CS107, Lecture 15

Architecture & Managing The Heap

Reading: B&0 9.9, 9.11

This document is copyright (C) Stanford Computer Science, Adam Keppler, and Olayinka Adekola licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Joel Ramirez, Nick Troccoli, Chris Gregg

Lecture Plan

* Into the Architecture!

* Peeking at Memory

* Architecture & The ISA

* The heap so far

* What is a heap allocator?

* Heap allocator requirements and goals
* Method O: Bump Allocator

Into the Architecture!

Programming Levels

Level 7 Application Layer (Prompt Engineering, Ul/UX)
scanf / printff ——— Intent Interpretation (User -> Code Translation)
Level 6 High-Level (Problem/Object Oriented) Programming Languages

Translation(Compiler)
Level 5 Assembly Language

Translation(Assembler)
Level 4 Operating System (aka the Machine Level)

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))
Level 3 Instruction Set Architecture Level

Microprogram Interpretation or Direct Execution

Level 2 Micro-architecture Level
Logic Synthesis

Level 1 Digital Logic / Circuit Design Level
Physical/Layout Design

Level O Layout for Fabrication (Defined by the OASIS Standard)
Lithography

Program Specific Interactions Etched Silicon

Programming Levels

Level 7 Application Layer (Prompt Engineering, Ul/UX)
Intent Interpretation (User -> Code Translation)
Level 6 High-Level (Problem/Object Oriented) Programming Languages
GCC —_— Translation(Compiler)
Level 5 Assembly Language

Translation(Assembler)
Level 4 Operating System (aka the Machine Level)

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))
Level 3 Instruction Set Architecture Level

Microprogram Interpretation or Direct Execution

Level 2 Micro-architecture Level
Logic Synthesis
Level 1 Digital Logic / Circuit Design Level
Physical/Layout Design
Level O Layout for Fabrication (Defined by the OASIS Standard)
Lithography
Where GCC Gets Its Name Etched Silicon

Programming Levels

v

Start

Run a.out

v

How far GCC can reach

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Level O

Application Layer (Prompt Engineering, Ul/UX)

Intent Interpretation (User -> Code Translation)

High-Level (Problem/Object Oriented) Programming Languages

Translation(Compiler)

Assembly Language

Translation(Assembler)

Operating System (aka the Machine Level)

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Instruction Set Architecture Level

Microprogram Interpretation or Direct Execution

Micro-architecture Level

Digital Logic

Logic Synthesis
Circuit Design Level
Physical/Layout Design

Layout for Fabrication (Defined by the OASIS Standard)

Etched Silicon

Lithography

Programming Levels

Level 7 Application Layer (Prompt Engineering, Ul/UX)
Intent Interpretation (User -> Code Translation)
Level 6 High-Level (Problem/Object Oriented) Programming Languages
Translation(Compiler)
Level 5 Assembly Language
AS/GAS ——— Translation(Assembler)
Level 4 Operating System (aka the Machine Level)

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))
Level 3 Instruction Set Architecture Level
Microprogram Interpretation or Direct Execution

Level 2 Micro-architecture Level
Logic Synthesis

Level 1 Digital Logic / Circuit Design Level
Physical/Layout Design

Level O Layout for Fabrication (Defined by the OASIS Standard)
Lithography

GNU Assembler (Inside GCC) Etched Silicon

Programming Levels

Level 7 Application Layer (Prompt Engineering, Ul/UX)
Intent Interpretation (User -> Code Translation)
Level 6 High-Level (Problem/Object Oriented) Programming Languages
Translation(Compiler)
Level 5 Assembly Language
Translation(Assembler)
Level 4 Operating System (aka the Machine Level)
RUN —_— Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))
Level 3 Instruction Set Architecture Level

Microprogram Interpretation or Direct Execution

Level 2 Micro-architecture Level
Logic Synthesis

Level 1 Digital Logic / Circuit Design Level
Physical/Layout Design

Level O Layout for Fabrication (Defined by the OASIS Standard)
Lithography

OS Manages Program -> Hardware Etched Silicon

Programming Levels

Level 7 Application Layer (Prompt Engineering, Ul/UX)
Intent Interpretation (User -> Code Translation)
Level 6 High-Level (Problem/Object Oriented) Programming Languages
Translation(Compiler)
Level 5 Assembly Language
Translation(Assembler)
Level 4 Operating System (aka the Machine Level)
Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))
Level 3 Instruction Set Architecture Level
RUN —_— 1 Microprogram Interpretation or Direct Execution
Level 2 Micro-architecture Level
Logic Synthesis
Level 1 Digital Logic / Circuit Design Level
Physical/Layout Design
Level O Layout for Fabrication (Defined by the OASIS Standard)
Lithography

Processing the Machine Code Etched Silicon

VLSI

v

v

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Level O

Very-Large-Scale Integration

Programming Levels

Application Layer (Prompt Engineering, Ul/UX)
Intent Interpretation (User -> Code Translation)
High-Level (Problem/Object Oriented) Programming Languages
Translation(Compiler)
Assembly Language
Translation(Assembler)
Operating System (aka the Machine Level)
Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))
Instruction Set Architecture Level
Microprogram Interpretation or Direct Execution
Micro-architecture Level
Logic Synthesis
Digital Logic / Circuit Design Level
Physical/Layout Design
Layout for Fabrication (Defined by the OASIS Standard)
Lithography

Etched Silicon
10

Programming Levels

Level 7 Application Layer (Prompt Engineering, Ul/UX)

Intent Interpretation (User -> Code Translation)
Level 6 High-Level (Problem/Object Oriented) Programming Languages

Translation(Compiler)
Level 5 Assembly Language

Translation(Assembler)
Level 4 Operating System (aka the Machine Level)

I Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Level 3 Instruction Set Architecture Level

Microprogram Interpretation or Direct Execution

Level 2 Micro-architecture Level
RTL —_— Logic Synthesis
Level 1 Digital Logic / Circuit Design Level
Physical/Layout Design
Level O Layout for Fabrication (Defined by the OASIS Standard)
Lithography

RTL (Register-Transfer Level) Etched Silicon)

Programming Levels

Level 7 Application Layer (Prompt Engineering, Ul/UX)
Intent Interpretation (User -> Code Translation)
Level 6 High-Level (Problem/Object Oriented) Programming Languages
Translation(Compiler)
Level 5 Assembly Language
Translation(Assembler)
Level 4 Operating System (aka the Machine Level)
Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))
Level 3 Instruction Set Architecture Level
Microprogram Interpretation or Direct Execution

Level 2 Micro-architecture Level
Logic Synthesis
Level 1 Digital Logic / Circuit Design Level
Z:SZ E—— Physical/Layout Design
Level O Layout for Fabrication (Defined by the OASIS Standard)
Lithography

Floorplanning Etched Silicon .

Programming Levels

Level 7 Application Layer (Prompt Engineering, Ul/UX)
Intent Interpretation (User -> Code Translation)
Level 6 High-Level (Problem/Object Oriented) Programming Languages
Translation(Compiler)
Level 5 Assembly Language
Translation(Assembler)
Level 4 Operating System (aka the Machine Level)
Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))
Level 3 Instruction Set Architecture Level
Microprogram Interpretation or Direct Execution

Level 2 Micro-architecture Level
Logic Synthesis
M Level 1 Digital Logic / Circuit Design Level
Yy Physical/Layout Design
Steps
Level O Layout for Fabrication (Defined by the OASIS Standard)
Lithography
Wire Routing

) , Etched Silicon
— Don’t Cross the Wires 13

Programming Levels

Level 7 Application Layer (Prompt Engineering, Ul/UX)
Intent Interpretation (User -> Code Translation)
Level 6 High-Level (Problem/Object Oriented) Programming Languages
Translation(Compiler)
Level 5 Assembly Language
Translation(Assembler)
Level 4 Operating System (aka the Machine Level)
Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))
Level 3 Instruction Set Architecture Level
Microprogram Interpretation or Direct Execution

Level 2 Micro-architecture Level
Logic Synthesis
Level 1 Digital Logic / Circuit Design Level
2{::2;/ —_— Physical/Layout Design
Level O Layout for Fabrication (Defined by the OASIS Standard)
Lithography

C.Iock-Tree Syr\the5|s — Got to Etched Silicon
Time it Just Right 14

Programming Levels

Level 7 Application Layer (Prompt Engineering, Ul/UX)
Intent Interpretation (User -> Code Translation)
Level 6 High-Level (Problem/Object Oriented) Programming Languages
Translation(Compiler)
Level 5 Assembly Language
Translation(Assembler)
Level 4 Operating System (aka the Machine Level)
Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))
Level 3 Instruction Set Architecture Level
Microprogram Interpretation or Direct Execution

Level 2 Micro-architecture Level
Logic Synthesis
Level 1 Digital Logic / Circuit Design Level
2{::2;/ —_— Physical/Layout Design
Level O Layout for Fabrication (Defined by the OASIS Standard)
Lithography

Heat & Capacitance Etched Silicon 15

Programming Levels

Level 7 Application Layer (Prompt Engineering, Ul/UX)
Intent Interpretation (User -> Code Translation)
Level 6 High-Level (Problem/Object Oriented) Programming Languages
Translation(Compiler)
Level 5 Assembly Language
Translation(Assembler)
Level 4 Operating System (aka the Machine Level)
Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))
Level 3 Instruction Set Architecture Level
Microprogram Interpretation or Direct Execution

Level 2 Micro-architecture Level
Logic Synthesis
Level 1 Digital Logic / Circuit Design Level
Physical/Layout Design
Level O Layout for Fabrication (Defined by the OASIS Standard)
ASML —— 1 Lithography

Checkout EUV Lithography Etched Silicon 16

Programming Levels

Level 7 Application Layer (Prompt Engineering, Ul/UX) _
Intent Interpretation (User -> Code Translation) US Q
-~
Level 6 High-Level (Problem/Object Oriented) Programming Languages T

Translation(Compiler)
Which layer throws

Level 5 Assembly Language
a segfault?

Translation(Assembler)

Level 4 Operating System (aka the Machine Level)

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))
Level 3 Instruction Set Architecture Level

Microprogram Interpretation or Direct Execution

Level 2 Micro-architecture Level
Logic Synthesis

Level 1 Digital Logic / Circuit Design Level
Physical/Layout Design

Level O Layout for Fabrication (Defined by the OASIS Standard)
Lithography

Etched Silicon
17

Programming Levels

Level 7 Application Layer (Prompt Engineering, Ul/UX)
Intent Interpretation (User -> Code Translation)
Level 6 High-Level (Problem/Object Oriented) Programming Languages
Translation(Compiler)
Level 5 Assembly Language
Translation(Assembler)
Level 4 Operating System (aka the Machine Level)
\I;IV':I:I'ICSHING Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Level 3 Instruction Set Architecture Level
Microprogram Interpretation or Direct Execution

Level 2 Micro-architecture Level
Logic Synthesis

Level 1 Digital Logic / Circuit Design Level
Physical/Layout Design

Level O Layout for Fabrication (Defined by the OASIS Standard)
Lithography

Program Memory Managed Etched Silicon
By The OS 18

More on the Compiler

How Does GCC Work?

* One Unix Command — A lot of steps!

gcc hello.c -o hello

C source code (hello.c)

h 4

Preprocessor

.

Compiler

v

Assembly Code

h 4

Assembler

!

Object code (hello.o) + libraries

r
Linker

h 4

Executable (a.out or hello)

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227

20

How Does GCC Work?

* Preprocessing — Handle Programmer Conveniences
* #Macros convert to normal C code
* Lines split by \ are joined

e Comments are removed
* NOTE: Some comments are added, but our comments are removed

* Bring in functions and variables from the headers
* This is how the #include is resolved

gcc -E hello.c > pre_processed hello

C source code (hello.c)

h 4

Preprocessor

.

Compiler

L 4
Assembly Code

v
Assembler

!

Object code (hello.o) + libraries

*
Linker

L4
Executable (a out or hello)

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227

21

How Does GCC Work?

* Compilation — C to Assembly

gcc -S hello.c

* Will generate intermediate ‘human-readable’ assembly

* There are different styles/syntax for x86, we use AT&T
 AT&T is also the gcc default

C source code (hello.c)

h 4

Preprocessor

.

Compiler

v

Assembly Code

h 4

Assembler

!

Object code (hello.o) + libraries

r
Linker

h 4

Executable (a.out or hello)

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227

22

How Does GCC Work?

* Object Generation — C to Object File

gcc -c hello.c

e “Just compile; Don't link"

* This outputs a non-human readable Object File
* |tis defined as a type of incomplete machine code
* With extra metadata to power linking

e Using objdump —d hello.o, we can see the assembly

C source code (hello.c)

h 4

Preprocessor

.

Compiler

v

Assembly Code

h 4

Assembler

!

Object code (hello.o) + libraries

r
Linker

h 4

Executable (a out or hello)

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227

23

How Does GCC Work?

* Linking — Bringing All the pieces together
* Object Files & Libraries -> Fully Executable Machine Code

gcc hello.o -o hello

Id -0
Jusr/
Jusr/

nello hello.o -lc -dynamic-linker /lib64/Id-linux-x86-64.s0.2
ib/x86_ 64-linux-gnu/crtl.o /usr/lib/x86 64-linux-gnu/crti.o

ib/x86_64-linux-gnu/crtn.o

C source code (hello.c)

h 4

Preprocessor

.

Compiler

L 4
Assembly Code

h 4

Assembler

'

* NOTE: We can get our .o in more than one-way

Object code (hello.o) + libraries

gcc -c hello.c

OR

as hello.s

»
Linker

h 4

Executable (a out or hello)

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227

24

What does the Assembler Do?

A Two Step Process

* Pass 1: Setup Memory Addresses

* The program reads in the assembly program identifying and tracking:
* Labels
* Literals
* Data Variables

* Pass 2: Generate the Machine Code (Byte/Binary Code)
* |dentify Opcode from the mnemonic assembly
* Resolve labels/literals/variables using the tables from Step 1
* Convert Data to Binary
* |dentifies External (Out of Program) References and places markers for the Linker
» Setup Metadata for linking if this program has loadable parts

Final Output is not runnable, but has all the parts need if linking can complete .

Why do we need a linker?

Many Links

* Every Cfile corresponds to a .o

e Libraries can also be made into linkable formats

* We don’t want to have to write all our code in 1 file and we want to use the STL

* Incremental Builds, change some files instead of all the files

* The linker makes this all possible

28

How Does GCC Work?

¢ MUItl'Step PFOCGSS -> MUItlpIe Fallure POlntS C source code (hello.c)
Preprocessor
* Compilation can fail for many reasons at different points I
Compiler
* Mainly two areas that fail ‘Compilation’ or Linking Assembly Code
Assembler
* If compilation succeeds, Intermediate Assembly will be good! ‘L

Object code (hello.o) + libraries

r
Linker

h 4

Executable (a out or hello)

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227

29

Lecture Plan

* Into the Architecture!

* Peeking at Memory

* Architecture & The ISA

* The heap so far

* What is a heap allocator?

* Heap allocator requirements and goals
* Method O: Bump Allocator

30

Peeking at Memory

Speed vs Space

* CPU is the most important place
* Closer to CPU, less travel time
Raglistar

* But limited space, so bottleneck getting there

Temporary
— Storage
Areas

* Think of the CPU like downtown, generally
expensive and highly desirable real estate

Physlcal RAM Wirtual Memaory

Parmanént
Storage
Areas

* The BUS (actual technical name) is our transit
system around the computer

Sanmie o
Ramovible Camern,

e Places close to the CPU are more limited and more
valuable, since they can get to the CPU faster .

Speed vs Space

* All of Memory (Temporary Storage on the right)
and the registers is rent only, so data is constantly

CPU

moving around Register

Temporary

* Many algorithms developed to decide which data - - Starage
gets to live where and for how long puysicat aam [l irtat Memary

Parmanént
Storage
Areas

* Proper access makes a huge difference on
performance

Soannar, f

Remowable Camera,/

33

Speed vs Space

* Approximate Access Times

cPU
Register

Register 0 Cycles (already here) e ——

Level 1 Cache ~0.5 ns

— Storage

Level 2 Cache ~7 ns (14x L1) L Acasn
RAM ~100 ns (20x L2, 200x L1) e BE G N
SSD ~100-150 us (~14Kx L2, 200Kx L1) e Il o
Hard (Spinning) Disk ~10 ms (~2.8Mx L2, 40Mx L1) -
Network Packet CA -> Netherlands -> ~150 ms (~21Mx L2, 300Mx L1)
CA
Average Human Response Time to ~200 ms (~28Mx L2, 400Mx L1)

Visual Stimulus

For more on speed checkout:
https://www.cs.princeton.edu/courses/archive/spring20/cos217/lectures/20 Mem Storage Hierarchy.pdf
https://gist.github.com/jboner/2841832

34

https://www.cs.princeton.edu/courses/archive/spring20/cos217/lectures/20_Mem_Storage_Hierarchy.pdf
https://gist.github.com/jboner/2841832

Speed vs Space

* Pre-emptive requests and moving of data is critical

* Orders of Magnitude Improvements from high
locality

* Every part of the pyramid is working on making micaitss [vetast Moy
this faster |

Parmanént
Storage
Areas

* Better BUS, faster storage(both temporary and e
permanent), bigger RAM, better algorithms £

35

What is Locality?

* Temporal Locality
* Has the data been used recently? Then we expect to be used again soon

 Spatial Locality

* The data appears close together in the program/memory, so it will likely be needed at
the same time.

* Hardware and OS designers consider algorithms to predict and leverage
locality to optimize management of memory resources

e Cache in particular is a limited resource and must be used effectively to
leverage benefits

36

Who Gets to Manage the Memory?

* Registers — Managed by the Compiler/Assembler

* Cache — Managed by Hardware Designers

Temporary

— Storage
Areas

* Memory — Mainly the OS, influenced by hardware

Parmanént
Storage
Areas

* Disk — Managed by the user and occasionally OS

37

Lecture Plan

* Into the Architecture!

* Peeking at Memory

* Architecture & The ISA

* The heap so far

* What is a heap allocator?

* Heap allocator requirements and goals
* Method O: Bump Allocator

38

Architecture & The ISA

Programming Levels

Level 7 Application Layer (Prompt Engineering, Ul/UX)
Intent Interpretation (User -> Code Translation)
Level 6 High-Level (Problem/Object Oriented) Programming Languages
Translation(Compiler)
Level 5 Assembly Language
Translation(Assembler)
Level 4 Operating System (aka the Machine Level)
Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

v

Level 3 Instruction Set Architecture Level
Microprogram Interpretation or Direct Execution

Processor Level 2 Micro-architecture Level
Logic Synthesis
» Level 1 Digital Logic / Circuit Design Level
Physical/Layout Design
Level O Layout for Fabrication (Defined by the OASIS Standard)
Lithography

These levels are integrally linked Etched Silicon .

A 'Simple’ Example

Memory control signals (rd, wr, fetch)

* MIC-1 Architecture (Tanenbaum - R :
Structured Computer Organization 6t
Edition)

512 x 36-Bit
control store
for holding
the microprogram

* IJVM ISA — Subset of the Java Virtual T T
Machine | [T e |

JAMN/JAMZ
* A ‘Vanilla’ processor design

2
l 4l Control
6 N ZN %1-bit flip—flop signals
ALU 4 Enable
z onto
l B bus
Shifter #
2
us

A 'Simple’ Example

e Control Store is the most important part! : ¢" ,
* Our ISA is defined by that unit ?”mj; |
5§ T |
* 9 wires in -> 2**9 possible combinations, -
2**9 (512) possible commands BRI A
JAMN/JAMZ
* Each command drives 36 wires to control T e B

2
4l Control
. 5 /S N % %Hait flip—flop signals
the Chlp LU ‘fEnabIe
ont

Al
z o
l B bus
Shifter #
2

€ bus f Write
C bus
to register

* Assembly/Machine Language is defined by
the hardware 4

A 'Simple’ Example

ALU — Arithmetic & Logic Unit
* Performs Math & Logic Operations

MAR — H are the registers

B + Decoder — Enables Register to load onto B Bus

Z and N act similar to our condition codes, but in a
much more limited/simple way

C controls the C Bus, informing the destination
register to receive its value

Memory control signals (rd, wr, fetch)

v 4
[r— MAR 4-to-16
Decoder
TTTTTTT
MPC 9
+ [@) h 4
8 "75
512 x 36-Bit
control store
for holding

B bus

l 2
A4 : o
& __ N %1 -bit flip—flop

High
bit

the microprogram

JMPC

MIR

[Addr [J] ALU | ¢ [m]B]

JAMN/JAMZ

ALU
A
Shifter

C bus

Control
signals

Enable
onto
B bus

f Write
C bus
to register

43

A 'Simple’ Example

Memory control signals (rd, wr, fetch)

* Notice how the ALU is only able to take in 3 : -
the left operand from the H register 2
5| g *
* All two operand ALU operations, would
need to first load the left operand to H)
[Addr [J] ALU | C |M||;A|IR
* This would be an example of a hardware
based constraint
5 :J/ N %1 -bit flip—flop ;iglr;:lasble
2 e

44

Better Design Better Performance

* The MIC-2 Fixes this issue by adding i
another BUS improving the Datapath 1

* Design directly impacts the ISA that we can
make available

Control signals

‘f Enable onto B bus

f Write C bus to register

C bus

Lecture Plan

* Into the Architecture!

* Peeking at Memory

* Architecture & The ISA

* The heap so far

* What is a heap allocator?

* Heap allocator requirements and goals
* Method O: Bump Allocator

46

CS107 Topic 6: How do the
core malloc/realloc/free

memory-allocation
operations work?

How do malloc/realloc/free work?

Pulling together all our CS107 topics this quarter:
* Testing

* Efficiency

* Bit-level manipulation

* Memory management

* Pointers

* Generics

* Assembly

* And more...

48

Learning Goals

 Learn the restrictions, goals and assumptions of a heap allocator

* Understand the conflicting goals of utilization and throughput

* Learn about different ways to implement a heap allocator

49

Running a program

* Creates new process
* Sets up address space/segments

Ox7ffffffff0000

* Read executable file, load instructions, global data

Mapped from file into gray segments
e Libraries loaded on demand

* Set up stack
Reserve stack segment, init %rsp, call main

 malloc written in C, will init self on use
Asks OS for large memory region,
parcels out to service requests

Ox7ffff770000

0x60000

0x40000

Main Memory

Shared library text/data

Global data

Text (machine code)
I ——

50

The Stack Review

Main Memory

OX 70000
} Stack memory “goes

away” after function

call ends.
Ox7ffff770000

Automatically managed
at compile-time by gcc

Heap From Assembly:
AL — Stack management ==
Global data .
_ moving %rsp around
Text (machine code)
0x40000

I (pushq, POpPq, mov)

51

Today: The Heap

Ox7ffffffff0000

Ox7ffff770000

0x60000

0x40000

Main Memory

Shared library text/data

Heap

]
Global data

Text (machine code)
I —

Heap memory persists
until caller indicates it
no longer needs it.

Managed by C standard
library functions
(malloc, realloc, free)

This lecture:
How does heap
management work?

52

Lecture Plan

* Into the Architecture!

* Peeking at Memory

* Architecture & The ISA

* The heap so far

 What is a heap allocator?

* Heap allocator requirements and goals
* Method O: Bump Allocator

53

Your role so far: Client

void *malloc(size t size);

Returns a pointer to a block of heap memory of at least size bytes, or
NULL if an error occurred.

void free(void *ptr);
Frees the heap-allocated block starting at the specified address.

void *realloc(void *ptr, size t size);

Changes the size of the heap-allocated block starting at the specified
address to be the new specified size. Returns the address of the new,

larger allocated memory region.

54

Your role now: Heap Hotel Concierge

http://screencrave.com/wp-content/uploads/2014/03/the-grand-budapest-hotel- (a ka H e a p AI I 0 Cato r)
5

anderson-image-2.jpg 5

What is a heap allocator?

* A heap allocator is a set of functions that fulfills requests for heap memory.

* On initialization, a heap allocator is provided the starting address and size of a
large contiguous block of memory (the heap).

0x10 Ox11 0x12 0x13 0x14 0x15 0x16 Ox17 0x18 0x19

AVAILABLE

56

What is a heap allocator?

* A heap allocator is a set of functions that fulfills requests for heap memory.

* On initialization, a heap allocator is provided the starting address and size of a
large contiguous block of memory (the heap).

* A heap allocator must manage this memory as clients request or no longer
need pieces of it.

Request 1: Hi! May |
please have 2 bytes of

Allocator: Sure, I've given

you address 0x10.

heap memory?

0x10 Ox11 0x12 0x13 0x14 0x15 0x16 Ox17 0x18 0x19

AVAILABLE

57

What is a heap allocator?

* A heap allocator is a set of functions that fulfills requests for heap memory.

* On initialization, a heap allocator is provided the starting address and size of a
large contiguous block of memory (the heap).

* A heap allocator must manage this memory as clients request or no longer
need pieces of it.

Request 1: Hi! May |
please have 2 bytes of

Allocator: Sure, I've given

you address 0x10.

heap memory?

0x10 Ox11 0x12 0x13 0x14 0x15 0x16 Ox17 0x18 0x19

FOR REQUEST 1 AVAILABLE

58

What is a heap allocator?

* A heap allocator is a set of functions that fulfills requests for heap memory.

* On initialization, a heap allocator is provided the starting address and size of a
large contiguous block of memory (the heap).

* A heap allocator must manage this memory as clients request or no longer
need pieces of it.

Request 2: Howdy! May |
please have 3 bytes of

Allocator: Sure, I've given

you address Ox12.

heap memory?

0x10 Ox11 0x12 0x13 0x14 0x15 0x16 Ox17 0x18 0x19

FOR REQUEST 1 AVAILABLE

59

What is a heap allocator?

* A heap allocator is a set of functions that fulfills requests for heap memory.

* On initialization, a heap allocator is provided the starting address and size of a
large contiguous block of memory (the heap).

* A heap allocator must manage this memory as clients request or no longer
need pieces of it.

Request 2: Howdy! May |
please have 3 bytes of

Allocator: Sure, I've given

you address Ox12.

heap memory?

0x10 Ox11 0x12 0x13 0x14 0x15 0x16 Ox17 0x18 0x19

FOR REQUEST 1 FOR REQUEST 2 AVAILABLE

60

What is a heap allocator?

* A heap allocator is a set of functions that fulfills requests for heap memory.

* On initialization, a heap allocator is provided the starting address and size of a
large contiguous block of memory (the heap).

* A heap allocator must manage this memory as clients request or no longer
need pieces of it.

Request 1: I’'m done with Allocator: Thanks. Have a

the memory | requested.

Thank you! gOOd day!

0x10 Ox11 0x12 0x13 0x14 0x15 0x16 Ox17 0x18 0x19

FOR REQUEST 1 FOR REQUEST 2 AVAILABLE

61

What is a heap allocator?

* A heap allocator is a set of functions that fulfills requests for heap memory.

* On initialization, a heap allocator is provided the starting address and size of a
large contiguous block of memory (the heap).

* A heap allocator must manage this memory as clients request or no longer
need pieces of it.

Request 1: I’'m done with Allocator: Thanks. Have a

the memory | requested.

Thank you! gOOd day!

0x10 Ox11 0x12 0x13 0x14 0x15 0x16 Ox17 0x18 0x19

AVAILABLE FOR REQUEST 2 AVAILABLE

62

What is a heap allocator?

* A heap allocator is a set of functions that fulfills requests for heap memory.

* On initialization, a heap allocator is provided the starting address and size of a
large contiguous block of memory (the heap).

* A heap allocator must manage this memory as clients request or no longer
need pieces of it.

Request 3: Hello there!
Id like to request 2 bytes

Allocator: Sure thing. I've

of heap memory, please. given you address 0x10.

0x10 Ox11 0x12 0x13 0x14 0x15 0x16 Ox17 0x18 0x19

AVAILABLE FOR REQUEST 2 AVAILABLE

63

What is a heap allocator?

* A heap allocator is a set of functions that fulfills requests for heap memory.

* On initialization, a heap allocator is provided the starting address and size of a
large contiguous block of memory (the heap).

* A heap allocator must manage this memory as clients request or no longer
need pieces of it.

Request 3: Hello there!
Id like to request 2 bytes

Allocator: Sure thing. I've

of heap memory, please. given you address 0x10.

0x10 Ox11 0x12 0x13 0x14 0x15 0x16 Ox17 0x18 0x19

FOR REQUEST 3 FOR REQUEST 2 AVAILABLE

64

What is a heap allocator?

* A heap allocator is a set of functions that fulfills requests for heap memory.

* On initialization, a heap allocator is provided the starting address and size of a
large contiguous block of memory (the heap).

* A heap allocator must manage this memory as clients request or no longer
need pieces of it.

Request 3: Hi again! I'd

[] 1 ’
ke to request the region Allocator: Sure thing. I've

of memory at 0x10 be given you address 0x15.

reallocated to 4 bytes.

0x10 Ox11 0x12 0x13 0x14 0x15 0x16 Ox17 0x18 0x19

FOR REQUEST 3 FOR REQUEST 2 AVAILABLE

65

What is a heap allocator?

* A heap allocator is a set of functions that fulfills requests for heap memory.

* On initialization, a heap allocator is provided the starting address and size of a
large contiguous block of memory (the heap).

* A heap allocator must manage this memory as clients request or no longer
need pieces of it.

Request 3: Hi again! I'd

[] 1 ’
ke to request the region Allocator: Sure thing. I've

of memory at 0x10 be given you address 0x15.

reallocated to 4 bytes.

0x10 Ox11 0x12 0x13 0x14 0x15 0x16 Ox17 0x18 0x19

AVAILABLE FOR REQUEST 2 FOR REQUEST 3 AVAILABLE

66

Lecture Plan

* Into the Architecture!

* Peeking at Memory

* Architecture & The ISA

* The heap so far

* What is a heap allocator?

* Heap allocator requirements and goals
* Method O: Bump Allocator

67

Heap Allocator Functions

void *malloc(size t size);
void free(void *ptr);

void *realloc(void *ptr, size t size);

68

Heap Allocator Requirements

A heap allocator must...

Handle arbitrary request sequences of allocations and frees
Keep track of which memory is allocated and which is available
Decide which memory to provide to fulfill an allocation request
Immediately respond to requests without delay

Al S

Return addresses that are 8-byte-aligned (must be multiples of 8).

69

Heap Allocator Requirements

A heap allocator must...

A S

Handle arbitrary request sequences of allocations and frees
Keep track of which memory is allocated and which is available
Decide which memory to provide to fulfill an allocation request
Immediately respond to requests without delay

Return addresses that are 8-byte-alighed (must be multiples of 8).

A heap allocator cannot assume anything about the order of allocation
and free requests, or even that every allocation request is accompanied
by a matching free request.

70

Heap Allocator Requirements

A heap allocator must...

1.

LB W N

Handle arbitrary request sequences of allocations and frees

Keep track of which memory is allocated and which is available
Decide which memory to provide to fulfill an allocation request
Immediately respond to requests without delay

Return addresses that are 8-byte-alighed (must be multiples of 8).

A heap allocator marks memory regions as allocated or available. It
must remember which is which to properly provide memory to clients.

71

Heap Allocator Requirements

A heap allocator must...

A A

Handle arbitrary request sequences of allocations and frees

Keep track of which memory is allocated and which is available
Decide which memory to provide to fulfill an allocation request
Immediately respond to requests without delay

Return addresses that are 8-byte-alighed (must be multiples of 8).

A heap allocator may have options for which memory to use to fulfill an
allocation request. It must decide this based on a variety of factors.

72

Heap Allocator Requirements

A heap allocator must...

1.

LR W

Handle arbitrary request sequences of allocations and frees

Keep track of which memory is allocated and which is available
Decide which memory to provide to fulfill an allocation request
Immediately respond to requests without delay

Return addresses that are 8-byte-alighed (must be multiples of 8).

A heap allocator must respond immediately to allocation requests and
should not e.g. prioritize or reorder certain requests to improve
performance.

73

Heap Allocator Requirements

A heap allocator must...

Handle arbitrary request sequences of allocations and frees
Keep track of which memory is allocated and which is available
Decide which memory to provide to fulfill an allocation request
Immediately respond to requests without delay

i & L e

Return addresses that are 8-byte-aligned (must be multiples of 8).

74

Heap Allocator Goals

* Goal 1: Maximize throughput, or the number of requests completed per unit
time. This means minimizing the average time to satisfy a request.

* Goal 2: Maximize memory utilization, or how efficiently we make use of the
limited heap memory to satisfy requests.

75

* The primary cause of poor utilization is fragmentation. Fragmentation occurs
when otherwise unused memory is not available to satisfy allocation requests.

« External Fragmentation (this example): no single space is large enough to satisfy a
request, even though enough aggregate free memory is available

 Internal Fragmentation: space allocated for a block is larger than needed (more later).

* In general: we want the largest address used to be as low as possible.

Allocator: I’'m sorry, |
don’t have a 4 byte block

Request 6: Hi! May |
please have 4 bytes of

heap memory? available...

0x10 Ox11 0x12 0x13 0x14 0x15 0x16 Ox17 0x18 0x19

Req. 1 Free Req. 2 Free Req. 3 Free Req. 4 Free Req. 5 Free

76

Question: what if we shifted these blocks down to make more space? Can we
do this?

0x10

A. YES, great idea!

B. YES, it can be done, but not a good idea for some reason (e.g. not
efficient use of time)

C. NO, it can’t be done!

Ox11 Ox12 Ox13 ox14 Ox15 Ox16 ox17 ox18 Ox19

Reqg. 1

Reg.2 | Req.3 | Req.4 | Req.5 Free

Question: Can we / should we shift these blocks down to make more space?
* YES, good idea!

* YES, but not a good idea for some reason

* NO, it can’t be done!

0x10 Ox11 0x12 0x13 0x14 0x15 0x16 Ox17 0x18 0x19

Req. 1 Free Req. 2 Free Req. 3 Free Req. 4 Free Req. 5 Free

L

0x10 Ox11 0x12 0x13 0x14 0x15 0x16 Ox17 0x18 0x19

Req.1 | Req.2 | Req.3 | Req.4 | Req.5 Free

78

Question: what if we shifted these blocks down to make more space? Can we
do this?

* No - we have already guaranteed these addresses to the client. We cannot
move allocated memory around, since this will mean the client will now have
incorrect pointers to their memory!

0x10 Ox11 0x12 0x13 0x14 0x15 0x16 Ox17 0x18 0x19

Req. 1 Free Req. 2 Free Req. 3 Free Req. 4 Free Req. 5 Free

L

ox10 Ox11 Ox12 Ox13 ox14 Ox15 Ox16 ox17 ox18 Ox19

Reg.1 | Req.2 | Req.3 | Req.4 | Req.5 Free

Fragmentation

* Internal Fragmentation: an allocated block is larger than what is needed (e.g.
due to minimum block size)

* External Fragmentation: no single block is large enough to satisfy an allocation
request, even though enough aggregate free memory is available

80

Heap Allocator Goals

* Goal 1: Maximize throughput, or the number of requests completed per unit
time. This means minimizing the average time to satisfy a request.

* Goal 2: Maximize memory utilization, or how efficiently we make use of the
limited heap memory to satisfy requests.

These are seemingly conflicting goals — for instance, it may take longer to better
plan out heap memory use for each request. Heap allocators must find an
appropriate balance between these two goals!

81

Heap Allocator Goals

* Goal 1: Maximize throughput, or the number of requests completed per unit
time. This means minimizing the average time to satisfy a request.

* Goal 2: Maximize memory utilization, or how efficiently we make use of the
limited heap memory to satisfy requests.

Other desirable goals:
Locality (“similar” blocks allocated close in space)
Robust (handle client errors)
Ease of implementation/maintenance

82

Lecture Plan

* Into the Architecture!

* Peeking at Memory

* Architecture & The ISA

* The heap so far

* What is a heap allocator?

* Heap allocator requirements and goals
* Method 0: Bump Allocator

83

Bump Allocator

Let’s say we want to entirely prioritize throughput, and do not care about
utilization at all. This means we do not care about reusing memory. How could

we do this?

A bump allocator is a heap allocator design that simply allocates the next
available memory address upon an allocate request and does nothing on a free

request.

84

Bump Allocator Performance

1. Utilization 2. Throughput

D
< !&, (PN

Never reuses memory Ultra fast, short routines

Bump Allocator

A bump allocator is a heap allocator design that simply allocates the next

available memory address upon an allocate request and does nothing on a free
request.

* Throughput: each malloc and free execute only a handful of instructions:
* It is easy to find the next location to use
* Free does nothing!

 Utilization: we use each memory block at most once. No freeing at all, so no
memory is ever reused. ®

* We provide a bump allocator implementation as part of assign6 as a code
reading exercise.

86

Bump Allocator

void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);

free(b);
void *d = malloc(8);
0x10 0x14 0x18 Ox1lc 0x20 0x24 0x28 Ox2c Ox30 0x34

AVAILABLE

87

Bump Allocator

void *a = malloc(8);

void *b = malloc(4);

a 0x10
void *c = malloc(24);
free(b);
void *d = malloc(8);
Ox10 Ox14 Ox18 Ox1c Ox20 Ox24 Ox28 Ox2c Ox30 Ox34

a AVAILABLE

88

Bump Allocator

void *a = malloc(8);
void *b = malloc(4); - Ox10
void *c = malloc(24);

free(b); b ox18
void *d = malloc(8);

0x10 0x14 0x18 OXx1c 0x20 0x24 0x28 OX2C 0x30 0x34

a b + padding AVAILABLE

89

Bump Allocator

void *a = malloc(8);
void *b = malloc(4); 5 Ox10
void *c = malloc(24);

free(b); b ox18
void *d = malloc(8); C 0x20
0x10 0x14 0x18 OXx1c 0x20 0x24 0x28 OX2C 0x30 0x34

a b + padding C

90

Bump Allocator

void *a = malloc(8);
void *b = malloc(4); 5 Ox10
void *c = malloc(24);

free(b); b Ox18
void *d = malloc(8); C 0x20
0x160 0x14 0x18 Ox1c 0x20 0x24 0x28 Ox2c 0x30 0x34

a b + padding C

91

Bump Allocator

void *a = malloc(8);
C s ,

void *b = malloc(4); - Ox10
void *c = malloc(24);
free(b); 2 ox18
void *d = malloc(8); C 0x20

d NUL L
0x10 Ox14 0x18 Ox1c 0x20 Ox24 0x28 OXx2cC 0x30 Ox34

a b + padding C

92

Summary: Bump Allocator

* A bump allocator is an extreme heap allocator — it optimizes only for
throughput, not utilization.

* Better allocators strike a more reasonable balance. How can we do this?

Questions to consider:
1. How do we keep track of free blocks?

2. How do we choose an appropriate free block in which to place a newly
allocated block?

3. After we place a newly allocated block in some free block, what do we do
with the remainder of the free block?

4. What do we do with a block that has just been freed?

93

	CS107, Lecture 15��Architecture & Managing The Heap
	Lecture Plan
	Slide Number 3
	Programming Levels
	Programming Levels
	Programming Levels
	Programming Levels
	Programming Levels
	Programming Levels
	Programming Levels
	Programming Levels
	Programming Levels
	Programming Levels
	Programming Levels
	Programming Levels
	Programming Levels
	Programming Levels
	Programming Levels
	Slide Number 19
	How Does GCC Work?
	How Does GCC Work?
	How Does GCC Work?
	How Does GCC Work?
	How Does GCC Work?
	Slide Number 25
	A Two Step Process
	Slide Number 27
	Many Links
	How Does GCC Work?
	Lecture Plan
	Slide Number 31
	Speed vs Space
	Speed vs Space
	Speed vs Space
	Speed vs Space
	What is Locality?
	Who Gets to Manage the Memory?
	Lecture Plan
	Slide Number 39
	Programming Levels
	A ‘Simple’ Example
	A ‘Simple’ Example
	A ‘Simple’ Example
	A ‘Simple’ Example
	Better Design Better Performance
	Lecture Plan
	CS107 Topic 6: How do the core malloc/realloc/free memory-allocation operations work?
	Slide Number 48
	Learning Goals
	Running a program
	The Stack
	Today: The Heap
	Lecture Plan
	Your role so far: Client
	Your role now: Heap Hotel Concierge
	What is a heap allocator?
	What is a heap allocator?
	What is a heap allocator?
	What is a heap allocator?
	What is a heap allocator?
	What is a heap allocator?
	What is a heap allocator?
	What is a heap allocator?
	What is a heap allocator?
	What is a heap allocator?
	What is a heap allocator?
	Lecture Plan
	Heap Allocator Functions
	Heap Allocator Requirements
	Heap Allocator Requirements
	Heap Allocator Requirements
	Heap Allocator Requirements
	Heap Allocator Requirements
	Heap Allocator Requirements
	Heap Allocator Goals
	Utilization
	Utilization
	Utilization
	Utilization
	Fragmentation
	Heap Allocator Goals
	Heap Allocator Goals
	Lecture Plan
	Bump Allocator
	Bump Allocator Performance
	Bump Allocator
	Bump Allocator
	Bump Allocator
	Bump Allocator
	Bump Allocator
	Bump Allocator
	Bump Allocator
	Summary: Bump Allocator

