CS107, Lecture 16

Heap Allocators

Reading: B&0 9.9, 9.11

This document is copyright (C) Stanford Computer Science, Adam Keppler and Olayinka Adekola, licensed under Creative Commons Attribution 2.5 License. All rights reserved. Based on slides created by Nick Troccoli, Chris Gregg
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed. (without expressed written permission)

Recap: Heap Allocator Goals

* Goal 1: Maximize throughput, or the number of requests completed per unit
time. This means minimizing the average time to satisfy a request.

* Goal 2: Maximize memory utilization, or how efficiently we make use of the
limited heap memory to satisfy requests.

Recap: Fragmentation

* The primary cause of poor utilization is fragmentation. Fragmentation occurs
when otherwise unused memory is not available to satisfy allocation requests.

* External Fragmentation: no single space is large enough to satisfy a request, even
though enough aggregate free memory is available

 Internal Fragmentation: space allocated for a block is larger than needed (more later).

Lecture Plan

* Method 1: Implicit Free List Allocator

* Method 2: Explicit Free List Allocator

Implicit Free List Allocator

* Key idea: in order to reuse blocks, we need a way to track which blocks are
allocated and which are free.

* We could store this information in a separate global data structure, but this is
inefficient.

* Instead: let’s allocate extra space before each block for a header storing its
payload size and whether it is allocated or free.

 When we allocate a block, we look through the blocks to find a free one, and
we update its header to reflect its allocated size and that it is now allocated.

* When we free a block, we update its header to reflect it is now free.
* The header should be 8 bytes (or larger).
* By storing the block size of each block, we implicitly have a list of free blocks.

Implicit Free List Allocator

void *a = malloc(4);

void *b = malloc(8);

void *c = malloc(4);

free(b);

void *d = malloc(8);

free(a);

void *e = malloc(24);

0x10 Ox18 Ox20 Ox28 Ox309 Ox38 x40 Ox48 Ox50 Ox58

72

Free

Implicit Free List Allocator

void *a = malloc(4);
void *b = malloc(8); 5 Ox18
void *c = malloc(4);

free(b);

void *d = malloc(8);

free(a);

void *e = malloc(24);

0x10 Ox18 0x20 Ox28 Ox30 Ox38 x40 0x48 Ox50 Ox58

8 a+ 56
Used pad Free

Implicit Free List Allocator

void *a = malloc(4);
void *b = malloc(8); 3 0x18
void *c = malloc(4);
b Ox28
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);
0x10 Ox18 0x20 Ox28 Ox30 Ox38 0x40 Ox48 Ox50 Ox58
8 a+ 8 b 40

Used pad Used Free

Implicit Free List Allocator

void *a = malloc(4);
void *b = malloc(8); 5 Ox18
void *c = malloc(4);

free(b); b 0x28
void *d = malloc(8); C Ox33
free(a);

void *e = malloc(24);

0x10 Ox18 0x20 Ox28 Ox30 Ox38 0x40 Ox48 Ox50 Ox58

8 a+ 8 b 8 c+ 24
Used pad Used Used pad Free

Implicit Free List Allocator

void *a = malloc(4);
void *b = malloc(8); 5 Ox18
void *c = malloc(4);

free(b); b Ox28
void *d = malloc(8); C Ox33
free(a);

void *e = malloc(24);

0x10 Ox18 Ox20 Ox28 Ox309 Ox38 x40 Ox48 Ox50 Ox58

8 a+ 8 b 8 c+ 24
Used pad Free Used pad Free .

Implicit Free List Allocator

void *a = malloc(4);
void *b = malloc(8); 5 Ox18
void *c = malloc(4);
free(b); b ox28
void *d = malloc(8); C Ox38
free(a); d Ox28
void *e = malloc(24);

0x10 Ox18 0x20 Ox28 Ox30 Ox38 x40 0x48 Ox50 Ox58

3 a+ 8 q 8 c+ 24
Used pad Used Used pad Free .,

Implicit Free List Allocator

void *a = malloc(4);
void *b = malloc(8); 5 Ox18
void *c = malloc(4);
free(b); b ox28
void *d = malloc(8); C 0x38
free(a); d Ox28
void *e = malloc(24);
0x10 Ox18 Ox20 Ox28 Ox309 Ox38 x40 Ox48 Ox50 Ox58

8 a+ 8 q 8 c+ 24

Free pad Used Used pad Free s

Implicit Free List Allocator

void *a = malloc(4);
void *b = malloc(8); 5 Ox18
void *c = malloc(4);
free(b); b ox28
void *d = malloc(8); C 0x38
free(a); d Ox28
void *e = malloc(24);
e Ox438

0x10 Ox18 Ox20 Ox28 Ox309 Ox38 x40 Ox48 Ox50 Ox58

8 a+ 8 q 8 c+ 24 o

Free pad Used Used pad Used .

Implicit Free List Allocator

void *a = malloc(4);
void *b = malloc(8); 5 Ox18
void *c = malloc(4);
free(b); b ox28
void *d = malloc(8); C 0x38
free(a); d Ox28
void *e = malloc(24);
e Ox438

0x10 Ox18 Ox20 Ox28 Ox309 Ox38 x40 Ox48 Ox50 Ox58

8 a+ 8 q 8 c+ 24 o

Free pad Used Used pad Used .

Representing Headers

How can we store both a size and a status (Free/Allocated) in 8 bytes?

Int for size, int for status? no! malloc/realloc use size_t for sizes!
Key idea: block sizes will always be multiples of 8. (Why?)

* Least-significant 3 bits will be unused!
* Solution: use one of the 3 least-significant bits to store free/allocated status

15

Implicit Free List Allocator

* How can we choose a free block to use for an allocation request?
* First fit: search the list from beginning each time and choose first free block that fits.
* Next fit: instead of starting at the beginning, continue where previous search left off.
* Best fit: examine every free block and choose the one with the smallest size that fits.

* First fit/next fit easier to implement
* What are the pros/cons of each approach?

16

Implicit Free List Summary

For all blocks, Header (8 Bytes)
e Have a header that
63 3 0

stores size and status.
* Our list links all blocks, ‘ Block size ‘ 90X \
allocated (A) and free (F). !
alloc/free

Keeping track of free blocks:

* Improves memory utilization (vs bump allocator)

* Decreases throughput (worst case allocation request has O(A + F) time)
* Increases design complexity ©

17

Implicit free list header design

Should we store the block size as
(A) payload size, or
(B) header + payload size?

| Up to you! | Your decision affects how you
traverse the list (be careful of off-by-one)

18

Splitting Policy

So far, we have seen that a
reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

void *e = malloc(16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 OX48 0X50 OX58
8 a+ 8 q 8 c+ 24
Free pad Used Used pad Free .

Splitting Policy

So far, we have seen that a

void *e = malloc(16); reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?
0x10 Ox18 0x20 Ox28 Ox30 Ox38 x40 0x48 Ox50 Ox58
8 a+ 8 q 8 c+ 16 297
Free pad Used Used pad Used

20

void *e =

Splitting Policy

malloc(16);

So far, we have seen that a
reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

A. Throw into allocation for e as extra padding? Internal fragmentation —
unused bytes because of padding

0x10

0x18

0x20

0x28

0x30

Ox38

0x40

Ox48

Ox50 Ox58

Free

a+
pad

8
Used

d

8
Used

C+
pad

24
Used

e + pad

21

Splitting Policy

So far, we have seen that a
reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

void *e = malloc(16);

A. Throw into allocation for e as extra padding?

B. Make a “zero-byte free block”? External fragmentation — unused free
blocks

0x10 0x18 0x20 0x28 0x30 0x38 0x40 OX48 0X50 OX58
8 a+ 8 q 8 c+ 16 0
Free pad Used Used pad Used Free .

Revisiting Our Goals

Questions we considered:

1.
2.

How do we keep track of free blocks? Using headers!

How do we choose an appropriate free block in which to place a newly
allocated block? Iterate through all blocks.

After we place a newly allocated block in some free block, what do we do
with the remainder of the free block? Try to make the most of it!

What do we do with a block that has just been freed? Update its header!

23

Practice 1: Implicit (first-fit)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
first-fit approach?

Ox10 Ox18 Ox20 Ox28 Ox30 Ox38 ox40 Ox48 Ox50 Ox58
8 32 8 A
Free Free Used

void *b = malloc(8);

Practice 1: Implicit (first-fit)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
first-fit approach?

Ox10 Ox18 Ox20 Ox28 Ox30 Ox38 0x40 0x48 Ox50 Ox58
8 32 8 A
Free Free Used
void *b = malloc(8);
Ox10 Ox18 Ox20 Ox28 Ox30 Ox38 Ox40 Ox48 Ox50 Ox58
8 32 8
B A
Used Free Used

UReD
z’.)

Practice 2: Implicit (first-fit)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
first-fit approach?

0x10 0x18 0x20 0x28 Ox30 0x38 0x40

24 16
Free Free

void *a = malloc(8);

)

Practice 2: Implicit (first-fit)

For the following heap layout, what would the heap look like after the following

request is made, assuming we are using an implicit free list allocator with a

first-fit approach?

0x10

0x18

0x20

0x28

0x30

0x38

0x40

8
Used

A

16
Free

X Space not tracked correctly

0x10

ox18

0x20

0x28

0x30

0x38

0x40

24
Used

A

16
Free

Ox10 ox18 Ox20 Ox28 Ox30 Ox38 Ox40
24 16
Free Free
void *a = malloc(8);
Ox10 Ox18 Ox20 Ox28 Ox30 Ox38 Ox40
8 A 8 16
Used Free Free

X We can save extra for later

0x10

0x18

0x20

0x28

0x30

0x38

0x40

24
Free

16
Used

A

XX First fit chooses first available

27

Practice 3: Implicit (best-fit)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
best-fit approach?

0x10 0x18 0x20 0x28 0x30 Ox38 0x40 0x48 0x50

24 8 8
Free Free Used

A

void *b = malloc(8);

Practice 3: Implicit (best-fit)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
best-fit approach?

0x10 0x18 0x20 0x28 0x30 Ox38 0x40 0x48 0x50

24 8 8
Free Free Used

void *b = malloc(8);
0x10 0x18 0x20 Ox28 0x30 Ox38 0x40 0x48 Ox50

24 8 8
Free Used Used \-

o
z’.)

LR

Final Assignment: Implicit Allocator

* Must have headers that track block information (size, status in-use or free) —

you must use th

e 8 byte header size, storing the status using the free bits (this

is larger than the 4 byte headers specified in the book, as this makes it easier
to satisfy the alignment constraint and store information).

* Must have free
requests if possi

e Must have a ma

olocks that are recycled and reused for subsequent malloc
ole

loc implementation that searches the heap for free blocks via

an implicit list (i.e. traverses block-by-block).

* Does not need to have coalescing of free blocks

* Does not need to support in-place realloc

(Note: these could be part of an implicit allocator, it’s just not a requirement for this assignment)

30

Coalescing

void *e = malloc(24); // returns NULL!

0x10 0x18 0x20 0x28 0x30 Ox38 0x40 0x48 0x50 Ox58

8 8 8 24
Free Free Free Used

31

Coalescing

void *a = malloc(4);

You do not need to worry about this
problem for the implicit allocator, but this

is a requirement for the explicit allocator!
(More about this later).

0x10 0x18 0x20 0x28 0x30 Ox38 0x40

72
Free

Ox48 Ox50 Ox58

32

Realloc

void *a = malloc(4);
id *b = :

void *b = realloc(a, 8); 5 Ox18

0x10 0x18 Ox20 Ox28 0x30 0x38 Ox40 Ox48 x50 Ox58
3 a+ 56

Used pad Free .

ReallocC
void *a = malloc(4);

void *b = realloc(a, 8);

a Ox10

b 0x28

The implicit allocator can always move memory to a new
location for a realloc request. The explicit allocator must
support in-place realloc (more on this later).

0x10 0x18 0x20 0x28 0x30 Ox38 0x40 0x48 0x50 Ox58

8 a+ 8 40

Free pad Used b Free

34

Summary: Implicit Allocator

An implicit allocator is a more efficient implementation that has reasonable
throughput and utilization due to its recycling of blocks.

Can we do better?

1. Can we avoid searching all blocks for free blocks to reuse?

2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during realloc?

35

Lecture Plan

* Method 1: Implicit Free List Allocator

* Method 2: Explicit Free List Allocator
* Explicit Allocator
e Coalescing
* In-place realloc

36

Can We Do Better?

* It would be nice if we could jump just between free blocks, rather than all
blocks, to find a block to reuse.

* ldea: let’s modify each header to add a pointer to the previous free block and
a pointer to the next free block.

Ox10 Ox18 Ox20 Ox28 Ox30 Ox38 Ox40 ox48 Ox50 Ox58 OxX60 Ox68

8 8 56
Free Used Free

37

Can We Do Better?

* It would be nice if we could jump just between free blocks, rather than all
blocks, to find a block to reuse.

* ldea: let’s modify each header to add a pointer to the previous free block and
a pointer to the next free block.

ox10 ox18 Ox20 Ox28 Ox30 Ox38 Ox40 Ox58 OX60 OX68
8 8 8
null | 0x50 0x10 | Ox50 0x10 | null
Free Used Free N,

Can We Do Better?

* It would be nice if we could jump just between free blocks, rather than all
blocks, to find a block to reuse.

* ldea: let’s modify each header to add a pointer to the previous free block and
a pointer to the next free block.

This is inefficient — it triples the size of every header,
when we just need to jump from one free block to
another. And even if we just made free headers bigger,
it’s complicated to have two different header sizes.

Ox10 Ox18 @xzeﬂzs Ox30 \@x38 @x4@’ Ox48 l@xS@ \@x58 OxX60 OXx68

8
Free

null

0x50

8
Used

0x10

0x50

8
Free

0x10

null

39

Can We Do Better?

* It would be nice if we could jump just between free blocks, rather than all
blocks, to find a block to reuse.

* ldea: let’s modify each header to add a pointer to the previous free block and
a pointer to the next free block. This is inefficient / complicated.

* Where can we put these pointers to the next/previous free block?
* Idea: In a separate data structure?

40

Can We Do Better?

* It would be nice if we could jump just between free blocks, rather than all
blocks, to find a block to reuse.

* ldea: let’s modify each header to add a pointer to the previous free block and
a pointer to the next free block. This is inefficient / complicated.

* Where can we put these pointers to the next/previous free block?

* ldea: In a separate data structure? More difficult to access in a separate place
— prefer storing near blocks on the heap itsely.

41

Can We Do Better?

* Key Insight: the payloads of the free blocks aren’t being used, because they’re
free.

* Idea: since we only need to store these pointers for free blocks, let’s store
them in the first 16 bytes of each free block’s payload!

Ox10 Ox18 Ox20 Ox28 Ox30 Ox38 Ox40 ox48 Ox50 Ox58 OxX60 Ox68

16 24 32
Free Used Free

42

Can We Do Better?

* Key Insight: the payloads of the free blocks aren’t being used, because they’re
free.

* Idea: since we only need to store these pointers for free blocks, let’s store
them in the first 16 bytes of each free block’s payload!

First free block
0x10

X109 0x18 0x20 Ox28 0x30 Ox38 0x40 0x50 Ox58 OX60 Ox68
16 24 32
null 0x48 Ox10 null
Free Used Free .

Can We Do Better?

* Key Insight: the payloads of the free blocks aren’t being used, because they’re
free.

* Idea: since we only need to store these pointers for free blocks, let’s store
them in the first 16 bytes of each free block’s payload!

* This means each payload must be big enough to store 2 pointers (16 bytes). So
we must require that for every block, free and allocated. (why?)

Ox10 Ox18 Ox20 Ox28 Ox30 Ox38 Ox40 ox48 Ox50 Ox58 OxX60 Ox68

16 24 32
Free null 0x48 Used Free Ox10 | null

44

Explicit Free List Allocator

* This design builds on the implicit allocator, but also stores pointers to the next
and previous free block inside each free block’s payload.

* When we allocate a block, we look through just the free blocks using our linked
list to find a free one, and we update its header and the linked list to reflect its
allocated size and that it is now allocated.

* When we free a block, we update its header to reflect it is now free and
update the linked list.

This explicit list of free blocks increases
request throughput, with some costs
(design and internal fragmentation)

45

Explicit Free List: List Design

How do you want to organize your explicit free list?
(compare utilization/throughput)

A. Address-order (each block’s address
is less than successor block’s address)

B. Last-in first-out (LIFO)/like a stack, where
newly freed blocks are at the beginning of the list

C. Other (e.g., by size, etc.)

I Up to you! I

Better memory util,
Linear free

Constant free (push
recent block onto stack)

(more at end of lecture)

46

Explicit free list design

How do you want to organize your explicit free list?(utilization/throughput)

Address-order Better memory util, linear free

First free
block

0x1Q

\

x10 Ox18 0x20 /m 0x30 0x38 Ox40 mm 0x58 OXx60 OXx68
/ 4 N

16 24 32

Free null 0x48 Used Free 0x10 null

Last-in first-out (LIFO) Constant free (push recent block onto stack)

Ox70
OX50 Ox58 Ox60 0Ox68 70

First free

block

0x78

0x80

x10 Ox18 Ox2 Ox30 @x38Wx4 Ox48
N\
16 16 16 16 16
Free 0x70 0x40 Used Free 0x10 null Used Free null 0\)(10
)

Other (e.g., by size, etc.) (see textbook)

47

Implicit vs. Explicit: So Far

Implicit Free List Explicit Free List
* 8B header for size + alloc/free status * 8B header for size + alloc/free status
* Free block payloads store prev/next
free block pointers
 Allocation requests are worst-case * Allocation requests are worst-case
linear in total number of blocks linear in number of free blocks

e Implicitly address-order e Can choose block ordering

48

Revisiting Our Goals

Can we do better?

1. Can we avoid searching all blocks for free blocks to reuse? Yes! We can use
a doubly-linked list.

2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during realloc?

49

Revisiting Our Goals

Can we do better?

1. Can we avoid searching all blocks for free blocks to reuse? Yes! We can use
a doubly-linked list.

2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during realloc?

50

Lecture Plan

* Method 1: Implicit Free List Allocator

* Method 2: Explicit Free List Allocator

* Explicit Allocator
* Coalescing
* In-place realloc

51

void *a = malloc(8);

void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);
0x109 Ox18 Ox20 Ox28 Ox309 Ox38 Ox40 Ox48 Ox50
64

Free

52

void *a = malloc(8);

void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 Ox28 Ox30 Ox38 x40 0x48 Ox50

16 40
Used a+pad Free .

void *a = malloc(8);

void *b = malloc(8);

void *c = malloc(16);
free(b);

free(a);

void *d = malloc(32);

ox10 ox18 Ox20 Ox28 Ox30 Ox38 Ox40 Ox48 Ox50
16 16 16
a + pad b + pad
Used P Used P Free 5

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);

free(a);

void *d = malloc(32);

Ox10 ox18 Ox20 Ox28 Ox30 Ox38 Ox40 Ox48 OX50
16 16 16
Used a+ pad Used b + pad Used ¢ -

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

ox10 ox18 Ox20 Ox28 Ox30 Ox38 OX40 Ox48 OX50
16 16 16
a + pad b + pad C
Used P Free P Used .

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

ox10 ox18 Ox20 Ox28 Ox30 Ox38 OX40 Ox48 OX50
16 16 16
a + pad b + pad C
Free P Free P Used .

4 ka3 — .
voild *a malloc(8); We have enough memory space, but
d *ph = . .)
void *b = malloc(8); it is fragmented into free blocks
void *c = malloc(16); sized from earlier requests!
free(b);
free(a); We'd like to be able to merge
void *d = malloc(32); adjacent free blocks back together.
How can we do this?
0x10 Ox18 0x20 Ox28 Ox30 Ox38 x40 Ox48 Ox50
16 16 16
Free 3+ pac Free b+ pac Used ‘ .

Coalescing

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);

vold *d = malloc(32);

Hey, look! | have a free
neighbor. Let’s be

friends! ©
Ox28 Ox30 Ox38 0x40 ox48 Ox50
16 16 16
Free a+ pad Free b + pad Used ¢ -

Coalescing

void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);

vold *d = malloc(32);

Hey, look! | have a free
neighbor. Let’s be
friends! ©

Ox28 Ox30 Ox38 0x40 ox48 Ox50

40 16
Free Used

60

void *a = malloc(8); The process of combining adjacent
void *b = malloc(8); free blocks is called coalescing.
void *c = malloc(16);

free(b); For your explicit heap allocator only

(not required for implicit), you

free(a); should coalesce if possible when a
void *d = malloc(32); block is freed. You only need to
coalesce the most immediate right
neighbor.
0x10 Ox18 0x20 Ox28 Ox30 Ox38 x40 Ox48 Ox50
40 16

Free Used

61

Practice 1: Explicit (coalesce)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free?

0x10 0x18 0x20 0x28 0x30 Ox38 0x40 0x48 0x50 Ox58

24 16 16
Used B Free Used A

free(b);

62

Practice 1: Explicit (coalesce)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free?

ox10 ox18 Ox20 Ox28 Ox30 Ox38 Ox40 Ox48 Ox50 Ox58
24 3 16 16
Used Free Used
free(b);
ox10 ox18 Ox20 Ox28 0x30 Ox38 Ox40 Ox48 Ox50 Ox58
48 16
Free Used

63

Revisiting Our Goals

Can we do better?

1. Can we avoid searching all blocks for free blocks to reuse? Yes! We can use
a doubly-linked list.

2. Can we merge adjacent free blocks to keep large spaces available? Yes! We
can coalesce on free().

3. Can we avoid always copying/moving data during realloc?

64

Revisiting Our Goals

Can we do better?

1. Can we avoid searching all blocks for free blocks to reuse? Yes! We can use
a doubly-linked list.

2. Can we merge adjacent free blocks to keep large spaces available? Yes! We
can coalesce on free().

3. Can we avoid always copying/moving data during realloc?

65

Lecture Plan

* Method 1: Implicit Free List Allocator

* Method 2: Explicit Free List Allocator

* Explicit Allocator
e Coalescing
* In-place realloc

66

Realloc

* For the implicit free list allocator, we didn’t worry too much about realloc. We
always moved data when they requested a different amount of space.

* Note: realloc can grow or shrink the data size.

* But sometimes we may be able to keep the data in the same place. How?
* Case 1: size is growing, but we added padding to the block and can use that
e Case 2:size is shrinking, so we can use the existing block
* Case 3:size is growing, and current block isn’t big enough, but adjacent blocks are free.

67

Realloc: Growing In Place

void *a = malloc(42); a’s earlier request was too small, so
we added padding. Now they are
void *b = realloc(a, 48); requesting a larger size we can

satisfy with that padding! So realloc
can return the same address.

0x10 0x18 0x20 Ox28 0x30 Ox38 0x409 0x48 0x50 Ox58

48 2+ bad 16
Used P Free

68

Realloc: Growing In Place

void *a = malloc(42); If a realloc is requesting to shrink,
we can still use the same starting
void *b = realloc(a, 16); address.

If we can, we should try to recycle
the now-freed memory into another
freed block.

0x10 0x18 0x20 Ox28 0x30 Ox38 0x40 0x48 0x50 Ox58

48 16
a + pad

Used Free
69

Realloc: Growing In Place

void *a = malloc(42); If a realloc is requesting to shrink,
we can still use the same starting
void *b = realloc(a, 16); address.

If we can, we should try to recycle
the now-freed memory into another
freed block.

0x10 0x18 0x20 Ox28 0x30 Ox38 0x40 0x48 0x50 Ox58

16 24 16
Used Free Free

70

Realloc: Growing In Place

void *a = malloc(42); Even with the padding, we don’t
have enough space to satisfy the

void *b = realloc(a, 72); larger size. But we have an adjacent
neighbor that is free — let’s team up!

0x10 0x18 0x20 Ox28 0x30 Ox38 0x409 0x48 0x50 Ox58

48 2+ bad 16
Used P Free

71

Realloc: Growing In Place

void *a = malloc(42); Even with the padding, we don’t
have enough space to satisfy the

void *b = realloc(a, 72); larger size. But we have an adjacent
neighbor that is free — let’s team up!

Now we can still return the same
address.

0x10 0x18 0x20 Ox28 0x30 Ox38 0x40 0x48 0x50 Ox58

72
Used

72

Realloc: Growing In Place

void *a = malloc(8); For your project (explicit only), you
should combine with your right

void *b = realloc(a, 72); neighbors as much as possible until
we get enough space, or until we
know we cannot get enough space.

0x10 0x18 0x20 Ox28 0x30 Ox38 0x409 0x48 0x50 Ox58

16 2+ bad 16 24
Used P Free Free s

Realloc: Growing In Place

void *a = malloc(8); For your project (explicit only), you
should combine with your right

void *b = realloc(a, 72); neighbors as much as possible until
we get enough space, or until we
know we cannot get enough space.

0x10 0x18 0x20 Ox28 0x30 Ox38 0x409 0x48 0x50 Ox58

40 24
a

Used Free
74

Realloc: Growing In Place

void *a = malloc(8); For your project (explicit only), you
should combine with your right

void *b = realloc(a, 72); neighbors as much as possible until
we get enough space, or until we
know we cannot get enough space.

0x10 0x18 0x20 Ox28 0x30 Ox38 0x409 0x48 0x50 Ox58

72 3
Used
75

Realloc

* For the implicit free list allocator, we didn’t worry too much about realloc. We
always moved data when they requested a different amount of space.

* Note: realloc can grow or shrink the data size.

* But sometimes we may be able to keep the data in the same place. How?
* Case 1: size is growing, but we added padding to the block and can use that
e Case 2:size is shrinking, so we can use the existing block
* Case 3:size is growing, and current block isn’t big enough, but adjacent blocks are free.

* If you can’t do an in-place realloc, then you should move the data elsewhere.

76

Practice 1: Explicit (realloc)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 Ox58 0x60

16 32 16
Used Free Used

realloc(A, 24);

77

Practice 1: Explicit (realloc)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

Ox10 Ox18 Ox20 Ox28 Ox30 Ox38 Ox40 Ox48 Ox50 Ox58 OX60
16 A 32 16
Used Free Used
realloc(A, 24);
Ox10 Ox18 Ox20 Ox28 Ox30 Ox38 0x40 0x48 Ox50 Ox58 OxX60
24 A 24 16
Used Free Used

78

Practice 2: Explicit (realloc)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 Ox58 0x60

16 32 16
Used Free Used

realloc(A, 56);

79

Practice 2: Explicit (realloc)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 Ox58 0x60

16 32 16
Used Free Used

realloc(A, 56);

0x10 0x18 0x20 0x28 0x30 Ox38 0x40 0x48 0x50 Ox58 0x60

56 16
Used A Used B

80

Practice 3: Explicit (realloc)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 Ox58 0x60

16 32 16
Used Free Used

realloc(A, 48);

81

Practice 3: Explicit (realloc)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 Ox58 0x60

16 32 16
Used Free Used

realloc(A, 48);

0x10 0x18 0x20 0x28 0x30 Ox38 0x40 0x48 0x50 Ox58 0x60

56 16
Used A Used B

82

Practice 3: Explicit (realloc)

For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-

fit approach and coalesce on free + realloc in-place?

ox10 exis ox2e ox2s ex3o ex3g| For the explicit allocator, note that

16 37 we can’t have payload less than 16
Used A Free bytes, so here the only option for
the leftover 8 bytes is to use it as |

padding for the existing block.

realloc(A, 48);

0x10 0x18 0x20 0x28

56
Used A

0x30 Ox38 0x40 0x48 0x50 Ox58 0x60

16
Used

83

Final Assignment: Explicit Allocator

* Must have headers that track block information like in implicit (size, status in-
use or free) — you can copy from your implicit version

* Must have an explicit free list managed as a doubly-linked list, using the first
16 bytes of each free block’s payload for next/prev pointers.

* Must have a malloc implementation that searches the explicit list of free
blocks.

* Must coalesce a free block in free() whenever possible with its immediate right
neighbor. (only required for explicit)

* Must do in-place realloc when possible (only required for explicit). Even if an
in-place realloc is not possible, you should still absorb adjacent right free
blocks as much as possible until you either can realloc in place or can no longer
absorb and must realloc elsewhere.

84

Final Project Tips +r % W

Read B&O textbook.

e Offers some starting tips for implementing your heap allocators.
* Make sure to cite any design ideas you discover.

Honor Code/collaboration

* All non-textbook code is off-limits.

* Please do not discuss discuss code-level specifics with others.

* Your code should be desighed, written, and debugged by you
independently.

Helper Hours
* We will provide good debugging techniques and strategies!
* Come and discuss design tradeoffs! .

	CS107, Lecture 16�Heap Allocators
	Recap: Heap Allocator Goals
	Recap: Fragmentation
	Lecture Plan
	Implicit Free List Allocator
	Implicit Free List Allocator
	Implicit Free List Allocator
	Implicit Free List Allocator
	Implicit Free List Allocator
	Implicit Free List Allocator
	Implicit Free List Allocator
	Implicit Free List Allocator
	Implicit Free List Allocator
	Implicit Free List Allocator
	Representing Headers
	Implicit Free List Allocator
	Implicit Free List Summary
	Implicit free list header design
	Splitting Policy
	Splitting Policy
	Splitting Policy
	Splitting Policy
	Revisiting Our Goals
	Practice 1: Implicit (first-fit)
	Practice 1: Implicit (first-fit)
	Practice 2: Implicit (first-fit)
	Practice 2: Implicit (first-fit)
	Practice 3: Implicit (best-fit)
	Practice 3: Implicit (best-fit)
	Final Assignment: Implicit Allocator
	Coalescing
	Coalescing
	Realloc
	Realloc
	Summary: Implicit Allocator
	Lecture Plan
	Can We Do Better?
	Can We Do Better?
	Can We Do Better?
	Can We Do Better?
	Can We Do Better?
	Can We Do Better?
	Can We Do Better?
	Can We Do Better?
	Explicit Free List Allocator
	Explicit Free List: List Design
	Explicit free list design
	Implicit vs. Explicit: So Far
	Revisiting Our Goals
	Revisiting Our Goals
	Lecture Plan
	Coalescing
	Coalescing
	Coalescing
	Coalescing
	Coalescing
	Coalescing
	Coalescing
	Coalescing
	Coalescing
	Coalescing
	Practice 1: Explicit (coalesce)
	Practice 1: Explicit (coalesce)
	Revisiting Our Goals
	Revisiting Our Goals
	Lecture Plan
	Realloc
	Realloc: Growing In Place
	Realloc: Growing In Place
	Realloc: Growing In Place
	Realloc: Growing In Place
	Realloc: Growing In Place
	Realloc: Growing In Place
	Realloc: Growing In Place
	Realloc: Growing In Place
	Realloc
	Practice 1: Explicit (realloc)
	Practice 1: Explicit (realloc)
	Practice 2: Explicit (realloc)
	Practice 2: Explicit (realloc)
	Practice 3: Explicit (realloc)
	Practice 3: Explicit (realloc)
	Practice 3: Explicit (realloc)
	Final Assignment: Explicit Allocator
	Final Project Tips

