
1

This document is copyright (C) Stanford Computer Science, Adam Keppler and Olayinka Adekola, licensed under Creative Commons Attribution 2.5 License. All rights reserved. Based on slides created by Nick Troccoli, Chris Gregg
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, uploaded, or distributed. (without expressed written permission)

CS107, Lecture 16
Heap Allocators

Reading: B&O 9.9, 9.11

2

Recap: Heap Allocator Goals
• Goal 1: Maximize throughput, or the number of requests completed per unit

time. This means minimizing the average time to satisfy a request.

• Goal 2: Maximize memory utilization, or how efficiently we make use of the
limited heap memory to satisfy requests.

3

Recap: Fragmentation
• The primary cause of poor utilization is fragmentation. Fragmentation occurs

when otherwise unused memory is not available to satisfy allocation requests.

• External Fragmentation: no single space is large enough to satisfy a request, even
though enough aggregate free memory is available

• Internal Fragmentation: space allocated for a block is larger than needed (more later).

4

Lecture Plan

• Method 1: Implicit Free List Allocator

• Method 2: Explicit Free List Allocator

5

Implicit Free List Allocator
• Key idea: in order to reuse blocks, we need a way to track which blocks are

allocated and which are free.
• We could store this information in a separate global data structure, but this is

inefficient.
• Instead: let’s allocate extra space before each block for a header storing its

payload size and whether it is allocated or free.
• When we allocate a block, we look through the blocks to find a free one, and

we update its header to reflect its allocated size and that it is now allocated.
• When we free a block, we update its header to reflect it is now free.
• The header should be 8 bytes (or larger).
• By storing the block size of each block, we implicitly have a list of free blocks.

6

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Free

7

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a +
pad

56
Free

Variable Value

a 0x18

8

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a +
pad

8
Used b 40

Free

Variable Value

a 0x18

b 0x28

9

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a +
pad

8
Used b 8

Used
c +
pad

24
Free

Variable Value

a 0x18

b 0x28

c 0x38

10

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a +
pad

8
Free b 8

Used
c +
pad

24
Free

Variable Value

a 0x18

b 0x28

c 0x38

11

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a +
pad

8
Used d 8

Used
c +
pad

24
Free

Variable Value

a 0x18

b 0x28

c 0x38

d 0x28

12

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

24
Free

Variable Value

a 0x18

b 0x28

c 0x38

d 0x28

13

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

Variable Value

a 0x18

b 0x28

c 0x38

d 0x28

e 0x48

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

24
Used e

14

Implicit Free List Allocator
void *a = malloc(4);
void *b = malloc(8);
void *c = malloc(4);
free(b);
void *d = malloc(8);
free(a);
void *e = malloc(24);

Variable Value

a 0x18

b 0x28

c 0x38

d 0x28

e 0x48

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

24
Used e

15

Representing Headers
How can we store both a size and a status (Free/Allocated) in 8 bytes?

Int for size, int for status?

Key idea: block sizes will always be multiples of 8. (Why?)
• Least-significant 3 bits will be unused!
• Solution: use one of the 3 least-significant bits to store free/allocated status

no! malloc/realloc use size_t for sizes!

16

Implicit Free List Allocator
• How can we choose a free block to use for an allocation request?

• First fit: search the list from beginning each time and choose first free block that fits.
• Next fit: instead of starting at the beginning, continue where previous search left off.
• Best fit: examine every free block and choose the one with the smallest size that fits.

• First fit/next fit easier to implement
• What are the pros/cons of each approach?

17

Implicit Free List Summary
For all blocks,
• Have a header that

stores size and status.
• Our list links all blocks,

allocated (A) and free (F).

Keeping track of free blocks:
• Improves memory utilization (vs bump allocator)
• Decreases throughput (worst case allocation request has O(A + F) time)
• Increases design complexity 

Header (8 Bytes)

Block size 00X

alloc/free

0363

18

Implicit free list header design
Should we store the block size as
(A) payload size, or
(B) header + payload size?

 Your decision affects how you
traverse the list (be careful of off-by-one)
Up to you!

Up to you!

19

Splitting Policy
...
void *e = malloc(16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

24
Free

So far, we have seen that a
reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

Up to you!

20

Splitting Policy
...
void *e = malloc(16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

16
Used e ???

So far, we have seen that a
reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

Up to you!

21

Splitting Policy
...
void *e = malloc(16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

24
Used e + pad

So far, we have seen that a
reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

A. Throw into allocation for e as extra padding? Internal fragmentation –
unused bytes because of padding

Up to you!

22

Splitting Policy
...
void *e = malloc(16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used d 8

Used
c +
pad

16
Used e 0

Free

So far, we have seen that a
reasonable allocation request splits
a free block into an allocated block
and a free block with remaining
space. What about edge cases?

A. Throw into allocation for e as extra padding?
B. Make a “zero-byte free block”? External fragmentation – unused free
blocks

Up to you!

23

Revisiting Our Goals
Questions we considered:
1. How do we keep track of free blocks? Using headers!
2. How do we choose an appropriate free block in which to place a newly

allocated block? Iterate through all blocks.
3. After we place a newly allocated block in some free block, what do we do

with the remainder of the free block? Try to make the most of it!
4. What do we do with a block that has just been freed? Update its header!

24

Practice 1: Implicit (first-fit)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
first-fit approach?

void *b = malloc(8);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

32
Free

8
Used A

25

Practice 1: Implicit (first-fit)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
first-fit approach?

void *b = malloc(8);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

32
Free

8
Used A

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used B 32

Free
8

Used A

26

Practice 2: Implicit (first-fit)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
first-fit approach?

void *a = malloc(8);

0x10 0x18 0x20 0x28 0x30 0x38 0x40

24
Free

16
Free

27

Practice 2: Implicit (first-fit)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
first-fit approach?

void *a = malloc(8);

0x10 0x18 0x20 0x28 0x30 0x38 0x40

24
Free

16
Free

0x10 0x18 0x20 0x28 0x30 0x38 0x40

8
Used A 8

Free
16

Free

0x10 0x18 0x20 0x28 0x30 0x38 0x40

8
Used A 16

Free

0x10 0x18 0x20 0x28 0x30 0x38 0x40

24
Used A 16

Free

0x10 0x18 0x20 0x28 0x30 0x38 0x40

24
Free

16
Used A

 Space not tracked correctly

 We can save extra for later

 First fit chooses first available

28

Practice 3: Implicit (best-fit)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
best-fit approach?

void *b = malloc(8);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

24
Free

8
Free

8
Used A

29

Practice 3: Implicit (best-fit)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an implicit free list allocator with a
best-fit approach?

void *b = malloc(8);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

24
Free

8
Free

8
Used A

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

24
Free

8
Used B 8

Used A

30

Final Assignment: Implicit Allocator
• Must have headers that track block information (size, status in-use or free) –

you must use the 8 byte header size, storing the status using the free bits (this
is larger than the 4 byte headers specified in the book, as this makes it easier
to satisfy the alignment constraint and store information).

• Must have free blocks that are recycled and reused for subsequent malloc
requests if possible

• Must have a malloc implementation that searches the heap for free blocks via
an implicit list (i.e. traverses block-by-block).

• Does not need to have coalescing of free blocks
• Does not need to support in-place realloc
(Note: these could be part of an implicit allocator, it’s just not a requirement for this assignment)

31

Coalescing
void *e = malloc(24); // returns NULL!

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

8
Free

8
Free

24
Used

32

Coalescing
void *a = malloc(4);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Free

You do not need to worry about this
problem for the implicit allocator, but this
is a requirement for the explicit allocator!
(More about this later).

33

Realloc
void *a = malloc(4);
void *b = realloc(a, 8);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Used

a +
pad

56
Free

Variable Value

a 0x18

34

Realloc
void *a = malloc(4);
void *b = realloc(a, 8);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

8
Free

a +
pad

8
Used b 40

Free

Variable Value

a 0x10

b 0x28

The implicit allocator can always move memory to a new
location for a realloc request. The explicit allocator must
support in-place realloc (more on this later).

35

Summary: Implicit Allocator
An implicit allocator is a more efficient implementation that has reasonable
throughput and utilization due to its recycling of blocks.

Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse?
2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during realloc?

36

Lecture Plan

• Method 1: Implicit Free List Allocator

• Method 2: Explicit Free List Allocator
• Explicit Allocator
• Coalescing
• In-place realloc

37

Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free block and

a pointer to the next free block.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

8
Free

8
Used

56
Free

38

Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free block and

a pointer to the next free block.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

8
Free null 0x50 8

Used 0x10 0x50 8
Free 0x10 null

39

Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free block and

a pointer to the next free block.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

8
Free null 0x50 8

Used 0x10 0x50 8
Free 0x10 null

This is inefficient – it triples the size of every header,
when we just need to jump from one free block to
another. And even if we just made free headers bigger,
it’s complicated to have two different header sizes.

40

Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free block and

a pointer to the next free block. This is inefficient / complicated.
• Where can we put these pointers to the next/previous free block?
• Idea: In a separate data structure?

41

Can We Do Better?
• It would be nice if we could jump just between free blocks, rather than all

blocks, to find a block to reuse.
• Idea: let’s modify each header to add a pointer to the previous free block and

a pointer to the next free block. This is inefficient / complicated.
• Where can we put these pointers to the next/previous free block?
• Idea: In a separate data structure? More difficult to access in a separate place

– prefer storing near blocks on the heap itself.

42

Can We Do Better?
• Key Insight: the payloads of the free blocks aren’t being used, because they’re

free.
• Idea: since we only need to store these pointers for free blocks, let’s store

them in the first 16 bytes of each free block’s payload!

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

16
Free

24
Used

32
Free

43

Can We Do Better?
• Key Insight: the payloads of the free blocks aren’t being used, because they’re

free.
• Idea: since we only need to store these pointers for free blocks, let’s store

them in the first 16 bytes of each free block’s payload!

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

16
Free null 0x48 24

Used
32

Free 0x10 null

0x10
First free block

44

Can We Do Better?
• Key Insight: the payloads of the free blocks aren’t being used, because they’re

free.
• Idea: since we only need to store these pointers for free blocks, let’s store

them in the first 16 bytes of each free block’s payload!
• This means each payload must be big enough to store 2 pointers (16 bytes). So

we must require that for every block, free and allocated. (why?)

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

16
Free null 0x48 24

Used
32

Free 0x10 null

45

Explicit Free List Allocator
• This design builds on the implicit allocator, but also stores pointers to the next

and previous free block inside each free block’s payload.
• When we allocate a block, we look through just the free blocks using our linked

list to find a free one, and we update its header and the linked list to reflect its
allocated size and that it is now allocated.

• When we free a block, we update its header to reflect it is now free and
update the linked list.

This explicit list of free blocks increases
request throughput, with some costs
(design and internal fragmentation)

46

Explicit Free List: List Design
How do you want to organize your explicit free list?
(compare utilization/throughput)

A. Address-order (each block’s address
is less than successor block’s address)

B. Last-in first-out (LIFO)/like a stack, where
newly freed blocks are at the beginning of the list

C. Other (e.g., by size, etc.)

Better memory util,
Linear free

Constant free (push
recent block onto stack)

(more at end of lecture)

Up to you!

47

Explicit free list design
How do you want to organize your explicit free list?(utilization/throughput)
A. Address-order

B. Last-in first-out (LIFO)

C. Other (e.g., by size, etc.)

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68 0x70 0x78 0x80

16
Free 0x70 0x40 16

Used
16

Free 0x10 null 16
Used

16
Free null 0x10

Better memory util, linear free

Constant free (push recent block onto stack)

(see textbook)

Up to you!

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60 0x68

16
Free null 0x48 24

Used
32

Free 0x10 null
0x10

First free
block

0x70

First free
block

48

Implicit vs. Explicit: So Far
Implicit Free List
• 8B header for size + alloc/free status

• Allocation requests are worst-case
linear in total number of blocks

• Implicitly address-order

Explicit Free List
• 8B header for size + alloc/free status
• Free block payloads store prev/next

free block pointers

• Allocation requests are worst-case
linear in number of free blocks

• Can choose block ordering

49

Revisiting Our Goals
Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse? Yes! We can use

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during realloc?

50

Revisiting Our Goals
Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse? Yes! We can use

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available?
3. Can we avoid always copying/moving data during realloc?

51

Lecture Plan

• Method 1: Implicit Free List Allocator

• Method 2: Explicit Free List Allocator
• Explicit Allocator
• Coalescing
• In-place realloc

52

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

64
Free

53

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Used a + pad 40

Free

54

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Used a + pad 16

Used b + pad 16
Free

55

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Used a + pad 16

Used b + pad 16
Used c

56

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Used a + pad 16

Free b + pad 16
Used c

57

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Free a + pad 16

Free b + pad 16
Used c

58

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Free a + pad 16

Free b + pad 16
Used c

We have enough memory space, but
it is fragmented into free blocks
sized from earlier requests!

We’d like to be able to merge
adjacent free blocks back together.
How can we do this?

59

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

16
Free a + pad 16

Free b + pad 16
Used c

Hey, look! I have a free
neighbor. Let’s be

friends! 

60

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

40
Free

16
Used c

Hey, look! I have a free
neighbor. Let’s be

friends! 

61

Coalescing
void *a = malloc(8);
void *b = malloc(8);
void *c = malloc(16);
free(b);
free(a);
void *d = malloc(32);

The process of combining adjacent
free blocks is called coalescing.

For your explicit heap allocator only
(not required for implicit), you
should coalesce if possible when a
block is freed. You only need to
coalesce the most immediate right
neighbor.

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50

40
Free

16
Used c

62

Practice 1: Explicit (coalesce)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free?

free(b);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

24
Used B 16

Free
16

Used A

63

Practice 1: Explicit (coalesce)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free?

free(b);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

24
Used B 16

Free
16

Used A

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

48
Free

16
Used A

64

Revisiting Our Goals
Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse? Yes! We can use

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available? Yes! We

can coalesce on free().
3. Can we avoid always copying/moving data during realloc?

65

Revisiting Our Goals
Can we do better?
1. Can we avoid searching all blocks for free blocks to reuse? Yes! We can use

a doubly-linked list.
2. Can we merge adjacent free blocks to keep large spaces available? Yes! We

can coalesce on free().
3. Can we avoid always copying/moving data during realloc?

66

Lecture Plan

• Method 1: Implicit Free List Allocator

• Method 2: Explicit Free List Allocator
• Explicit Allocator
• Coalescing
• In-place realloc

67

Realloc
• For the implicit free list allocator, we didn’t worry too much about realloc. We

always moved data when they requested a different amount of space.
• Note: realloc can grow or shrink the data size.

• But sometimes we may be able to keep the data in the same place. How?
• Case 1: size is growing, but we added padding to the block and can use that
• Case 2: size is shrinking, so we can use the existing block
• Case 3: size is growing, and current block isn’t big enough, but adjacent blocks are free.

68

Realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 48);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

48
Used a + pad 16

Free

a’s earlier request was too small, so
we added padding. Now they are
requesting a larger size we can
satisfy with that padding! So realloc
can return the same address.

69

Realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

48
Used a + pad 16

Free

If a realloc is requesting to shrink,
we can still use the same starting
address.

If we can, we should try to recycle
the now-freed memory into another
freed block.

70

Realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 16);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

16
Used a 24

Free a 16
Free

If a realloc is requesting to shrink,
we can still use the same starting
address.

If we can, we should try to recycle
the now-freed memory into another
freed block.

71

Realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

48
Used a + pad 16

Free

Even with the padding, we don’t
have enough space to satisfy the
larger size. But we have an adjacent
neighbor that is free – let’s team up!

72

Realloc: Growing In Place
void *a = malloc(42);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Used a

Even with the padding, we don’t
have enough space to satisfy the
larger size. But we have an adjacent
neighbor that is free – let’s team up!

Now we can still return the same
address.

73

Realloc: Growing In Place
void *a = malloc(8);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

16
Used a + pad 16

Free
24

Free

For your project (explicit only), you
should combine with your right
neighbors as much as possible until
we get enough space, or until we
know we cannot get enough space.

74

Realloc: Growing In Place
void *a = malloc(8);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

40
Used a 24

Free

For your project (explicit only), you
should combine with your right
neighbors as much as possible until
we get enough space, or until we
know we cannot get enough space.

75

Realloc: Growing In Place
void *a = malloc(8);
...
void *b = realloc(a, 72);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58

72
Used a

For your project (explicit only), you
should combine with your right
neighbors as much as possible until
we get enough space, or until we
know we cannot get enough space.

76

Realloc
• For the implicit free list allocator, we didn’t worry too much about realloc. We

always moved data when they requested a different amount of space.
• Note: realloc can grow or shrink the data size.

• But sometimes we may be able to keep the data in the same place. How?
• Case 1: size is growing, but we added padding to the block and can use that
• Case 2: size is shrinking, so we can use the existing block
• Case 3: size is growing, and current block isn’t big enough, but adjacent blocks are free.

• If you can’t do an in-place realloc, then you should move the data elsewhere.

77

Practice 1: Explicit (realloc)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B

78

Practice 1: Explicit (realloc)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 24);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

24
Used A 24

Free
16

Used B

79

Practice 2: Explicit (realloc)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 56);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B

80

Practice 2: Explicit (realloc)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 56);
0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

56
Used A 16

Used B

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B

81

Practice 3: Explicit (realloc)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 48);

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B

82

Practice 3: Explicit (realloc)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 48);
0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

56
Used A 16

Used B

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B

83

Practice 3: Explicit (realloc)
For the following heap layout, what would the heap look like after the following
request is made, assuming we are using an explicit free list allocator with a first-
fit approach and coalesce on free + realloc in-place?

realloc(A, 48);
0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

56
Used A 16

Used B

0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48 0x50 0x58 0x60

16
Used A 32

Free
16

Used B

For the explicit allocator, note that
we can’t have payload less than 16
bytes, so here the only option for
the leftover 8 bytes is to use it as
padding for the existing block.

84

Final Assignment: Explicit Allocator
• Must have headers that track block information like in implicit (size, status in-

use or free) – you can copy from your implicit version
• Must have an explicit free list managed as a doubly-linked list, using the first

16 bytes of each free block’s payload for next/prev pointers.
• Must have a malloc implementation that searches the explicit list of free

blocks.
• Must coalesce a free block in free() whenever possible with its immediate right

neighbor. (only required for explicit)
• Must do in-place realloc when possible (only required for explicit). Even if an

in-place realloc is not possible, you should still absorb adjacent right free
blocks as much as possible until you either can realloc in place or can no longer
absorb and must realloc elsewhere.

85

Final Project Tips
Read B&O textbook.
• Offers some starting tips for implementing your heap allocators.
• Make sure to cite any design ideas you discover.
Honor Code/collaboration
• All non-textbook code is off-limits.
• Please do not discuss discuss code-level specifics with others.
• Your code should be designed, written, and debugged by you

independently.
Helper Hours
• We will provide good debugging techniques and strategies!
• Come and discuss design tradeoffs!

	CS107, Lecture 16�Heap Allocators
	Recap: Heap Allocator Goals
	Recap: Fragmentation
	Lecture Plan
	Implicit Free List Allocator
	Implicit Free List Allocator
	Implicit Free List Allocator
	Implicit Free List Allocator
	Implicit Free List Allocator
	Implicit Free List Allocator
	Implicit Free List Allocator
	Implicit Free List Allocator
	Implicit Free List Allocator
	Implicit Free List Allocator
	Representing Headers
	Implicit Free List Allocator
	Implicit Free List Summary
	Implicit free list header design
	Splitting Policy
	Splitting Policy
	Splitting Policy
	Splitting Policy
	Revisiting Our Goals
	Practice 1: Implicit (first-fit)
	Practice 1: Implicit (first-fit)
	Practice 2: Implicit (first-fit)
	Practice 2: Implicit (first-fit)
	Practice 3: Implicit (best-fit)
	Practice 3: Implicit (best-fit)
	Final Assignment: Implicit Allocator
	Coalescing
	Coalescing
	Realloc
	Realloc
	Summary: Implicit Allocator
	Lecture Plan
	Can We Do Better?
	Can We Do Better?
	Can We Do Better?
	Can We Do Better?
	Can We Do Better?
	Can We Do Better?
	Can We Do Better?
	Can We Do Better?
	Explicit Free List Allocator
	Explicit Free List: List Design
	Explicit free list design
	Implicit vs. Explicit: So Far
	Revisiting Our Goals
	Revisiting Our Goals
	Lecture Plan
	Coalescing
	Coalescing
	Coalescing
	Coalescing
	Coalescing
	Coalescing
	Coalescing
	Coalescing
	Coalescing
	Coalescing
	Practice 1: Explicit (coalesce)
	Practice 1: Explicit (coalesce)
	Revisiting Our Goals
	Revisiting Our Goals
	Lecture Plan
	Realloc
	Realloc: Growing In Place
	Realloc: Growing In Place
	Realloc: Growing In Place
	Realloc: Growing In Place
	Realloc: Growing In Place
	Realloc: Growing In Place
	Realloc: Growing In Place
	Realloc: Growing In Place
	Realloc
	Practice 1: Explicit (realloc)
	Practice 1: Explicit (realloc)
	Practice 2: Explicit (realloc)
	Practice 2: Explicit (realloc)
	Practice 3: Explicit (realloc)
	Practice 3: Explicit (realloc)
	Practice 3: Explicit (realloc)
	Final Assignment: Explicit Allocator
	Final Project Tips

