e8

3d
Q0
fe
fc

fc
fc

ec
e8

ec

ec
ec

00

ec

20

36
20
£
le

01
e’/

01

01
00

00

00 00 00

03 00 00

00

push
mov
sub
mov
mov
mov
cmp
Jg8¢€
mov
cm
]lg
ea
moyv
callqg
movl
m
3dd1
cmpl
jle
mov
cmp
jne
addl
m
gdgl
cmpl
jne
mov
jmp
mov
leaveq
retq

%rbp

%rsp,%rbp

$0x20,%rsp

sedi, -0x14(%rbp
%esi,-0x18(%rbp
-0x14(%rbp) , %eax
-0x18(%rbp) , %eax

11d8 <dead_ code+0x2f>
-0x14(%rbp) , %eax
-0x18(%rbp) , %eax

11d8 <dead_ code+oOx2f>
Oxe36(%rip),%rdi
$0x0 , %eax

1040 <printf@plt>
$0x0, -0x4(%rbp)

1lle5 <dead code+0x3c>
$0x1, -0x4(%rbp
$0x3e7, -0x4(%r pg
1llel <dead_code+0x38>
-0x14(%rbp), %eax
-0x18(%rbp) , %eax

11fc <dead code+0x53>
$0x1, -0x14(%rbp)

1200 <dead code+0x57>
$0x1, -0x14(%rbp

$0x0, -0x14(%rbp

120d <dead code+0x64>
$0x0,%eax

1210 <dead code+0x67>
-0x14(%rbp), %eax

# 2004 < 10 stdin used+0x4>
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Dead Code: After (-02)

00000000V 11b0 <dead code>:
11b0: 8d 47 01 lea Ox1(%rdi),%eax
11b3: c3 retq
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GCC Optimizations

* Constant Folding

* Common Sub-expression Elimination
* Dead Code

e Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling
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Strength Reduction

Strength reduction changes divide to multiply, multiply to add/shift, and mod to
AND to avoid using instructions that cost many cycles (multiply and divide).

int a = param2 * 32;
int b = a * 7;

int ¢c = b / 2;

int d = param2 % 2;

for (int i = 0; i <= param2; i++) {
c += paraml[i] + Ox107 * i,

}

return c + d;
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eint a = param2 * 32;
Becomes:

eint a = param2 * 32;

eint b = a * 7;
Becomes:
eint b = a + (a << 2) + (a << 1);

eint c = b / 2;
Becomes

eint c = b > 1

50



GCC Optimizations

e Constant Folding

e Common Sub-expression Elimination
* Dead Code

e Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling
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Code Motion

Code motion moves code outside of a loop if possible.

for (int i = @; i < n; i++) {
sum += arr[i] + foo * (bar + 3);

}

Common subexpression elimination deals with expressions that appear multiple
times in the code. Here, the expression appears once, but is calculated each
loop iteration, even though none of its values change during the loop.
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Code Motion

Code motion moves code outside of a loop if possible.

inttemp=foo * (bar + 3);
for (int 1 = 0; 1 < n; i++) {
sum += arr[i] + temp;

¥

Moving it out of the loop allows the computation to happen only once.
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Practice: GCC Optimization

int char_sum(char *s) {
int sum = 0;
for (size t i = 0; i < strlen(s); i++) {
sum += s[i];
}

return sum;

¥

What is the bottleneck? What (if anything) can GCC do?
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Practice: GCC Optimization

int char_sum(char *s) {
int sum = 0;
for (size t i = 0; i < strlen(s); i++) {
sum += s[i];
}

return sum;

¥

What is the bottleneck? What (if anything) can GCC do?

strlen is called every loop iteration — code motion can pull it out of the loop

55



Tail Recursion

Tail recursion is an example of where GCC can identify recursive patterns that
can be more efficiently implemented iteratively.

long factorial(int n) {
if (n <=1) {
return 1;

¥

else return n * factorial(n - 1);

¥
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Talil recursion example: Lab6 bonus

Recall the factorial problem from assembly lectures:

unsigned int factorial(unsigned int n) {
it (n <= 1) {
return 1;

¥

return n * factorial(n - 1);

* |nfinite recursion = Literal
stack overflow!
* Compiled with -0g!

What happens with factorial(-1)>




401146
401149
40114b
40114c
40114e
401151
401156
401159
40115a
40115b
401160

<+0>:
<+3>:
<+5>:
<+6>:
<+8>:

<+11>:
<+16>:
<+19>:

<+20>
<+21>

cmp
jbe
push
mov
lea
callqg
imul
pop

:retq
: mov
<+26>:

retq

Factorial: -0g vs -02

$0x1,%edi

Ox40115b <factorial+21>

%rbx
%edi, %ebx
-ox1(%rdi) ,%edi

9x401146 <factorial>

%ebx, %eax
%rbx

$0x1, %eax

S

-02:

 What happened?

* Did the compiler “fix” the
infinite recursion?

4011e0
4011e5
4011e8
4011ea
401110
40112
40115
401118
4011fb
4011fd

<+0>:
<+5>:
<+8>:

<+10>:
<+16>:
<+18>:
<+21>:
<+24>:

<+27>

mov
cmp
jbe
nopw
mov
sub
imul
cmp

: jne
<+29>:

retq

$0x1, %eax

$0x1,%edi

0x4011fd <factorial+29>

Ox0 (%rax,%rax,1)

%edi , kedx

$0x1, %edi

%edx, %eax

$0x1,%edi

0x4011f0 <factorial+l6>
58




Breaking Down the —02

4011e0 <+0>: mov SOx1,%eax # Initialize %eax with 1.
4011e5 <+5>: cmp  SOx1,%edi # Compare input value (%edi) with 1.
4011e8 <+8>: jbe 0x4011fd <factorial+29> # If input <= 1 (unsigned check), jump to return.
4011ea <+10>: nopw 0x0(%rax,%rax,1) # No operation (probably for alignment).
4011f0 <+16>: mov  %edi,%edx # Copy current value of %edi to %edx.
4011f2 <+18>: sub SOx1,%edi # Decrement %edi.
401115 <+21>: imul %edx,%eax # Multiply %eax by %edx and store result in %eax.
4011f8 <+24>: cmp  SOx1,%edi # Compare decremented value of %edi with 1.
4011fb <+27>: jne  0x4011f0 <factorial+16> # If %edi is not 1, repeat the multiplication.
4011fd <+29>: retq # Return with the result in %eax.

-02:

* Recursive -> |terative
* No Stack Overflow, Saves Memory and Operations
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GCC Optimizations

e Constant Folding

e Common Sub-expression Elimination
* Dead Code

e Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling
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Loop Unrolling

Loop Unrolling: Do n loop iterations” worth of work per actual loop iteration, so
we save ourselves from doing the loop overhead (test and jump) every time, and
instead incur overhead only every n-th time.

for (int i =0; i <=n - 4; i +=4) {
sum += arr[i];
sum += arr[1 + 1];
sum += arr[i + 2];

sum += arr[i + 3];
} // after the loop handle any leftovers
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Some Extra Reading



Into the Architecturel



Programming Levels

Level 7 Application Layer (Prompt Engineering, Ul/UX)
scanf / printf —— Intent Interpretation (User -> Code Translation)
Level 6 High-Level (Problem/Object Oriented) Programming Languages
Translation(Compiler)
Level 5 Assembly Language
Translation(Assembler)
Level 4 Operating System (aka the Machine Level)
Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))
Level 3 Instruction Set Architecture Level
Microprogram Interpretation or Direct Execution
Level 2 Micro-a rchitvecture Level
Logic Synthesis
Level 1 Digital Logicv Circuit Design Level
Physical/Layout Design
Level O Layout for Fabrication (Defined by the OASIS Standard)
Lithography

Program Specific Interactions Etched Silicon 73



Programming Levels

Level 7 Application Layer (Prompt Engineering, Ul/UX)
Intent Interpretation (User -> Code Translation)
Level 6 High-Level (Problem/Object Oriented) Programming Languages
GCC —_— Translation(Compiler)
Level 5 Assembly Language

Translation(Assembler)
Level 4 Operating System (aka the Machine Level)

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))
Level 3 Instruction Set Architecture Level
Microprogram Interpretation or Direct Execution

A
Level 2 Micro-architecture Level
Logic Synthesis

\4

Level 1 Digital Logic / Circuit Design Level
Physical/Layout Design

Level O Layout for Fabrication (Defined by the OASIS Standard)
Lithography

Where GCC Gets Its Name Etched Silicon 74



Programming Levels

Level 7 Application Layer (Prompt Engineering, Ul/UX)
Intent Interpretation (User -> Code Translation)
Level 6 High-Level (Problem/Object Oriented) Programming Languages
Start > Translation(Compiler)
Level 5 Assembly Language
Translation(Assembler)
Level 4 Operating System (aka the Machine Level)
Run a.out > Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))
Level 3 Instruction Set Architecture Level
Microprogram Interpretation or Direct Execution
Level 2 Micro-a rchitvecture Level
Logic Synthesis
Level 1 Digital Logicv Circuit Design Level
Physical/Layout Design
Level O Layout for Fabrication (Defined by the OASIS Standard)
Lithography

How far GCC can reach Etched Silicon 75



Programming Levels

Level 7 Application Layer (Prompt Engineering, Ul/UX)
Intent Interpretation (User -> Code Translation)
Level 6 High-Level (Problem/Object Oriented) Programming Languages
Translation(Compiler)
Level 5 Assembly Language
AS/GAS ——— Translation(Assembler)
Level 4 Operating System (aka the Machine Level)

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))
Level 3 Instruction Set Architecture Level
Microprogram Interpretation or Direct Execution

A
Level 2 Micro-architecture Level
Logic Synthesis

\4

Level 1 Digital Logic / Circuit Design Level
Physical/Layout Design

Level O Layout for Fabrication (Defined by the OASIS Standard)
Lithography

GNU Assembler (Inside GCC) Etched Silicon 76



Programming Levels

Level 7 Application Layer (Prompt Engineering, Ul/UX)
Intent Interpretation (User -> Code Translation)
Level 6 High-Level (Problem/Object Oriented) Programming Languages
Translation(Compiler)
Level 5 Assembly Language
Translation(Assembler)
Level 4 Operating System (aka the Machine Level)
RUN —_— Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))
Level 3 Instruction Set Architecture Level
Microprogram Interpretation or Direct Execution
Level 2 Micro-a rchitvecture Level
Logic Synthesis
Level 1 Digital Logicv Circuit Design Level
Physical/Layout Design
Level O Layout for Fabrication (Defined by the OASIS Standard)
Lithography

OS Manages Program -> Hardware Etched Silicon 77



Programming Levels

Level 7 Application Layer (Prompt Engineering, Ul/UX)
Intent Interpretation (User -> Code Translation)
Level 6 High-Level (Problem/Object Oriented) Programming Languages
Translation(Compiler)
Level 5 Assembly Language
Translation(Assembler)
Level 4 Operating System (aka the Machine Level)
Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))
Level 3 Instruction Set Architecture Level
RUN —_— Microprogram Interpretation or Direct Execution
Level 2 Micro-a rchitvecture Level
Logic Synthesis
Level 1 Digital Logicv Circuit Design Level
Physical/Layout Design
Level O Layout for Fabrication (Defined by the OASIS Standard)
Lithography

Processing the Machine Code Etched Silicon 78



VLSI

A\ 4

\ 4

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Level O

Very-Large-Scale Integration

Programming Levels

Application Layer (Prompt Engineering, Ul/UX)
Intent Interpretation (User -> Code Translation)
High-Level (Problem/Object Oriented) Programming Languages
Translation(Compiler)
Assembly Language
Translation(Assembler)
Operating System (aka the Machine Level)
Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))
Instruction Set Architecture Level
Microprogram Interpretation or Direct Execution
Micro-architvecture Level
Logic Synthesis

v
Digital Logic / Circuit Design Level

Physical/Layout Design
Layout for Fabrication (Defined by the OASIS Standard)
Lithography

Etched Silicon 29



Programming Levels

Level 7 Application Layer (Prompt Engineering, Ul/UX)
Intent Interpretation (User -> Code Translation)
Level 6 High-Level (Problem/Object Oriented) Programming Languages
Translation(Compiler)
Level 5 Assembly Language
Translation(Assembler)
Level 4 Operating System (aka the Machine Level)
Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))
Level 3 Instruction Set Architecture Level
Microprogram Interpretation or Direct Execution
Level 2 Micro-a rchitvecture Level
RTL —_— Logic Synthesis
Level 1 Digital Logicv Circuit Design Level
Physical/Layout Design
Level O Layout for Fabrication (Defined by the OASIS Standard)
Lithography

RTL (Register-Transfer Level) Etched Silicon 80



Programming Levels

Level 7 Application Layer (Prompt Engineering, Ul/UX)
Intent Interpretation (User -> Code Translation)
Level 6 High-Level (Problem/Object Oriented) Programming Languages
Translation(Compiler)
Level 5 Assembly Language
Translation(Assembler)
Level 4 Operating System (aka the Machine Level)
Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))
Level 3 Instruction Set Architecture Level
Microprogram Interpretation or Direct Execution
Level 2 Micro-a rchitvecture Level
Logic Synthesis
Level 1 Digital Logicv Circuit Design Level
IS\:ZSZ —_— Physical/Layout Design
Level O Layout for Fabrication (Defined by the OASIS Standard)
Lithography

Floorplanning Etched Silicon 81



Programming Levels

Level 7 Application Layer (Prompt Engineering, Ul/UX)
Intent Interpretation (User -> Code Translation)

Level 6 High-Level (Problem/Object Oriented) Programming Languages
Translation(Compiler)

Level 5 Assembly Language
Translation(Assembler)

Level 4 Operating System (aka the Machine Level)
Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Level 3 Instruction Set Architecture Level
Microprogram Interpretation or Direct Execution

v

Level 2 Micro-architecture Level

Logic Synthesis
\ 4
Level 1 Digital Logic / Circuit Design Level
Many : :
—_— Physical/Layout Design
Steps

Level O Layout for Fabrication (Defined by the OASIS Standard)

Lithography
Wire Routing

_ Etched Silicon
— Don’t Cross the Wires 82



Programming Levels

Level 7 Application Layer (Prompt Engineering, Ul/UX)
Intent Interpretation (User -> Code Translation)
Level 6 High-Level (Problem/Object Oriented) Programming Languages
Translation(Compiler)
Level 5 Assembly Language
Translation(Assembler)
Level 4 Operating System (aka the Machine Level)
Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))
Level 3 Instruction Set Architecture Level
Microprogram Interpretation or Direct Execution
Level 2 Micro-a rchitvecture Level
Logic Synthesis
Level 1 Digital Logicv Circuit Design Level
IS\:ZSZ —_— Physical/Layout Design
Level O Layout for Fabrication (Defined by the OASIS Standard)
Lithography

C-Iock'Tree Syhthe5|s — Gotto Etched Silicon
Time it Just Right 83



Programming Levels

Level 7 Application Layer (Prompt Engineering, Ul/UX)
Intent Interpretation (User -> Code Translation)
Level 6 High-Level (Problem/Object Oriented) Programming Languages
Translation(Compiler)
Level 5 Assembly Language
Translation(Assembler)
Level 4 Operating System (aka the Machine Level)
Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))
Level 3 Instruction Set Architecture Level
Microprogram Interpretation or Direct Execution
Level 2 Micro-a rchitvecture Level
Logic Synthesis
Level 1 Digital Logicv Circuit Design Level
IS\:ZSZ —_— Physical/Layout Design
Level O Layout for Fabrication (Defined by the OASIS Standard)
Lithography

Heat & Capacitance Etched Silicon 84



Programming Levels

Level 7 Application Layer (Prompt Engineering, Ul/UX)
Intent Interpretation (User -> Code Translation)
Level 6 High-Level (Problem/Object Oriented) Programming Languages
Translation(Compiler)
Level 5 Assembly Language
Translation(Assembler)
Level 4 Operating System (aka the Machine Level)
Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))
Level 3 Instruction Set Architecture Level
Microprogram Interpretation or Direct Execution
Level 2 Micro-a rchitvecture Level
Logic Synthesis

\4

Level 1 Digital Logic / Circuit Design Level
Physical/Layout Design
Level O Layout for Fabrication (Defined by the OASIS Standard)
ASML — Lithography

Checkout EUV Lithography Etched Silicon 85



Programming Levels

Level 7 Application Layer (Prompt Engineering, Ul/UX)
Intent Interpretation (User -> Code Translation)

Level 6 High-Level (Problem/Object Oriented) Programming Languages
Translation(Compiler)

Which layer throws

Level 5 Assembly Language

Translation(Assembler) a segfault?
Level 4 Operating System (aka the Machine Level)

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))
Level 3 Instruction Set Architecture Level

Microprogram Interpretation or Direct Execution
Level 2 Micro-a rchitvecture Level

Logic Synthesis
Level 1 Digital Logicv Circuit Design Level

Physical/Layout Design
Level O Layout for Fabrication (Defined by the OASIS Standard)

Lithography

Etched Silicon 86



Programming Levels

Level 7 Application Layer (Prompt Engineering, Ul/UX)
Intent Interpretation (User -> Code Translation)
Level 6 High-Level (Problem/Object Oriented) Programming Languages
Translation(Compiler)
Level 5 Assembly Language
Translation(Assembler)
Level 4 Operating System (aka the Machine Level)
\l;lvil'_l'ICSHING Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Level 3 Instruction Set Architecture Level
Microprogram Interpretation or Direct Execution

A
Level 2 Micro-architecture Level
Logic Synthesis

\4

Level 1 Digital Logic / Circuit Design Level
Physical/Layout Design

Level O Layout for Fabrication (Defined by the OASIS Standard)
Lithography

Program Memory Managed Etched Silicon
By The OS 87



More on the Compiler



How Does GCC Work?

* One Unix Command — A lot of steps! & scawce s o)

4

Preprocessor
gcc hello.c -o hello I

Compiler

v
Assembly Code

.

Assembler

'

Object code (hello.o) + libraries

'

Linker

4

Executable (a.out or hello)

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227
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How Does GCC Work?

* Preprocessing — Handle Programmer Conveniences C source code (hello.c)
* #Macros convert to normal C code v
* Lines split by \ are joined Efogroceas
e Comments are removed : J'_l
* NOTE: Some comments are added, but our comments are removed i
* Bring in functions and variables from the headers Assem;[y e
* This is how the #include is resolved v
Assembler

y
Object code (hello.o) + libraries

'

Linker

gcc -E hello.c > pre_processed_hello

v
Executable (a.out or hello)

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227
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How Does GCC Work?

¢ COmpI|atI0n - C tO ASSGmb|y C source code (hello.c)
A 4
Preprocessor
gcc -S hello.c I
Compiler
* Will generate intermediate ‘human-readable’ assembly Assemti'vCode
Assembler
* There are different styles/syntax for x86, we use AT&T T— (heluo ——
e AT&T is also the gcc default l
Linker

4

Executable (a.out or hello)

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227
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How Does GCC Work?

* Object Generation — C to Object File

gcc -c hello.c

e “Just compile; Don't link"

* This outputs a non-human readable Object File
* |t is defined as a type of incomplete machine code
* With extra metadata to power linking

* Using objdump —d hello.o, we can see the assembly

C source code (hello.c)

4

Preprocessor

'

Compiler

v
Assembly Code

\ 4

Assembler

y

Object code (hello.o) + libraries

'

Linker

4

Executable (a.out or hello)

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227
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How Does GCC Work?

* Linking — Bringing All the pieces together
e Object Files & Libraries -> Fully Executable Machine Code

gcc hello.o -0 hello

Id -0
/usr/
/usr/

* NOTE: We can get our .0 in more than one-way

hello hello.o -lIc -dynamic-linker /lib64/Id-linux-x86-64.s0.2
ib/x86_64-linux-gnu/crtl.o /usr/lib/x86 64-linux-gnu/crti.o

ib/x86_64-linux-gnu/crtn.o

C source code (hello.c)

\ 4

Preprocessor

;

Compiler

\
Assembly Code

A

Assembler

!

Object code (hello.o) + libraries

gcc -c hello.c

OR

as hello.s

E
Linker

\ 4

Executable (a.out or hello)

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227
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What does the Assembler Do?



A Two Step Process

* Pass 1: Setup Memory Addresses

* The program reads in the assembly program identifying and tracking:
e Labels
 Literals
* Data Variables

* Pass 2: Generate the Machine Code (Byte/Binary Code)
* |dentify Opcode from the mnemonic assembly
* Resolve labels/literals/variables using the tables from Step 1
* Convert Data to Binary
* |dentifies External (Out of Program) References and places markers for the Linker
» Setup Metadata for linking if this program has loadable parts

Final Output is not runnable, but has all the parts need if linking can complgte



Why do we need a linker?



Many Links

* Every C file corresponds to a .o

e Libraries can also be made into linkable formats

e We don’t want to have to write all our code in 1 file and we want to use the STL

* The linker makes this all possible
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How Does GCC Work?

* Multi-Step Process -> Multiple Failure Points

* Compilation can fail for many reasons at different points

* Mainly two areas that fail ‘Compilation’ or Linking

* If compilation succeeds, Intermediate Assembly will be good!

C source code (hello.c)

A

Preprocessor

;

Compiler

\
Assembly Code

:

Assembler

!

Object code (hello.o) + libraries

E
Linker

A

Executable (a.out or hello)

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227
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Peeking at Memory



Speed vs Space

* CPU is the most important place

* Closer to CPU, less travel time
* But limited space, so bottleneck getting there

CPU
Registar

Temporary
— Storage
Areas

* Think of the CPU like downtown, generally
expensive and highly desirable real estate

Permanént
Storage
Araas

 The BUS (actual technical name) is our transit
system around the computer

Scanmer, !

Removable Jll Camera,

e Places close to the CPU are more limited and more
valuable, since they can get to the CPU faster 100



Speed vs Space

* All of Memory (Temporary Storage on the right)
and the registers is rent only, so data is constantly o
moving around sk

Temporary
— Storage
Areas

* Many algorithms developed to decide which data
gets to live where and for how long

etk Permanent
Ramavablo |:t.:'.n;._,: Storage
Drives Storage rive Areas

* Proper access makes a huge difference on
performance

Input Sources

Scanmory

Ramowakle Camers,
Mic/
Video

Kayboard
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Speed vs Space

* Approximate Access Times

Latency Time

cPu
Reglster
Register 0 Cycles (already here) —
Level 1 Cache ~0.5 ns “ Temporary
Level 2 Cache ~7 ns (14x L1) L hreae
RAM ~100 ns (20x L2, 200x L1) e B (NS
SSD ~100-150 us (~14Kx L2, 200Kx L1) ™
Hard (Spinning) Disk ~10 ms (~2.8Mx L2, 40Mx L1) o
Network Packet CA -> Netherlands -> ~150 ms (~21Mx L2, 300Mx L1) NG | i i e
CA Wedis
Average Human Response Time to ~200 ms (~28Mx L2, 400Mx L1)

Visual Stimulus

For more on speed checkout:
https: //www.cs.princeton.edu/courses/archive/spring20/cos217 /lectures/20_Mem_Storage_Hierarchy.pdf
https://gist.github.com/jboner/2841832
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https://www.cs.princeton.edu/courses/archive/spring20/cos217/lectures/20_Mem_Storage_Hierarchy.pdf
https://gist.github.com/jboner/2841832

Speed vs Space

* Pre-emptive requests and moving of data is critical

CPU
Registar

e Orders of Magnitude Improvements from high
locality

Temporary
— Storage
Areas

* Every part of the pyramid is working on making
this faster

Permanént
Storage
Araas

e Better BUS, faster storage(both temporary and i
permanent), bigger RAM, better algorithms
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What is Locality?

* Temporal Locality
* Has the data been used recently? Then we expect to be used again soon

 Spatial Locality

* The data appears close together in the program/memory, so it will likely be needed at
the same time.

* Hardware and OS designers consider algorithms to predict and leverage
locality to optimize management of memory resources

e Cache in particular is a limited resource and must be used effectively to
leverage benefits
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Who Gets to Manage the Memory?

* Registers — Managed by the Compiler/Assembler

* Cache — Managed by Hardware Designers

Temporary

— Storage
Areas

* Memory — Mainly the OS, influenced by hardware

Permanént
Storage
Araas

* Disk — Managed by the user and occasionally OS
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Architecture & The ISA



Programming Levels

Level 7 Application Layer (Prompt Engineering, Ul/UX)
Intent Interpretation (User -> Code Translation)
Level 6 High-Level (Problem/Object Oriented) Programming Languages
Translation(Compiler)
Level 5 Assembly Language
Translation(Assembler)
Level 4 Operating System (aka the Machine Level)
Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))
> Level 3 Instruction Set Architecture Level
Microprogram Interpretation or Direct Execution
Processor Level 2 Micro-a rchitvecture Level
Logic Synthesis
» Level 1 Digital Logicv Circuit Design Level
Physical/Layout Design
Level O Layout for Fabrication (Defined by the OASIS Standard)
Lithography

These levels are integrally linked Etched Silicon 107



A 'Simple’ Example

 MIC-1 Architecture (Tanenbaum -
Structured Computer Organization 6t
Edition)

e |[JVM ISA — Subset of the Java Virtual
Machine

* A ‘Vanilla’ processor design

Memory control signals (rd, wr, fetch)

3
v 4
4-to-16
Decoder
|||||||
MPC 9
+ (0] A 4
8 "75
512 x 36-Bit
control store
for holding
94 the microprogram

JMPC
| MIR
[ Adar [J] ALU | ¢ [m[B]
L |
JAMN/JAMZ
High )
dl Control
iN I %1-bitﬂip—flop signals
1|\ Enable
z onto
B bl
2
* Write
C bus
to regis




A 'Simple’ Example

* Control Store is the most important part!

* Our ISA is defined by that unit

* 9 wires in -> 2**9 possible combinations,
2**9 (512) possible commands

e Each command drives 36 wires to control
the chip

* Assembly/Machine Language is defined by
the hardware

Memory control signals (rd, wr, fetch)

N %1 -bit flip—flop

3 P
v 4
4-t0-16
Decoder
TTTTTTT
MPC 9
+ [e) A 4
8 "75
512 x 36-Bit
control store
for holding
94 the microprogram
JMPC
] MIR
[ Adar [J] ALU | ¢ [m[B]
JAMN/JAMZ
High .
B bus bit 5

Control
signals

Enable
onto
B bus

* Write
C bus
to register



A 'Simple’ Example

Py ALU _ Arithmetic & Logic Unit :; Memo:{controlsignals(rd,wr,fetch) /
* Performs Math & Logic Operations [ [ gote
IIllIIIMPC .
H]]]IIID—I—
* MAR —H are the registers L sdie '
512 x 36-Bit
ol oing
94+ the microprogram
* B + Decoder — Enables Register to load onto B Bus wrc_
[ Adar [J] ALU | ¢ [m[B]
e Zand N act similar to our condition codes, but in a S
much more limited/simple way e [E—
= 7N %%1-bitﬂip—flop @
z -
e C controls the C Bus, informing the destination
register to receive its value # e

to register




A 'Simple’ Example

* Notice how the ALU is only able to take in
the left operand from the H register

* All two operand ALU operations, would
need to first load the left operand to H

* This would be an example of a hardware
based constraint

Memory control signals (rd, wr, fetch)

N %1 -bit flip—flop

3 P
v 4
4-t0-16
Decoder
TTTTTTT
MPC 9
+ [e) A 4
8 "75
512 x 36-Bit
control store
for holding
94 the microprogram
JMPC
] MIR
[ Adar [J] ALU | ¢ [m[B]
JAMN/JAMZ
High .
B bus bit 5

Control
signals

Enable
onto
B bus

* Write
C bus
to register



Better Designh Better Performance

* The MIC-2 Fixes this issue by adding
another BUS improving the Datapath

* Design directly impacts the ISA that we can
make available

Control signals

‘? Enable onto B bus

f Write C bus to register

C bus
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