Lecture 17: Sockets Programming

Slides by Adam Keppler and Daniel Rebelsky, modeled in part off of slides from Nick Troccoli and Jerry Cain, and
content in part from Al and Beej’s Guide to Network Programming Using Internet Sockets

https://beej.us/guide/bgnet/

Announcements

Last Required Lecture! (No lecture Fri 8/8 or Mon 8/11)
Last day to resolve in person attendance grades - Fri 8/8
Final Exam Review — Wed 8/13

Final Office Hours — Wed 8/13

Final Exam will be 8/15 in Hewlett 201 3:30pm — 6:30pm
Last Lab this week (Make sure to say bye to Ben!)

Extra Credit: Sockets assighment has been posted, due 8/15

Quick Overview

CultureDuQ, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via
Wikimedia Commons

https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0

* In networking a packet is a small segment of a larger message. Data
sent over computer networks, such as the Internet, is divided into
packets. These packets are then recombined by the computer or
device that receives them.

* Think of this like an envelope — where | am sending from some
address to some address

* Packets also need port numbers to ensure they are delivered to the
correct application or process on a device, even when multiple
applications are running simultaneously

TCP and UDP

* Both run on top of IP

* Both have a port number (16 bits)
— Official port usage is assigned by IANA

— Ports under 1024 are typically reserved (i.e., on the myth
machines, you need special permission to bind to them)

— Common ports include: 22 (SSH), 53 (DNS), 80 (HTTP), 443
(HTTPS)—see also https://www.iana.org/assignments/service-
names-port-numbers/service-names-port-numbers.xhtml or
/etc/services

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

TCP and UDP (continued)

 So, to connect to a remote server, we need both an IP address and
a port number
— Quick aside on IP addresses: IPv4 addresses are only 32 bits long, which
only makes for about 4 billion total IPs, which we’ve fully allocated; IPv6
addresses, by contrast, are 128 bits long
* |Pv4 addresses are often written in dotted quad formatof 192.168.1.1

* |Pv6 addresses are a little more complicated, but can be written as
2607:£6d0:0:0:0:0:0:0 (which can also be writtenas 2607 : £6d0: :)

e Either way, IP addresses can be a little cumbersome to write, so we use DNS
(domain name service) to map from domain names (e.g.,
web.stanford.edu)to IP addresses (e.g., 171.67.215.200)

TCP and UDP (continued)

 (Quick aside on client server model: for the rest of the lecture, we’ll be
implicitly referencing this model—the rough idea is that we have a server
(imagine, e.g., Google) which serves data to one or more clients (imagine,
e.g., people Googling)

e TCPand UDP both allow us to send arbitrary bytes over the network

* |tisimportant that we send bytes in a way that both the client and server
will understand

— A protocol specifies how the bytes will be interpreted

— |P and TCP/UDP level details specify that the network byte order
should be big-endian (myth machines are little-endian)

TCP and UDP (continued)

 TCP provides a “reliable bytestream” abstraction (except in
exceptional cases, the data will arrive correctly on the other side)
— Useful for non-time critical applications (e.g., web servers (HTT P prior to
HTTP/3 runs over TCP), ssh, etc...)
 UDP provides an unreliable datagram abstraction (it’s effectively
just a userspace wrapper around IP, hence “User Datagram
Protocol”)

— Useful for time critical applications, or applications that can deal with some
data loss (e.g., video conferencing, online gaming, etc...)

SOCKET PROGRAMMING BASICS

socket ()

* int socket(int domain, int type, 1int protocol);

 The domain specifies what type of socket we want—for this lecture, it will
be one of PF INET or PE_INET6

* The type for this lecture will always be SOCK STREAM (meaning TCP, it
could also be SOCK DGRAM for UDP)

* The protocol is the protocol nhumber (e.g., one of IPPROTO TCP or
IPPROTO UDP, but we can use 0 since SOCK_STREAM means TCP, and
it will figure it out)

e Returns a “file descriptor” on success and <0 on error (setting errno as
appropriate)

Detour: file descriptors

* You may encounter the phrase “everything is a file” when working in a
Unix/Linux context

* File descriptors are one incarnation of this—a FILE * is a convenient
wrapper around a file descriptor

— Afile descriptor is an integer that the OS hands to our process that we
can use syscalls on to read/write data (e.g., read, write) or
otherwise modify (e.g., fcntl)

— WE’ll have the following file descriptors always by default: 0 (stdin),
1 (stdout), 2 (stderr)

* Note that we use file descriptors for both real files and for sockets (among
other things)

Detour: error handling

Many system calls (and wrapping C functions) can fail

In C, we’ll often see failure represented as a negative value, with errno (see man errno) set

appropriately (perror will print the corresponding error message)

— Basically every function today can fail in this manner

In 107, we’ve mostly ignored this up until this point, but there are a few ways to handle this in C

— Explicitly check every return value that might fail, write out the failure condition

— Wrap functions in safe forms (e.g., the textbook creates Write fromwrite)

— Use macros to help simplify

— gotos are often used for clean up, but given their potential for misuse, we won’t cover them to
closely here

— Onthe (optional) sockets assignment, we'll provide a few options for error handling (which you
should be doing)

Detour: man pages

* While, in general, we like to tell you to read the manpage for
the functions, the man pages for sockets programming tend to

be comparatively more difficult to actually find and
understand

* | would recommend using the fake man pages from

https://beej.us/guide/bgnet/ and then consulting the real
man pages later, as appropriate (and if necessary)

https://beej.us/guide/bgnet/

“bind”s a socket to a particular address/port combo

int bind(int sockfd, struct sockaddr
*my addr, 1int addrlen);

Note, we tend to only use bind as a server (as a client, we
tend not to actually care what our port is)

struct sockaddr

* struct sockaddr isthe generictype for a socket address, but we’ll use
struct sockaddr inorstruct sockaddr 1n6andcaﬁioa

struct sockaddr

struct sockaddr {
unsigned short sa famlly,
char sa datal[l4]; ~// 14 by

bi

struct sockaddr in {
short int sin family; // Address
unsigned short int sin port;
struct in addr sin_addr; //
unsigned char sin zero[8];

t sockaddr

bi

struct in addr {
uint32 t s addr; // that's a 32-bit int (4 bytes)

}i

struct sockaddr in6 {
u intlé t sin6 family;
u_intl6 t sin6 port; //
u int32 t sin6 flow1nfo, //
struct In6 addr siné addr;
u_int32 t sin6_scope id; // Scope

}i
struct in6_ addr
unsigned char s6 addr[16]; // IPv6 address

}i

inet pton(),inet addr(), and

inet aton()

aton and addr only work for IPv4 addresses

int 1net aton(const char *cp, struct
in addr *inp);

in addr t 1net addr(const char *cp);
cp is a string of a dotted quad IP address

int 1net pton(int af, const char *src,
vold *dst);

getaddrinfo ()

int getaddrinfo(const char *node, // e.qg. "www.example.com" or IP
const char *service, // e.g. "http" or port number
const struct addrinfo *hints,
struct addrinfo **res);

. Gives us a linked list of struct addrinfos

struct addrinfo {
int ai flags; // AI PASSIVE, AI CANONNAME, etc.
int ai family; // AF INET, AF INET6, AF UNSPEC
int ai socktype; // SOCK STREAM, SOCK DGRAM
int ai protocol; // use 0 for "any"
size t ai addrlen; // size of ai addr in bytes
struct sockaddr *ai addr; // struct sockaddr in or iné
char *ai canonname; // full canonical hostname
struct addrinfo *ai next; // linked list, next node

int bind(int sockfd, struct sockaddr
*my addr, 1int addrlen);

Binds our socket to the address and port specified by
my addr
We will often use INADDR ANY to indicate that we want to

accept any IPv4 connection (slightly different for IPv6, see
“Jumping from IPv4 to IPv6” on Beej’s guide)

listen ()

* 1nt listen(int sockfd, 1int backlog);

e Starts our socket “listening” (what a server would do)

* backlogis how many outstanding requests can be queued
until we accept them

accept()

* 1int accept (int sockfd, struct sockaddr *addr, socklen t
*addrlen) ;
* Returns a file descriptor for a remote connection

* We'llusea struct sockaddr storage (guaranteed large enough to store any
address) for the address

struct sockaddr storage {
sa family t ss_family; // address family
// all this 1s padding, implementation specific, ignore 1it:
char ss padl|[SS PADISIZE];
inte4d t ss align;
char ss pad2|[SS PAD2SIZE];

connect ()

* Iint connect(int sockfd, struct sockaddr
*serv addr, int addrlen);

* Useful for the client, connects our local socket to the remote
address

send ()

int send(int sockfd, const void *msg, 1nt
len, int flags);

Returns how many bytes were actually sent (may be less than
we requested, which we’ll have to handle)
flags can be 0 by default

Note that while we could use write, we tend to use send
instead since it lets us to more specific socket things (see the
man page for f1lags)

int recv(int sockfd, void *buf, 1int len,
int flags);

Returns how many bytes were received (no more than len)
Returns <0 on error, 0 when remote side has closed

close ()

* close(sockfd);

* Prevents any further reads or writes to the socket, the remote
peer will receive an error on trying to read or write

e Also, marks the fd as usable again (no longer counts toward
our per-process limit)

shutdown ()

* Iint shutdown (int sockfd, 1int how);

* Note that you will still have to close eventually

0 Further receives are disallowed
1 Further sends are disallowed
2 Further sends and receives are

disallowed (like close())

CODE DEMO

Handling multiple clients

 We may not get to this in lecture, but you should investigate
using select () and/orpoll () (or epoll if you wantto

get really fancy) for the assignment

	Slide 1: Lecture 17: Sockets Programming
	Slide 2: Announcements
	Slide 3: Quick Overview
	Slide 4: Packets
	Slide 5: TCP and UDP
	Slide 6: TCP and UDP (continued)
	Slide 7: TCP and UDP (continued)
	Slide 8: TCP and UDP (continued)
	Slide 9: Socket Programming Basics
	Slide 10: socket()
	Slide 11: Detour: file descriptors
	Slide 12: Detour: error handling
	Slide 13: Detour: man pages
	Slide 14: bind()
	Slide 15: struct sockaddr
	Slide 16: inet_pton(), inet_addr(), and inet_aton()
	Slide 17: getaddrinfo()
	Slide 18: bind()
	Slide 19: listen()
	Slide 20: accept()
	Slide 21: connect()
	Slide 22: send()
	Slide 23: recv()
	Slide 24: close()
	Slide 25: shutdown()
	Slide 26: Code demo
	Slide 27: Handling multiple clients

