
1

CS107, Lecture 15

Architecture & Managing The Heap

Reading: B&O 9.9, 9.11

This document is copyright (C) Stanford Computer Science, Adam Keppler, and Olayinka Adekola licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Joel Ramirez, Nick Troccoli, Chris Gregg

2

Lecture Plan
• Into the Architecture!
• Peeking at Memory
• Architecture & The ISA
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Method 0: Bump Allocator

3

Into the Architecture!

4

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)scanf / printf

Program Specific Interactions

5

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

GCC

Where GCC Gets Its Name

6

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Start

How far GCC can reach

Run a.out

7

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

GNU Assembler (Inside GCC)

AS/GAS

8

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

OS Manages Program -> Hardware

RUN

9

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Processing the Machine Code

RUN

10

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

VLSI

Very-Large-Scale Integration

11

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

RTL

RTL (Register-Transfer Level)

12

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Many
Steps

Floorplanning

13

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Many
Steps

Wire Routing
– Don’t Cross the Wires

14

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Many
Steps

Clock Tree Synthesis – Got to
Time it Just Right

15

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Many
Steps

Heat & Capacitance

16

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

ASML

Checkout EUV Lithography

17

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Which layer throws
a segfault?

18

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

HAL IS
WATCHING

Program Memory Managed
By The OS

19

More on the Compiler

20

How Does GCC Work?

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227

• One Unix Command – A lot of steps!

gcc hello.c -o hello

21

How Does GCC Work?

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227

• Preprocessing – Handle Programmer Conveniences
• #Macros convert to normal C code
• Lines split by \ are joined
• Comments are removed

• NOTE: Some comments are added, but our comments are removed
• Bring in functions and variables from the headers

• This is how the #include is resolved

gcc -E hello.c > pre_processed_hello

22

How Does GCC Work?

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227

• Compilation – C to Assembly

gcc -S hello.c

• Will generate intermediate ‘human-readable’ assembly

• There are different styles/syntax for x86, we use AT&T
• AT&T is also the gcc default

23

How Does GCC Work?

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227

• Object Generation – C to Object File

gcc -c hello.c

• “Just compile; Don't link"

• This outputs a non-human readable Object File
• It is defined as a type of incomplete machine code
• With extra metadata to power linking

• Using objdump –d hello.o , we can see the assembly

24

How Does GCC Work?

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227

• Linking – Bringing All the pieces together
• Object Files & Libraries -> Fully Executable Machine Code

gcc hello.o -o hello
ld -o hello hello.o -lc -dynamic-linker /lib64/ld-linux-x86-64.so.2
/usr/lib/x86_64-linux-gnu/crt1.o /usr/lib/x86_64-linux-gnu/crti.o
/usr/lib/x86_64-linux-gnu/crtn.o

• NOTE: We can get our .o in more than one-way
gcc -c hello.c
OR
as hello.s

25

What does the Assembler Do?

26

A Two Step Process
• Pass 1: Setup Memory Addresses

• The program reads in the assembly program identifying and tracking:
• Labels
• Literals
• Data Variables

• Pass 2: Generate the Machine Code (Byte/Binary Code)
• Identify Opcode from the mnemonic assembly
• Resolve labels/literals/variables using the tables from Step 1
• Convert Data to Binary
• Identifies External (Out of Program) References and places markers for the Linker
• Setup Metadata for linking if this program has loadable parts

Final Output is not runnable, but has all the parts need if linking can complete

27

Why do we need a linker?

28

Many Links
• Every C file corresponds to a .o

• Libraries can also be made into linkable formats

• We don’t want to have to write all our code in 1 file and we want to use the STL

• Incremental Builds, change some files instead of all the files

• The linker makes this all possible

29

How Does GCC Work?

https://medium.com/@tuvo1106/the-gcc-
compilation-process-8accb463e227

• Multi-Step Process -> Multiple Failure Points

• Compilation can fail for many reasons at different points

• Mainly two areas that fail ‘Compilation’ or Linking

• If compilation succeeds, Intermediate Assembly will be good!

30

Lecture Plan
• Into the Architecture!
• Peeking at Memory
• Architecture & The ISA
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Method 0: Bump Allocator

31

Peeking at Memory

32

Speed vs Space

• CPU is the most important place
• Closer to CPU, less travel time
• But limited space, so bottleneck getting there

• Think of the CPU like downtown, generally
expensive and highly desirable real estate

• The BUS (actual technical name) is our transit
system around the computer

• Places close to the CPU are more limited and more
valuable, since they can get to the CPU faster

33

Speed vs Space

• All of Memory (Temporary Storage on the right)
and the registers is rent only, so data is constantly
moving around

• Many algorithms developed to decide which data
gets to live where and for how long

• Proper access makes a huge difference on
performance

34

Speed vs Space

• Approximate Access Times
Resource Latency Time

Register 0 Cycles (already here)

Level 1 Cache ~0.5 ns

Level 2 Cache ~7 ns (14x L1)

RAM ~100 ns (20x L2, 200x L1)

SSD ~100-150 us (~14Kx L2, 200Kx L1)

Hard (Spinning) Disk ~10 ms (~2.8Mx L2, 40Mx L1)

Network Packet CA -> Netherlands ->
CA

~150 ms (~21Mx L2, 300Mx L1)

Average Human Response Time to
Visual Stimulus

~200 ms (~28Mx L2, 400Mx L1)

For more on speed checkout:
https://www.cs.princeton.edu/courses/archive/spring20/cos217/lectures/20_Mem_Storage_Hierarchy.pdf

https://gist.github.com/jboner/2841832

https://www.cs.princeton.edu/courses/archive/spring20/cos217/lectures/20_Mem_Storage_Hierarchy.pdf
https://gist.github.com/jboner/2841832

35

Speed vs Space
• Pre-emptive requests and moving of data is critical

• Orders of Magnitude Improvements from high
locality

• Every part of the pyramid is working on making
this faster

• Better BUS, faster storage(both temporary and
permanent), bigger RAM, better algorithms

36

What is Locality?
• Temporal Locality

• Has the data been used recently? Then we expect to be used again soon

• Spatial Locality
• The data appears close together in the program/memory, so it will likely be needed at

the same time.

• Hardware and OS designers consider algorithms to predict and leverage
locality to optimize management of memory resources

• Cache in particular is a limited resource and must be used effectively to
leverage benefits

37

Who Gets to Manage the Memory?
• Registers – Managed by the Compiler/Assembler

• Cache – Managed by Hardware Designers

• Memory – Mainly the OS, influenced by hardware

• Disk – Managed by the user and occasionally OS

38

Lecture Plan
• Into the Architecture!
• Peeking at Memory
• Architecture & The ISA
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Method 0: Bump Allocator

39

Architecture & The ISA

40

Programming Levels
Application Layer (Prompt Engineering, UI/UX)

High-Level (Problem/Object Oriented) Programming Languages

Assembly Language

Operating System (aka the Machine Level)

Instruction Set Architecture Level

Micro-architecture Level

Digital Logic / Circuit Design Level

Layout for Fabrication (Defined by the OASIS Standard)Level 0

Level 7

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Etched Silicon
Lithography

Physical/Layout Design

Logic Synthesis

Microprogram Interpretation or Direct Execution

Partial Interpretation (Syscall Interface & Hardware Abstraction Layer (HAL))

Translation(Assembler)

Translation(Compiler)

Intent Interpretation (User -> Code Translation)

Processor

These levels are integrally linked

41

A ‘Simple’ Example
• MIC-1 Architecture (Tanenbaum -

Structured Computer Organization 6th
Edition)

• IJVM ISA – Subset of the Java Virtual
Machine

• A ‘Vanilla’ processor design

42

A ‘Simple’ Example
• Control Store is the most important part!

• Our ISA is defined by that unit

• 9 wires in -> 2**9 possible combinations,
2**9 (512) possible commands

• Each command drives 36 wires to control
the chip

• Assembly/Machine Language is defined by
the hardware

43

A ‘Simple’ Example
• ALU – Arithmetic & Logic Unit

• Performs Math & Logic Operations

• MAR – H are the registers

• B + Decoder – Enables Register to load onto B Bus

• Z and N act similar to our condition codes, but in a
much more limited/simple way

• C controls the C Bus, informing the destination
register to receive its value

44

A ‘Simple’ Example
• Notice how the ALU is only able to take in

the left operand from the H register

• All two operand ALU operations, would
need to first load the left operand to H

• This would be an example of a hardware
based constraint

45

Better Design Better Performance
• The MIC-2 Fixes this issue by adding

another BUS improving the Datapath

• Design directly impacts the ISA that we can
make available

45

46

Lecture Plan
• Into the Architecture!
• Peeking at Memory
• Architecture & The ISA
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Method 0: Bump Allocator

47

CS107 Topic 6: How do the
core malloc/realloc/free

memory-allocation
operations work?

48

Pulling together all our CS107 topics this quarter:
• Testing
• Efficiency
• Bit-level manipulation
• Memory management
• Pointers
• Generics
• Assembly
• And more…

49

Learning Goals

• Learn the restrictions, goals and assumptions of a heap allocator

• Understand the conflicting goals of utilization and throughput

• Learn about different ways to implement a heap allocator

50

Running a program
• Creates new process
• Sets up address space/segments
• Read executable file, load instructions, global data

Mapped from file into gray segments
• Libraries loaded on demand

• Set up stack
Reserve stack segment, init %rsp, call main

• malloc written in C, will init self on use
Asks OS for large memory region,
parcels out to service requests

Heap

Stack

Main Memory

0x60000

Shared library text/data0x7ffff770000

0x7ffffffff0000

Global data

Text (machine code)
0x40000

51

The Stack

Stack memory ”goes
away” after function
call ends.

Automatically managed
at compile-time by gcc

From Assembly:
Stack management ==
moving %rsp around
(pushq, popq, mov)

Review

Heap

Stack

Main Memory

0x60000

Shared library text/data0x7ffff770000

0x7ffffffff0000

Global data

Text (machine code)
0x40000

52

Today: The Heap

Heap memory persists
until caller indicates it
no longer needs it.

Managed by C standard
library functions
(malloc, realloc, free)

This lecture:
How does heap
management work?

Heap

Stack

Main Memory

0x60000

Shared library text/data0x7ffff770000

0x7ffffffff0000

Global data

Text (machine code)
0x40000

53

Lecture Plan
• Into the Architecture!
• Peeking at Memory
• Architecture & The ISA
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Method 0: Bump Allocator

54

Your role so far: Client
void *malloc(size_t size);
 Returns a pointer to a block of heap memory of at least size bytes, or

NULL if an error occurred.

void free(void *ptr);
 Frees the heap-allocated block starting at the specified address.

void *realloc(void *ptr, size_t size);
 Changes the size of the heap-allocated block starting at the specified

address to be the new specified size. Returns the address of the new,
larger allocated memory region.

55

Your role now: Heap Hotel Concierge

http://screencrave.com/wp-content/uploads/2014/03/the-grand-budapest-hotel-
anderson-image-2.jpg

(aka Heap Allocator)

56

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

AVAILABLE

57

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

Request 1: Hi! May I
please have 2 bytes of

heap memory?

Allocator: Sure, I’ve given
you address 0x10.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

AVAILABLE

58

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

FOR REQUEST 1 AVAILABLE

Request 1: Hi! May I
please have 2 bytes of

heap memory?

Allocator: Sure, I’ve given
you address 0x10.

59

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

Request 2: Howdy! May I
please have 3 bytes of

heap memory?

Allocator: Sure, I’ve given
you address 0x12.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

FOR REQUEST 1 AVAILABLE

60

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

Request 2: Howdy! May I
please have 3 bytes of

heap memory?

Allocator: Sure, I’ve given
you address 0x12.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

FOR REQUEST 1 FOR REQUEST 2 AVAILABLE

61

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

Request 1: I’m done with
the memory I requested.

Thank you!

Allocator: Thanks. Have a
good day!

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

FOR REQUEST 1 FOR REQUEST 2 AVAILABLE

62

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

Request 1: I’m done with
the memory I requested.

Thank you!

Allocator: Thanks. Have a
good day!

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

AVAILABLE FOR REQUEST 2 AVAILABLE

63

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

Request 3: Hello there!
I’d like to request 2 bytes
of heap memory, please.

Allocator: Sure thing. I’ve
given you address 0x10.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

AVAILABLE FOR REQUEST 2 AVAILABLE

64

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

Request 3: Hello there!
I’d like to request 2 bytes
of heap memory, please.

Allocator: Sure thing. I’ve
given you address 0x10.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

FOR REQUEST 3 FOR REQUEST 2 AVAILABLE

65

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

Request 3: Hi again! I’d
like to request the region

of memory at 0x10 be
reallocated to 4 bytes.

Allocator: Sure thing. I’ve
given you address 0x15.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

FOR REQUEST 3 FOR REQUEST 2 AVAILABLE

66

What is a heap allocator?
• A heap allocator is a set of functions that fulfills requests for heap memory.
• On initialization, a heap allocator is provided the starting address and size of a

large contiguous block of memory (the heap).
• A heap allocator must manage this memory as clients request or no longer

need pieces of it.

Request 3: Hi again! I’d
like to request the region

of memory at 0x10 be
reallocated to 4 bytes.

Allocator: Sure thing. I’ve
given you address 0x15.

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

AVAILABLE FOR REQUEST 2 FOR REQUEST 3 AVAILABLE

67

Lecture Plan
• Into the Architecture!
• Peeking at Memory
• Architecture & The ISA
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Method 0: Bump Allocator

68

Heap Allocator Functions
void *malloc(size_t size);

void free(void *ptr);

void *realloc(void *ptr, size_t size);

69

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay
5. Return addresses that are 8-byte-aligned (must be multiples of 8).

70

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay
5. Return addresses that are 8-byte-aligned (must be multiples of 8).

A heap allocator cannot assume anything about the order of allocation
and free requests, or even that every allocation request is accompanied
by a matching free request.

71

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay
5. Return addresses that are 8-byte-aligned (must be multiples of 8).

A heap allocator marks memory regions as allocated or available. It
must remember which is which to properly provide memory to clients.

72

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay
5. Return addresses that are 8-byte-aligned (must be multiples of 8).

A heap allocator may have options for which memory to use to fulfill an
allocation request. It must decide this based on a variety of factors.

73

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay
5. Return addresses that are 8-byte-aligned (must be multiples of 8).

A heap allocator must respond immediately to allocation requests and
should not e.g. prioritize or reorder certain requests to improve
performance.

74

Heap Allocator Requirements
A heap allocator must…
1. Handle arbitrary request sequences of allocations and frees
2. Keep track of which memory is allocated and which is available
3. Decide which memory to provide to fulfill an allocation request
4. Immediately respond to requests without delay
5. Return addresses that are 8-byte-aligned (must be multiples of 8).

75

Heap Allocator Goals
• Goal 1: Maximize throughput, or the number of requests completed per unit

time. This means minimizing the average time to satisfy a request.
• Goal 2: Maximize memory utilization, or how efficiently we make use of the

limited heap memory to satisfy requests.

76

Utilization
• The primary cause of poor utilization is fragmentation. Fragmentation occurs

when otherwise unused memory is not available to satisfy allocation requests.
• External Fragmentation (this example): no single space is large enough to satisfy a

request, even though enough aggregate free memory is available
• Internal Fragmentation: space allocated for a block is larger than needed (more later).

• In general: we want the largest address used to be as low as possible.

Request 6: Hi! May I
please have 4 bytes of

heap memory?

Allocator: I’m sorry, I
don’t have a 4 byte block

available…

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

Req. 1 Free Req. 2 Free Req. 3 Free Req. 4 Free Req. 5 Free

77

Req. 1 Req. 2 Req. 3 Req. 4 Req. 5 Free

Utilization

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

Question: what if we shifted these blocks down to make more space? Can we
do this?

A. YES, great idea!
B. YES, it can be done, but not a good idea for some reason (e.g. not

efficient use of time)
C. NO, it can’t be done!

78

Utilization
Question: Can we / should we shift these blocks down to make more space?
• YES, good idea!
• YES, but not a good idea for some reason
• NO, it can’t be done!

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

Req. 1 Req. 2 Req. 3 Req. 4 Req. 5 Free

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

Req. 1 Free Req. 2 Free Req. 3 Free Req. 4 Free Req. 5 Free

79

Req. 1 Req. 2 Req. 3 Req. 4 Req. 5 Free

Utilization

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

Question: what if we shifted these blocks down to make more space? Can we
do this?
• No - we have already guaranteed these addresses to the client. We cannot

move allocated memory around, since this will mean the client will now have
incorrect pointers to their memory!

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

Req. 1 Free Req. 2 Free Req. 3 Free Req. 4 Free Req. 5 Free

80

Fragmentation
• Internal Fragmentation: an allocated block is larger than what is needed (e.g.

due to minimum block size)
• External Fragmentation: no single block is large enough to satisfy an allocation

request, even though enough aggregate free memory is available

81

Heap Allocator Goals
• Goal 1: Maximize throughput, or the number of requests completed per unit

time. This means minimizing the average time to satisfy a request.
• Goal 2: Maximize memory utilization, or how efficiently we make use of the

limited heap memory to satisfy requests.

These are seemingly conflicting goals – for instance, it may take longer to better
plan out heap memory use for each request. Heap allocators must find an
appropriate balance between these two goals!

82

Heap Allocator Goals
• Goal 1: Maximize throughput, or the number of requests completed per unit

time. This means minimizing the average time to satisfy a request.
• Goal 2: Maximize memory utilization, or how efficiently we make use of the

limited heap memory to satisfy requests.

Other desirable goals:
Locality (“similar” blocks allocated close in space)

Robust (handle client errors)
Ease of implementation/maintenance

83

Lecture Plan
• Into the Architecture!
• Peeking at Memory
• Architecture & The ISA
• The heap so far
• What is a heap allocator?
• Heap allocator requirements and goals
• Method 0: Bump Allocator

84

Bump Allocator
Let’s say we want to entirely prioritize throughput, and do not care about
utilization at all. This means we do not care about reusing memory. How could
we do this?

A bump allocator is a heap allocator design that simply allocates the next
available memory address upon an allocate request and does nothing on a free
request.

85

Bump Allocator Performance

1. Utilization

Never reuses memory

2. Throughput

Ultra fast, short routines

86

Bump Allocator
A bump allocator is a heap allocator design that simply allocates the next
available memory address upon an allocate request and does nothing on a free
request.
• Throughput: each malloc and free execute only a handful of instructions:

• It is easy to find the next location to use
• Free does nothing!

• Utilization: we use each memory block at most once. No freeing at all, so no
memory is ever reused. 

• We provide a bump allocator implementation as part of assign6 as a code
reading exercise.

87

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

AVAILABLE

88

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a AVAILABLE

Variable Value

a 0x10

89

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

Variable Value

a 0x10

b 0x18

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a b + padding AVAILABLE

90

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

Variable Value

a 0x10

b 0x18

c 0x20

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a b + padding c

91

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

Variable Value

a 0x10

b 0x18

c 0x20

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a b + padding c

92

Bump Allocator
void *a = malloc(8);
void *b = malloc(4);
void *c = malloc(24);
free(b);
void *d = malloc(8);

Variable Value

a 0x10

b 0x18

c 0x20

d NULL

0x10 0x14 0x18 0x1c 0x20 0x24 0x28 0x2c 0x30 0x34

a b + padding c

93

Summary: Bump Allocator
• A bump allocator is an extreme heap allocator – it optimizes only for

throughput, not utilization.
• Better allocators strike a more reasonable balance. How can we do this?

Questions to consider:
1. How do we keep track of free blocks?
2. How do we choose an appropriate free block in which to place a newly

allocated block?
3. After we place a newly allocated block in some free block, what do we do

with the remainder of the free block?
4. What do we do with a block that has just been freed?

	CS107, Lecture 15��Architecture & Managing The Heap
	Lecture Plan
	Slide Number 3
	Programming Levels
	Programming Levels
	Programming Levels
	Programming Levels
	Programming Levels
	Programming Levels
	Programming Levels
	Programming Levels
	Programming Levels
	Programming Levels
	Programming Levels
	Programming Levels
	Programming Levels
	Programming Levels
	Programming Levels
	Slide Number 19
	How Does GCC Work?
	How Does GCC Work?
	How Does GCC Work?
	How Does GCC Work?
	How Does GCC Work?
	Slide Number 25
	A Two Step Process
	Slide Number 27
	Many Links
	How Does GCC Work?
	Lecture Plan
	Slide Number 31
	Speed vs Space
	Speed vs Space
	Speed vs Space
	Speed vs Space
	What is Locality?
	Who Gets to Manage the Memory?
	Lecture Plan
	Slide Number 39
	Programming Levels
	A ‘Simple’ Example
	A ‘Simple’ Example
	A ‘Simple’ Example
	A ‘Simple’ Example
	Better Design Better Performance
	Lecture Plan
	CS107 Topic 6: How do the core malloc/realloc/free memory-allocation operations work?
	Slide Number 48
	Learning Goals
	Running a program
	The Stack
	Today: The Heap
	Lecture Plan
	Your role so far: Client
	Your role now: Heap Hotel Concierge
	What is a heap allocator?
	What is a heap allocator?
	What is a heap allocator?
	What is a heap allocator?
	What is a heap allocator?
	What is a heap allocator?
	What is a heap allocator?
	What is a heap allocator?
	What is a heap allocator?
	What is a heap allocator?
	What is a heap allocator?
	Lecture Plan
	Heap Allocator Functions
	Heap Allocator Requirements
	Heap Allocator Requirements
	Heap Allocator Requirements
	Heap Allocator Requirements
	Heap Allocator Requirements
	Heap Allocator Requirements
	Heap Allocator Goals
	Utilization
	Utilization
	Utilization
	Utilization
	Fragmentation
	Heap Allocator Goals
	Heap Allocator Goals
	Lecture Plan
	Bump Allocator
	Bump Allocator Performance
	Bump Allocator
	Bump Allocator
	Bump Allocator
	Bump Allocator
	Bump Allocator
	Bump Allocator
	Bump Allocator
	Summary: Bump Allocator

