CS 107 0
Lecture 2: Integer 2
Representations and
Bits / Bytes

1111 0001

1110 0010

0011

4-bit
two's complement
signed integer
representation

1100 0100

Computer Systems ! 8 !
Summer 2025
Stanford University

Computer Science Department
Reading:

Reader: Bits and Bytes
Textbook: Chapter 2.2

Wwno

This document is copyright (C) Stanford Computer Science, Adam Keppler, and Olayinka Adekola licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Joel Ramirez, Nick Troccoli, Chris Gregg

Some Binary Humor (It is Either Funny or Not)

ON A SCALEOF 1To 10,
HOW LIKELY 1S IT THAT
THIS QUESTION 1S
USING BINARY'?

|

wair:sm[?m)'

If you get an 11/100 on a CS test, but you claim it should be counted as a 'C', they'll probably decide you
deserve the upgrade. - https://xkcd.com/953/

https://xkcd.com/953/

Assignment O: Unix!

Assignmentpage: https://web.stanford.edu/class/cs107/assign0/

Assignment already released, due Friday, 6/27

Late submissions accepted till Sunday 6/29

Lab

https://web.stanford.edu/class/archive/cs/cs107/cs107.1258/cgi-bin/lab preferences

Labs will begin tomorrow, please make sure to fill out the
preference form.

https://web.stanford.edu/class/archive/cs/cs107/cs107.1258/cgi-bin/lab_preferences

Today's Topics

* Numerical Bases

* Binary, Bits, & Bytes

* Octal & Hexadecimal Bases
* ASCII & Characters

* Integer Representations
* Unsigned Numbers
» Signed Numbers
« Two’s Complement
 Two’s Complement Overflow
» Signed vs Unsigned Number Castingin C
» Signed and Unsigned Comparisons

» DataSizes & The sizeof Operator

« Min and Max Integer Values

« Truncating Integers

« More on Extending the Bit representation of Numbers
* Addressing and Byte Ordering

« Boolean Algebra

Combinations of bits can Encode Anything

ASCII Code: Character to Binary

0 0011 0000 o 0100 1111 m 0110 1101
1 0011 0001 P 0101 0000 n 0110 1110
2 0011 0010 Q 0101 0001 o 0110 1111
3 0011 0011 R 0101 0010 P 0111 0000
4 0011 0100 s 0101 0011 q 0111 0001
5 0011 0101 T 0101 0100 r 0111 0010
\J\/EB can EEf](:()(jEB Eif])/tt]if]g} 6 0011 0110 U 0101 0101 s 0111 0011
7 0011 0111 v 0101 0110 t 0111 0100
we Want W|th b|tS Eg, the 8 0011 1000 W 0101 0111 u 0111 0101
9 0011 1001 X 0101 1000 v 0111 0110
ASC” CharaCter set. A 0100 0001 Y 0101 1001 w 0111 0111
B 0100 0010 z 0101 1010 x 0111 1000
c 0100 0011 a 0110 0001 y 0111 1001
D 0100 0100 b 0110 0010 : 0111 1010
E 0100 0101 c 0110 0011 ; 0010 1110
F 0100 0110 a 0110 0100 . 0010 0111
G 0100 0111 e 0110 0101 : 0011 1010
H 0100 1000 £ 0110 0110 ; 0011 1011
I 0100 1001 g 0110 0111 ? 0011 1111
J 0100 1010 h 0110 1000 ! 0010 0001
K 0100 1011 I 0110 1001 ' 0010 1100
L 0100 1100 3 0110 1010 " 0010 0010
M 0100 1101 k 0110 1011 (0010 1000
N 0100 1110 1 0110 1100) 0010 1001

space 0010 0000 6

Number Representations

* Unsigned Integers: positive and O integers. (e.g. 0, 1, 2, ... 99999...
 Signed Integers: negative, positive and 0 integers. (e.g. ...-2, -1, 0, 1,... 9999...)

* Floating Point Numbers: real numbers. (e,g. 0.1, -12.2, 1.5x1012)
L | ook up IEEE floating point if you’re interested © !

C declaration Bytes
Signed Unsigned 32-bit 64-bit
On the myth computers (and signed] char unsigned char 1 1
most 64-bit computers today), short unsigned short 2 2
the int representation is int unsigned 4 4
comprised of 32-bits, or four 8- long unsigned long 4 8
bit bytes. NOTE: C_ language nt32 t wint32 t 4 4
does not mandate sizes. To the , ,
. . int64d t uint64d t 8 8
right is Figure 2.3 from your)
textbook: char 4 8
float 4 4
double 8 8

C declaration Bytes

Signed Unsigned 32-bit 64-bit
There are guarantees on the signed] char unsigned char 1 :
lower-bounds for type sizes, but short unsigned short 2 2
you should expect that the myth int unsigned 4 4
machines will have the numbers long unsigned long 4 8
In the 64-bit column. int32 t wint32 t 4 4
int64d t uint64d t 8 8
char * 4 8
float 4 4
double 8 8

C declaration Bytes
Signed Unsigned 32-bit 64-bit
signed] char unsigned char 1 1
_ short unsigned short 2 2
You can be guaranteed the sizes | _
, int unsigned 4 4
forint32 t (4 bytes)and |
int64 t (8 bytes) long unsigned long 4 8
int32 t uint32 t 4 4
int64d t uint64d t 8 8
char * 4 8
float 4 4
double 8 8

10

: C declaration Bytes
C allows a variety of ways to

order keywords to define a type. Signed Unsigned 32-bit 64-bit

The following all have the same [signed] char unsigned char 1 1

meaning: short unsigned short 2 2

unsigned long int unsigned 4 4

unsigned long int long unsigned long 4 8

long unsigned int32_t uint32_t 4 4

long unsigned 1int int64_ t uint64_ t 8 8

char * 4 8

float 4 4

double 8 8

11

Transitioning To Larger Datatypes

bit

e Early 2000s: most computers were 32-bit. This means that pointers were 4
bytes (32 bits).

e 32-bit pointers store a memory address from 0 to 232-1, equaling 232 bytes of
addressable memory. This equals 4 Gigabytes, meaning that 32-bit
computers could have at most 4GB of memory (RAM)!

* Because of this, computers transitioned to 64-bit. This means that datatypes
were enlarged; pointers in programs were now 64 bits.

* 64-bit pointers store a memory address from 0 to 294-1, equaling 294 bytes of
addressable memory. This equals 16 Exabytes, meaning that 64-bit
computers could have at most 1024*1024*1024*16 GB of memory (RAM)! ,

Addressing and Byte Ordering

32 64

. bit J bit

On the myth machines, pointers are 64-bits long, meaning that a program can "address" up to 264 bytes of memory,
because each byte is individually addressable.

This is a lot of memory! It is 16 exabytes, or 1.84 x 1019 bytes. Older, 32-bit machines could only address 232 bytes, or 4
Gigabytes.

64-bit machines can address 4 billion times more memory than 32-bit machines...

Machines will not need to address more than 264 bytes of memory for a long, long time.

13

* If you exceed the maximum value of your bit representation, you wrap around
or overflow back to the smallest bit representation.

©b1111 + Obl = ©bOOLO

* If you go below the minimum value of your bit representation, you wrap
around or overflow back to the largest bit representation.

Obovoe - Obl = Ob1l1l1ll

14

Overflow In Unsigned Addition

When integer operations overflow in C, the runtime does not produce an error:

#include<stdio.h>
#include<stdlib.h>
#include<limits.h>

// for UINT MAX

int main () {
unsigned int a = UINT MAX;
unsigned int b = 1;
unsigned int ¢ = a + b;
printf ("a = %u\n",a);
printf ("b = %u\n",Db);

printf("a + b

} return O0;

= Su\n",c);

S ./unsigned overflow
a = 4294967295

b =1

a + b =20

Technically, unsigned integers in C don't
overflow, they just wrap. You need to be
aware of the size of your numbers. Here is
one way to test if an addition will falil:

// for addition

#include <limits.h>

unsigned int a = <something>;
unsigned int x = <something>;

if (a > UINT MAX - x) /* "a + x° would overflow */;

15

Unsigned Integers

For positive (unsigned) integers, there is a 1-to-1 relationship between the decimal
representation of a number and its binary representation. If you have a 4-bit
number, there are 16 possible combinations, and the unsigned numbers go from O
to 15:

00000 = 0 Ob0001 = 1 0pb0010 = 2 Ob0011 = 3
0b0100 = 4 Ob0101 = 5 O0b0110 = © O0b0111 = 7
0b1000 = 8 Ob1001 = 9 Ob1010 = 10 Ob1011 = 11
0b1100 = 12 Ob1101 = 13 Ob1110 = 14 Ob1111 = 15

The range of an unsigned number is 0 — 2w- 1, where w is the number of bits in
our integer. For example, a 32-bit int can represent numbers from 0 to 232 - 1,

or 0to 4,294,967,295.

16

Unsigned Integers

15 1

0000

14 1111 0001

1110 0010

13

1101 0011

4-bit
1100 unsigned integer 0100
representation

12

1011 0101

11

17

Computers use a limited number of bits for numbers

#include<stdio.h>
#include<stdlib.h>

int main () {
int a = 200;
int b = 300;
int c 400;

int d 500;

int answer = a * b * ¢ * d;
printf ("%d\n", answer) ;
return O;

S gcc —-g -00 mult-test.c -o
S ./mult-test
-884901888

S

200 * 300 * 400 * 500

mult—-test

12,000,000,000

18

Computers use a limited number of bits for numbers

4include<stdio.h> Recall that in base 10, you can represent: 10

#include<stdlib.h> numbers with one digit (0 - 9),
100 numbers with two digits (00 - 99),
int main () { 1000 numbers with three digits (000 - 999)

int a 200;

l.e., with n digits, you can representup to 10"
int b 300;

numbers.
int c 400,
int d = 500; In base 2, you can represent:
int answer = a * b * ¢ * d; 2 numbers with one digit (0 - 1)
printf ("%d\n",answer); 4 numbers with two digits (00 - 11)
return 0; 8 numbers with three digits (000 - 111)

l.e., with n digits, you can represent up to 2"
numbers

The C int type is a "32-bit" number, meaning it uses 32 digits. That
means we can represent up to 24 numbers. 19

Computers use a limited number of bits for numbers

032 = 4,294,967,296

#include<stdio.h>
#include<stdlib.h> 200 * 300 * 400 * 500

12,000,000,000

int main() |
int a = 200;
int b = 300;
int ¢ = 400;

int d = 500;

int answer = a * b * ¢ * d; problem?
printf ("$d\n", answer) ;

return 0; Turns out it is worse -- ints are signed,

meaning that the largest positive number is
(2% / 2) -1 =

S gcc —-g -00 mult-test.c -o mult- .

test 2 - 1 = 2,147,483, 047

$./mult-test
-884901888

S 20

Computers use a limited number of bits for numbers

#include<stdio.h>
#include<stdlib.h>

int main() { The good news: all of the following produce
int a = 200; the same (wrong) answer:
int b = 300;
int ¢ = 400;
int d = 500; (500 * 400) * (300 * 200)
int answer = a * b * ¢ * d; ((500 = 400) = 300) * 200
printf ("%d\n",answer) ; ((200 * 500) * 300) * 400

return 0;

400 * (200 * (300 * 500))

$ gcc -g -00 mult-test.c -o mult-

test

S ./mult-test

-884901888

S 21

Let's look at a different program

#include<stdio.h>
#include<stdlib.h>

int main() {
float a = 3.14;
float b = 1e20;

printf (" (3.14 + 1e20) - 1e20
printf("3.14 + (1e20 - 1e20)

return 0;

$ gcc -g -0g -std=gnu99 float-mult-
test.c -o float—-mult-test

S ./float-mult-test.c
(3.14 + 1e20) - 1e20 = 0.000000
3.14 + (1le20 - 1e20) = 3.140000 bigger problem!)

S

Information Storage

23

Information Storage

In C, everything can be thought of as a block of 8 bits

24

Information Storage

In C, everything can be thought of as a block of 8 bits
called a "byte"

25

Byte Range

Because a byte is made up of 8 bits, we can represent the range of a byte as
follows:

00000000to 11111111

This range is 0 to 255 in decimal.

But, neither binary nor decimal is particularly convenient to write out bytes
(binary is too long, and decimal isn't numerically friendly for byte

representation)

So, we use "hexadecimal," (base 16).

26

 When working with bits, oftentimes we have large numbers with 32 or 64 bits.
* Instead, we’ll represent bits in base-16 instead; this is called hexadecimal.

0110 1010 0011

-

0-15 0-15 0-15

27

 Hexadecimal is base-16, so we need digits for 1-15. How do we do this?

0123456789 abcdef

10 11 12 13 14 15

28

Hexadecimal

Hexadecimal has 16 digits, so we augment our normal 0-9 digits with six
more digits: A, B, C, D, E,and k.

Figure 2.2 in the textbook shows the hex digits and their binary and decimal
values:

Hex digit 0 1 2 3 4 5 6 7
Decimal value 0 1 2 3 4 5 6 T
Binary value 0000 0001 0010 0011 0100 0101 0110 0111

Hex digit 8 9 A B C D E F
Decimal value 8 9 10 11 12 13 14 15

Binary value 1000 1001 1010 1011 1100 1101 1110 1111
29

 When working with bits, oftentimes we have large numbers with 32 or 64 bits.
* Instead, we’ll represent bits in base-16 instead; this is called hexadecimal.

-

0-15 0-15 0-15

Each is a base-16 digit!

30

* We distinguish hexadecimal numbers by prefixing them with @x, and binary
numbers with @b. These prefixes also work in C

* E.g. Oxf5is 0b11110101

Oxf 5
Y oY

31

Practice: Hexadecimal to Binary

What is @x173A in binary?

Hexadecimal 1 7 3 A
Binary 0001 0111 0011 1010

32

Practice: Hexadecimal to Binary

What is 801111001010 in hexadecimal? (Hint: start from the right)

Binary 11 1100 1010
Hexadecimal 3 C A

33

Hexadecimal

Convert: 0b1111001010110110110011 to hexadecimal.

Binary 11 1100 1010 1101 1011 0011 (startfrom the right)

Hexadecimal 3 C A D B 3

Hex digit 0 1 2 3 4 5 6 7

0b1111001010110110110011 pecimalvale 0o 1 2 38 4 5 6 7
IS hexadeC|maI 3CADB3 Binary value 0000 0001 0010 0011 0100 0101 0110 0111

Hex digit 8 9 A B C D E F
Decimal value 8 9 10 11 12 13 14 15
Binary value 1000 1001 1010 1011 1100 1101 1110 1111

34

Hexadecimal

Convert: 0b1111001010110110110011 to hexadecimal.

Binary 11 1100 1010 1101 1011 (0011 (startfrom the right)

Hexadecimal 3 C A D B 3

Hex digit 0 1 2 3 4 5 6 7

0b1111001010110110110011 Decimal valuie =~ O 1 2 3 4 5 6 7
IS hexadeCImaI 3CADB3 Binary value 0000 0001 0010 0011 0100 0101 0110 0111

Hex digit 8 9 A B C D E F
Decimal value 8 9 10 11 12 13 14 15
Binary value 1000 1001 1010 1011 1100 1101 1110 1111

35

Hexadecimal

Convert: 0b1111001010110110110011 to hexadecimal.

Binary 11 1100 1010 1101 (011> 0011 (startfrom the right)

Hexadecimal 3 C A D B 3

Ob1111001010110110110011
IS hexadecimal 3CADB3 Hex digit o 1 2 3 4 5 6 7

Decimal value 0 1 2 3 4 5 6 4
Binary value 0000 0001 0010 0011 0100 0101 0110 0111

Hex digit 8 9 A B C D E F
Decimal value 8 9 10 11 12 13 14 15
Binary value 1000 1001 1010 1011 1100 1101 1110 1111

36

Hexadecimal

Convert: 0b1111001010410110110011 to hexadecimal.

Binary 11 1100 1010 (11010 1011 0011 (startfrom the right)

Hexadecimal 3 C A D B 3

Hex digit 0 1 2 3 4 5 6 7

0b1111001010110110110011 pecimarvalwe o ¢t 2 3 4 5 6 7
IS hexadeC|maI 3CADB3 Binary value 0000 0001 0010 0011 0100 0101 0110 0111

Hex digit 8 9 A B C D E F
Decimal value 8 9 10 11 12 13 14 15
Binary value 1000 1001 1010 1011 1100 1101 1110 1111

37

Hexadecimal

Convert: 0b1111001010110110110011 to hexadecimal.

Binary 11 1100 010> 1101 1011 0011 (startfrom the right)

Hexadecimal 3 C A D B 3

Hex digit 0 1 2 3 4 5 6 7

0b1111001010110110110011 pecimarvalwe o ¢t 2 3 4 5 6 7
IS hexadeC|maI 3CADB3 Binary value 0000 0001 0010 0011 0100 0101 0110 0111

Hex digit 8 9 A B C D E F
Decimal value 8 9 10 11 12 13 14 15
Binary value 1000 1001 1010 1011 1100 1101 1110 1111

38

Hexadecimal

Convert: 0p1141001010110110110011 to hexadecimal.

Binary 11 @1000 1010 1101 1011 0011 (startfrom the right)

Hexadecimal 3 C A D B 3

Ob1111001010110110110011
IS hexadecimal 3CADB3 Hex digit o 1 2 3 4 5 6 7

Decimal value 0 1 2 3 4 5 6 4
Binary value 0000 0001 0010 0011 0100 0101 0110 0111

Hex digit 8 9 A B C D E F
Decimal value 8 9 10 11 12 13 14 15
Binary value 1000 1001 1010 1011 1100 1101 1110 1111

39

Hexadecim

Convert: 0p1111001010110110110011 to hexadecimal.

Binary 11 1100 1010 1101 1011 0011 (startfrom the right)

Hexadecimal 3 C A D B 3

Ob1111001010110110110011
IS hexadecimal 3CADR?3 Hex digit o 1 2 3 4 5 6 7

Decimal value 0 1 2 3 4 5 6 4
Binary value 0000 0001 0010 0011 0100 0101 0110 0111

Hex digit 8 9 A B C D E F
Decimal value 8 9 10 11 12 13 14 15
Binary value 1000 1001 1010 1011 1100 1101 1110 1111

40

Decimal to Hexadecimal

To convert from decimal to hexadecimal, you need to repeatedly divide
the number in question by 16, and the remainders make up the digits of
the hex number:

314156 decimal:

314,156 / 16 = 19,634 with 12 remainder: C
19,634 / 16 = 1,227 with 2 remainder: 2
1,227 / 16 = 76 with 11 remainder: B
76 / 16 = 4 with 12 remainder: C
4 / 16 = 0 with 4 remainder: 4

Reading from bottom up: 0x4CB2C

41

Hexidecimal

To convert from hexadecimal to decimal, multiply each of the hexadecimal
digits by the appropriate power of 16:

OxTAF:

7 * 1672 + 10 * 16 + 15
7 *x 266 + 160 + 15
= 1792 + 160 + 15 = 1967

42

Hexadecimal: It's funky but concise

* Let’s take a byte (8 bits):

165

©b10100101

Oxab

Base-10: Human-readable,
but cannot easily interpret on/off bits

Base-2: Yes, computers use this,
but not human-readable

Base-16: Easy to convert to Base-2,

More “portable” as a human-readable format
(fun fact: a half-byte is called a nibble or nybble)

43

Let the computer do It!

Honestly, hex to decimal and vice versa are easy to let the computer
handle. You can either use a search engine (Google does this
automatically), or you can use a python one-liner:

e _ @ 4. cgregg@myth10: ~ {ssh)

:~$ python -c "print(hex(314156))"

Ox4cb2c
:~$ python -c "print(ox7af)"

:~$

1967

44

Let the computer do it!

You can also use Python to convert to and from binary:

| NN] 4. cgregg@myth10: ~ (ssh)

:~$ python -c "print(bin(0x173A4C))"
Mb1011100111010016011060

:~$ python -c "print(hex(0b11110010101101160110011))"

:~$ i

Ox3cadb3

(but you should memorize this as it is easy and you will use it frequently)

45

Let the computer do it!

You can also use Python to convert to and from binary:

| NN] 4. cgregg@myth10: ~ (ssh)

:~$ python -c "print(bin(0x173A4C))"
0b101110011101001001160

:~$ python -c "print(hex(0b11110010101101160110011))"

:~$ i

Ox3cadb3

(also might show up in an offline exam &)

46

How to Represent A Signhed Value

A signed integer is a negative, O, or positive
Integer.

How can we represent both negative and
positive numbers in binary?

47

Sighed Integers

* Asigned integer is a negative integer, O, or a positive integer.
* Problem: How can we represent negative and positive numbers in binary?

ldea: let's reserve the most
significant bit to store the sign.

Sign Magnitude Representation

0110
Lo 1
1011
P

negative 3

Sign Magnitude Representation

0000

positive O \
1000
L'J_'_l

negative O

Sign Magnitude Representation

1000=-0 0000=0
1001=-1 0001=1
1010=-2 0010=2
1011=-3 0011=3
1100=-4 0100=4
1101=-5 0101=5
1110=-6 0110=6
1111=-7 O0111=7

 We've only represented 15 of our 16 available numbers!

51

Sign Magnitude Representation AKA Ones

Complement

* Pro: easy to represent, and easy to convert to/from decimal.
e Con: +-0 is not intuitive
e Con: we lose a bit that could be used to store more numbers

* Con: arithmetic is tricky: we need to find the sign, then maybe subtract
(borrow and carry, etc.), then maybe change the sign. This complicates the
hardware support for something as fundamental as addition.

Can we do better?

52

Now Lets Try a Better Approach!

A Better Idea

* |deally, binary addition would just work regardless of whether the number is

0101
2777

0000

54

A Better Idea

* |deally, binary addition would just work regardless of whether the number is

positive or negative. O 1 O 1
+1011

0000

55

A Better Idea

* |deally, binary addition would just work regardless of whether the number is

0011
277?77

0000

56

A Better Idea

* |deally, binary addition would just work regardless of whether the number is

positive or negative. O O 1 1
+1101

0000

57

A Better Idea

* |deally, binary addition would just work regardless of whether the number is

0000
2777

0000

58

A Better Idea

* |deally, binary addition would just work regardless of whether the number is

positive or negative. O O O O
<0000

0000

59

A Better Idea

T I

0000 0000 1000 1000
1 0001 1111 9 1001 (same as -7!) NA
2 0010 1110 10 1010 (same as -6!) NA
3 0011 1101 11 1011 (same as -5!) NA
4 0100 1100 12 1100 (same as -4!) NA
5 0101 1011 13 1101 (same as -3!) NA
6 0110 1010 14 1110 (same as -2!) NA

7 0111 1001 15 1111 (same as -1!) NA

60

There Seems Like a Pattern Here...

0101 0011 0000
+1011 41101 0000

0000 0000 0000

* The negative number is the positive number inverted, plus one!

There Seems Like a Pattern Here...

A binary number plus its all 1s. Add 1 to this to all 1s and get 0!

0101 1111
+1010 +0001

1111 0000

Another Trick

* To find the negative equivalent of a number, work right-to-left and write down
all digits through when you reach a 1. Then, invert the rest of the digits.

100100
222227

000000

63

Another Trick

* To find the negative equivalent of a number, work right-to-left and write down
all digits through when you reach a 1. Then, invert the rest of the digits.

100100
+27272100
000000

64

Another Trick

* To find the negative equivalent of a number, work right-to-left and write down
all digits through when you reach a 1. Then, invert the rest of the digits.

100100
+011100

000000

65

Two’'s Complement

0000

1111 0001

1110 0010

1101 0011

4-pit

two's complement
signed integer

representation

1100 0100

66

Two’'s Complement

* Intwo’s complement, we represent a

positive number as itself, and its
negative equivalent as the two’s
complement of itself.

* The two’s complement of a number is

the binary digits inverted, plus 1.

* This works to convert from positive to

negative, and back from negative to
positive!

0000

1111 0001

1110 0010

1101 0011

4-pit

two's complement
signed integer

representation

1100 0100

-8 67

Two’'s Complement

* Con: more difficult to represent, and
difficult to convert to/from decimal and
between positive and negative.

* Pro: only 1 representation for O!

* Pro: all bits are used to represent as
many numbers as possible

* Pro: the most significant bit still indicates
the sign of a number.

* Pro: addition works for any combination
of positive and negative!

0000

1111 0001

1110 0010

1101 0011

4-pit

two's complement
signed integer

representation

1100 0100

-8 68

Two’'s Complement

e Adding two numbers is just...adding! There is no special case needed for
negatives. E.g. whatis 2 +-5?

0010 2
+1011 -9

1101 =

Two’'s Complement

* Subtracting two numbers is just performing the two’s complement on one of
them and then adding. E.g. 4-5 =-1.

0100 0100
0101 5 __, +1011 -9
1111«

How to Read Two’'s Complement #s

* Multiply the most significant bit by -1 and multiply all the other bits by 1 as normal

=1*8+14+1*2+0*1 =-2

71

How to Read Two’'s Complement #s

* Multiply the most significant bit by -1 and multiply all the other bits by 1 as normal

0110

=0*-8+14+1"2+0*1 =06

72

Practice: Two’'s Complement

What are the negative or positive equivalents of the numbers below?
a) -4(1100)
b) 7(0111)
c) 3(0011)

73

Practice: Two’'s Complement

What are the negative or positive equivalents of the numbers below?
a) -4 (1100) -> 4 (0100) _ 0

b) 7(0111) ->(1001)
c) 3(0011)->(1101)

0000

1111 0001

1110 0010

1101 0011

4-bit

two's complement
signed integer

representation

1100 0100

74

Some Extra Slides for Review

Two's Complement

In practice, a negative number in two's
complement is obtained by inverting all

the bits of its positive counterpart*, and
thenaddingl,or:x = ~x + 1

Example: The number 2 is represented as normal in
binary: 0010

-2 is represented by inverting the bits, and adding 1:

0010 = 1101

1101
+ 1
1110

8 *Inverting all the bits of a number is its "one's complement" 76

Two's Complement

To convert a negative number to a
positive number, perform the same
steps!

Example: The number -5 is represented in two's
complements as: 1011

5 is represented by inverting the bits, and adding 1.:

1011 = 0100

0100
+ 1
0101

Shortcut: start from the right, and write down
numbers until you get to a 1.:
1
Now invert all the rest of the digits:
0101 7

Two's Complement: Neat Properties

There are a number of useful properties
associated with two's complement
numbers:

1. Thereis only one zero (yay!)

2. The highest order bit (left-most) is 1
for negative, O for positive (so it Is
easy to tell if a number is negative)

3. Adding two numbers is just...adding!
Example:
2+ -5=-3

0010 = 2
+1011 =-5

1101 = -3 decimal (wow!)

78

Two's Complement: Neat Properties

More useful properties:

4. Subtracting two numbers is simply
performing the two's complement on
one of them and then adding.
Example:
4-5=-1

0100 1= 4,0101 == 5

Find the two's complement of 5: 1011
add:
0100 = 4

+1011 = -5

Two's Complement: Neat Properties

More useful properties:

5. Multiplication of two's complement
works just by multiplying (throw away
overflow digits).

Example: -2 *-3 =6

1110 == -2
x1101 1= -3

1110
0000
1110
+1110
10110110 = 6

80

Convert the following 4-bit numbers
from positive to negative, or from
negative to positive using two's
complement notation:

a. -4 (1100) =
b. 7(0111) =
c. 3(0011) r=

d. -8 (1000) 1=

81

Convert the following 4-bit numbers
from positive to negative, or from
negative to positive using two's
complement notation:

a. -4 (1100) == 0100
b. 7 (0111) = 1001
c. 3(0011) = 1101

d. -8 (1000) = 1000 (?! If you look at
the chart, +8 cannot be represented
In two's complement with 4 bits!) .

Convert the following 8-bit numbers
from positive to negative, or from
negative to positive using two's
complement notation:

a. -4 (11111100) = 00000100
b. 27 (00011011) === 11100101

c. -127 (10000001) r=- 01111111

d. 1(00000001) = 11111111

83

History: Two's complement

* Two’s Complement was first proposed by John von
Neumann in First Draft of a Report on the EDVAC
(1945)

* That same year, he also invented the merge sort algorithm

* Many early computers used +7 ©0boooO 0111
sign-magnitude or -7 ©b1111 1000
one’s complement 8-bit one’s complement

* The System/360, developed by IBM in 1964, was
widely popular (had 1024KB memory) and
established two’s complement as the dominant
binary representation of integers

Casting Between Signed and Unsigned

Converting between two numbers in C can happen explicitly (using a
parenthesized cast), or implicitly (without a cast):

explicit implicit

ty; ty;
2junsigned ux, uy; 2flunsigned ux, uy;

(int) ux; = ux; // cast to signed
(unsigned) ty; ty; // cast to unsigned

When casting: the underlying bits do not change, so there isn't any
conversion going on, except that the variable is treated as the type that it is.
NOTE: Converting a signed number to unsigned preserves the bits not the
number!

85

Casting Between Signed and Unsigned

When casting: the underlying bits do not change, so there isn't any
conversion going on, except that the variable is treated as the type that it is.
You cannot convert a signed number to its unsigned counterpart using a cast!

1)// test cast.c
2Hfinclude<stdio.h>
3MHinclude<stdlib.h>

$./test cast
= -12345, uv = 4294954951

S5kint main () {
int v = =-12345;

unsigned int uv = (unsigned int) v;

Signed -> Unsigned
printf("v = %d, uv = %u\n",v,uv); -12345 goes to 4294954951

return 0;

Not 12345

86

IMPORTANT NOTE

* Because Types are just about how we read memory, it is important
to note that casting does not impact the values or bits only the
meaning that we expect them to have

« BEWARE: Expectations are like assumptions they can be violated or
Incorrect

87

Casting Between Signed and Unsigned

printf has three 32-bit integer representations:

%d : signed 32-bit int
%u . unsigned 32-bit int
$x . hex 32-bit int

As long as the value is a 32-bit type, printf will treat it according to the
formatter it is applying:

int x = -1; $./test printf

unsigned u = 3000000000; // 3 billion X 4294967295 -1
U 3000000000 -1294967296

printf ("x $u sd\n", x, X);
printf ("u $u sd\n", u, u);

88

Signed vs Unsigned Number Wheels

0000

1111 0001

1110 0010

1101 0011

4-pit

two's complement
signed integer

representation

1100 0100

15 1

0000

14 1111 0001

1110 0010

13

1101 0011

4-pit
1100 unsigned integer 0100
representation

12

1011 0101

11

89

Comparison between signed and unsigned integers

When a C expression has combinations of signed and unsigned variables, you
need to be careful!

If an operation is performed that has both a signed and an unsigned value, C
iImplicitly casts the signed argument to unsigned and performs the
operation assuming both numbers are non-negative. Let's take a look...

Expression Type Evaluation
0 == 0U

-1 < 0

-1 < QU

2147483647 > -2147483647 - 1

21474836470 > -2147483647 - 1

2147483647 > (int)2147483648U

-1 > =2

(unsigned) -1 > -2

90

Comparison between signed and unsigned integers

When a C expression has combinations of signed and unsigned variables, you
need to be careful!

If an operation is performed that has both a signed and an unsigned value, C
iImplicitly casts the signed argument to unsigned and performs the
operation assuming both numbers are non-negative. Let's take a look...

Expression Type Evaluation
0 == 0U Unsigned 1
-1 <0 Signed 1
-1 < 0U Unsigned 0
21474836477 > -2147483647 - 1 Signed 1
21474836470 > -2147483647 - 1 Unsigned 0
2147483647 > (int)2147483648U Signed 1
-1 > -2 Signed 1
(unsigned) -1 > =2 Unsigned 1

91

Note: In C, 0 is false and everything else is true. When C produces a boolean value, it allways chooses 1 to represent true.

Comparison between signed and unsigned integers

Let's try some more...a bit more abstractly.

int s1, s2, s3, s4; 111...111 000...000

unsigned int ul, u2, u3, u4;

What is the value of this
expression?

ul > s3

100...000 011...111

92

Comparison between signed

Let's try some more...a bit more abstractly.

int s1, s2, s3, s4; 111...111 000...000

unsigned int ul, u2, u3, u4;

Which many of the following
statements are true? (assume that
variables are set to values that place
them in the spots shown)

ul > s3 : true

100...000 011...111

93

* What is happening here? Assume 4-bit numbers. 0

©b1101
+ 0b01006

1111 0000 0001

I
1110\ /" 0010
15 O 1

/

AN
1101 14 ynsigneq 2
13 3

1100— 12 4 —0100

0011
~

1
1011

* What is happening here? Assume 4-bit numbers. 0

Pb1101 7
-2 1111 0001 2
I
+ @b@l@@ 1110 \15 0 1/ 0010
_ \ _ s
3 1101 14 ynsigneq 2" o011 °
13 37
4— 1100— 12 4—0100 1 4
Signed Unsigned 1
1011
-9
3 +4=1 13 + 4 = 1 0
No overflow Overflow

-8 95

Limits and Comparisons

1. Whatis

the Largest unsigned? Largest signed? Smallest signed?

char

int

2. Will the following char comparisons evaluate to true or false?
1l.-7< 4 ii. (char) 130 > 4

11.-7 < 4U wv. (char) -132 > 2

2

96

Limits and Comparisons

1. Whatis
the... Largest unsigned? Largest signed? Smallest signed?
char 28 - 1 = 255 27 - 1 = 127 -27 = -128
int| 232 - 1 = 231 _ 1 = _231 _
4294967296 2147483647 -2147483648

These are available as
UCHAR_MAX, INT_MIN,
INT_MAX, etc. in the
<limits.h> header.

97

Limits and Comparisons

2. Will the following char comparisons evaluate to true or false?
. =7 < 4 true i, (char) 130 > 4 false

i. -7 < 4U false v. (char) -132 > 2 true

By default, numeric constants in C are signed ints, unless they are
suffixed with u (unsigned) or L (long).

98

The sizeof Operator

long sizeof(type);

// Example

long int size bytes = sizeof(int); // 4
long short size bytes = sizeof(short); // 2
long char size bytes = sizeof(char); // 1

sizeoT takes a variable type as a parameter and returns the size of that type, in
bytes.

99

The sizeof Operator

As we have seen, integer types are limited by the number of bits they hold. On
the 64-bit myth machines, we can use the sizeof operator to find how many
bytes each type uses:

int main() {
printf ("sizeof (char): %d\n", (int) sizeof (char));
printf ("sizeof (short): %$d\n", (int) sizeof (short));
printf ("sizeof (int): %d\n", (int) sizeof (int));
printf ("sizeof (unsigned int): %d\n", (int) sizeof (unsigned int));
printf ("sizeof (long): %d\n", (int) sizeof(long));
printf ("sizeof (long long): %d\n", (int) sizeof (long long));
printf ("sizeof (size t): %d\n", (int) sizeof(size t));
printf ("sizeof (void *): %d\n", (int) sizeof (void *));
return 0;

S ./sizeof

sizeof (char): 1 Type Width in bytes Width in bits

sizeof (short): 2 char 1 e

sizeof (int): 4

sizeof (unsigned int): 4 short 2 16

sizeof (long) : 8 int 4 32

s%zeof(l?ng long): 8 long 3 64

sizeof (size t): 8

sizeof (void *): 8 void * 8 64 100

MIN and MAX values for integers

Because we now know how bit patterns for integers works, we can figure out the
maximum and minimum values, designated by INT MAX, UINT MAX, INT MIN,
(etc.), which are defined in 1imits.h

- Width Width M in h M in h

ype (bytes) | (bits) in in hex (name) ax in hex (name)

char 1 8 80 (CHAR_MIN) TF (CHAR_MAX)

unsigned char 1 8 0 FF (UCHAR MAX)

short 2 16 8000 (SHRT_MIN) TEEF (SHRT_MAX)

unsigned short 2 16 0 FFFEF (USHRT MAX)

int 4 32 80000000 (INT MIN) JTFFEFFFFE (INT MAX)

unsigned int 4 32 0 FFFFFFFE (UINT MAX)

long 8 64 8000000000000000 (LONG_MIN) JTFEFFFFFFFFFFEFFEFE (LONG_MAX)
unsigned long 8 64 0 FEFFFFFFFEFEFFEEFEEFE (ULONG_MAX)

101

Min and Max Integer Values

* You can also find constants in the standard library that define the
max and min for each type on that machine(architecture)

e Visit <limits.h> or <cstdint.h> and look for variables like:

INT MIN

INT MAX
UINT MAX
LONG_MIN

LONG MAX
ULONG MAX

102

Expanding Bit Representations

* Sometimes, we want to convert between two integers of different sizes (e.g.
short to int, or int to long).

* We might not be able to convert from a bigger data type to a smaller data
type, but we do want to always be able to convert from a smaller data type to
a bigger data type.

* For unsigned values, we can add leading zeros to the representation (“zero
extension”)

* For signed values, we can repeat the sign of the value for new digits (“sign
extension”

* Note: when doing <, >, <=, >= comparison between different size types, it will
promote to the larger type.

103

Expanding the bit representation of a number

For signed values, we want the number to remain the same, just with more
bits. In this case, we perform a "sign extension" by repeating the sign of the

value for the new digits. E.g.,

short s = 4;
// short is a 16-bit format, so s =
int 1 = s;

// conversion to 32-bit int, so i = 0000 0000 0000 0000

short s = -4;
// short is a 16-bit format, so s =
int 1 = s;

// conversion to 32-bit int, so i = 1111 1111 1111 1111

Converting from a smaller type to a larger type is also often called promotion
|.E. the number was promoted from short to int

0000 0000

0000 0000

1111 1111

1111 1111

0000

0000

1111

1111

0100b

0100b

1100b

1100b

104

Sign-extension Example

// show bytes() defined on pg. 45, Bryant and O'Halloran
int main () {
short sx = -12345; // =12345
unsigned short usx = sx; // 53191
int x = sx; // —12345 $./sign extension
unsigned ux = usx; // 53191 _12345- o7 of

- " o g.\ 4w i 53191: c/ cft
printf ("sx = %d:\t", sx);
show bytes ((byte pointer) &sx, sizeof (short)); = —12345: c/ ct ff ff
printf ("usx = %u:\t", usx); = 53191: c/7 ctf 00 00

show bytes ((byte pointer) &usx, sizeof (unsigned short)); _

printf("x = %d:\t", x); (careful: this was

show bytes (:(byte_pointer) &x, sizeof (int)); printed on the I|tt|e'
(

printf ("ux Su:\t", ux);

show bytes ((byte pointer) &ux, sizeof (unsigned)); endian myth machines!)

return 0O;

105

Truncating Numbers: Signed

What if we want to reduce the
number of bits that a number
holds? E.qg.

This is a form of overflow! We have altered the value of the number.
Be careful!

We don't have enough bits to store the int in the short for the value we have
In the int, so the strange values occur.

What is y above? We are converting a short to an int, so we sign-extend,

and we get -12345!
1100 1111 1100 0111becomes

1111 1111 1111 1111 1100 1111 1100 O111

Play around here: http://www.convertforfree.com/twos-complement-calculator/ 106

http://www.convertforfree.com/twos-complement-calculator/

Truncating Numbers: Signed

If the number does fit into the int x = -3; 7 -3
smaller representation in the short sx = (short) -3; // -3
current form, it will convertjust [Znt Yy = sxi 7/ -3

fine.

X: 1111 1111 1111 1111 1111 1111 1111 1101becomes
SX: 1111 1111 1111 1101

Play around here: http://www.convertforfree.com/twos-complement-calculator/

107

http://www.convertforfree.com/twos-complement-calculator/

Truncating Numbers: Unsigned

We can also lose information with
unsigned numbers:

Bit representation for x = 128000 (32-bit unsigned int):

0000 0000 0000 0001 1111 0100 0000 0000

Truncated unsigned short sx:

1111 0100 0000 0000

which equals 62464 decimal.

Converting back to an unsigned int, y = 62464 108

Overflow In Practice: PSY

Signed overflow wraps around to the negative numbers:
PSY - GANGNAM STYLE (&= AEr2) Miv

aofficialpsy

3
- <

YouTube fell into this trap — their view counter was a signed, 32-bit int. They fixed it after it was
noticed, but for a while, the view count for Gangnam Style (the first video with over INT MAX
number of views) was negative.

YouTube: “We never thought a video would be watched in numbers greater than a 32-bit integer
(=2,147,483,647 views), but that was before we met PSY. "Gangnam Style" has been viewed so many
times we had to upgrade to a 64-bit integer (9,223,372,036,854,775,808)!” [link]

109
“We saw this coming a couple months ago and updated our systems to prepare for it” [link]

https://www.bbc.com/news/world-asia-30288542
https://www.theverge.com/2014/12/3/7325819/gangnam-style-broke-youtube-view-counter

Overflow In Signed Addition

In the news on January 5, 2022 (!):

dl'S TECHNICA

GOOD THING ANDROID IS GREAT AT ROLLING OUT UPDATES —

Google fixes nightmare Android bug that
stopped user from calling 911

An integer overflow/underflow crash lets misbehaving apps lock users out of 911.

RON AMADEO - 1/5/2022, 3:09 PM

https://arstechnica.com/gadgets/2022/01/google-fixes-nightmare-android-bug-

that-stopped-user-from-calling-911/

110

Overflow In Signed Addition

Signed overflow wraps around to the negative numbers.

#include<stdio.h>

#include<stdlib.h> S ,/Sj_gp_ed overflow
#include<limits.h> // for INT MAX 5 = 2147485647

int main() { b =1
int a INT MAX;

el a + b = -2147483648

int c a b;

Technically, signed integers in C produce

printf("a = %d\n",a); undefined behavior when they overflow. On two's
printf ("b $d\n",b) ;

printf ("a — 2d\n", c) ; complement machines (virtually all machines
these days), it does overflow predictably. You can
test to see if your addition will be correct:

return 0O;

// for addition
#include <limits.h>
int a = <something>;

<something>;
((x > 0) && (a > INT MAX - x)) /* "a + x would overflow */;
((x < 0) && (a < INT MIN - x)) /* "a + x would underflow */; 111

At which points can overflow occur for

signed and unsigned int? (assume binary values
shown are all 32 bits)

A. Signed and unsigned can both overflow
at points Xand Y

B. Signed can overflow only at X, unsigned
only atY

C. Signed can overflow only at Y, unsigned
only at X

D. Signed can overflow at Xand Y,
unsigned only at X

E. Other

111...111 000...000
111...110 000...001
111...101 000...010

111...100 000...011

100...010 011...101
100...001 011...110
100...000 011...111

112

Overflow In Practice: Gandhi

* In the game “Civilization”, each
civilization leader had an
“aggression” rating. Gandhi was
meant to be peaceful, and had a
score of 1.

* If you adopted “democracy”, all

players’ aggression reduced by 2.

Gandhi’s went from 1 to 255!

* Gandhi then became a big fan of
nuclear weapons.

and "K,

Our wor
with Tz’CLC

https://kotaku.com/why-gandhi-is-such-an-asshole-in-civilization-1653818245

113

Overflow In Practice: Games

sing MAME to warp to level 256, the split screen is shown. Su per Marlo BI’OS (NES)
Impossible Pacman Level 256 losing all extra lives if you exceed 127

114

https://pacman.fandom.com/wiki/Map_256_Glitch
https://www.mariowiki.com/Extra_life

Overflow In Practice: Timestamps

Many systems store timestamps as the number of seconds since Jan. 1, 1970 in
a signed 32-bit integer.

* Problem: the latest timestamp that can be represented this way is 3:14:07 UTC
on Jan. 13 2038!

* Casino erroneous slot machine payout (S42,949,672.76) due to overflow

e Reported vulnerability CVE-2019-3857 in libssh2 may allow a hacker to
remotely execute code

* Apple CoreGraphics overflow bug exploited via iMessage, used in known
spyware

115

https://arstechnica.com/tech-policy/2017/06/sorry-maam-you-didnt-win-43m-there-was-a-slot-machine-malfunction/
https://nvd.nist.gov/vuln/detail/CVE-2019-3857
https://citizenlab.ca/2021/09/forcedentry-nso-group-imessage-zero-click-exploit-captured-in-the-wild/

Overflow in Practice

e Pacman Level 256

* Make sure to reboot Boeing Dreamliners every 248 days

* Comair/Delta airline had to cancel thousands of flights days before Christmas
— they exceeded 32,767 crew changes (limit of short)

* Many operating systems may have issues storing timestamp values beginning
on Jan 19, 2038

 Donkey Kong Kill Screen

116

https://pacman.fandom.com/wiki/Map_256_Glitch
https://www.engadget.com/2015-05-01-boeing-787-dreamliner-software-bug.html
https://arstechnica.com/uncategorized/2004/12/4490-2/
https://computer.howstuffworks.com/question75.htm
https://errors.fandom.com/wiki/DK_kill_screen

	Slide 1: CS 107 Lecture 2: Integer Representations and Bits / Bytes
	Slide 2: Some Binary Humor (It is Either Funny or Not)
	Slide 3: Assignment 0: Unix!
	Slide 4: Lab Signup
	Slide 5: Today's Topics
	Slide 6: Combinations of bits can Encode Anything represent everything
	Slide 7: Number Representations
	Slide 8: Data Sizes
	Slide 9: Data Sizes
	Slide 10: Data Sizes
	Slide 11: Data Sizes
	Slide 12: Transitioning To Larger Datatypes
	Slide 13: Addressing and Byte Ordering
	Slide 14: Overflow
	Slide 15: Overflow in Unsigned Addition
	Slide 16: Unsigned Integers
	Slide 17: Unsigned Integers
	Slide 18: Computers use a limited number of bits for numbers
	Slide 19: Computers use a limited number of bits for numbers
	Slide 20: Computers use a limited number of bits for numbers
	Slide 21: Computers use a limited number of bits for numbers
	Slide 22: Let's look at a different program
	Slide 23: Information Storage
	Slide 24: Information Storage
	Slide 25: Information Storage
	Slide 26: Byte Range
	Slide 27: Hexadecimal
	Slide 28: Hexadecimal
	Slide 29: Hexadecimal
	Slide 30: Hexadecimal
	Slide 31: Hexadecimal
	Slide 32: Practice: Hexadecimal to Binary
	Slide 33: Practice: Hexadecimal to Binary
	Slide 34: Hexadecimal
	Slide 35: Hexadecimal
	Slide 36: Hexadecimal
	Slide 37: Hexadecimal
	Slide 38: Hexadecimal
	Slide 39: Hexadecimal
	Slide 40: Hexadecimal
	Slide 41
	Slide 42: Hexidecimal to Decimal
	Slide 43: Hexadecimal: It’s funky but concise
	Slide 44: Let the computer do it!
	Slide 45: Let the computer do it!
	Slide 46: Let the computer do it!
	Slide 47
	Slide 48: Signed Integers
	Slide 49: Sign Magnitude Representation
	Slide 50: Sign Magnitude Representation
	Slide 51: Sign Magnitude Representation
	Slide 52: Sign Magnitude Representation AKA Ones Complement
	Slide 53: Now Lets Try a Better Approach!
	Slide 54: A Better Idea
	Slide 55: A Better Idea
	Slide 56: A Better Idea
	Slide 57: A Better Idea
	Slide 58: A Better Idea
	Slide 59: A Better Idea
	Slide 60: A Better Idea
	Slide 61: There Seems Like a Pattern Here…
	Slide 62: There Seems Like a Pattern Here…
	Slide 63: Another Trick
	Slide 64: Another Trick
	Slide 65: Another Trick
	Slide 66: Two’s Complement
	Slide 67: Two’s Complement
	Slide 68: Two’s Complement
	Slide 69: Two’s Complement
	Slide 70: Two’s Complement
	Slide 71: How to Read Two’s Complement #s
	Slide 72: How to Read Two’s Complement #s
	Slide 73: Practice: Two’s Complement
	Slide 74: Practice: Two’s Complement
	Slide 75: Some Extra Slides for Review
	Slide 76: Two's Complement
	Slide 77: Two's Complement
	Slide 78: Two's Complement: Neat Properties
	Slide 79: Two's Complement: Neat Properties
	Slide 80: Two's Complement: Neat Properties
	Slide 81: Practice
	Slide 82: Practice
	Slide 83: Practice
	Slide 84: History: Two’s complement
	Slide 85: Casting Between Signed and Unsigned
	Slide 86: Casting Between Signed and Unsigned
	Slide 87: IMPORTANT NOTE
	Slide 88: Casting Between Signed and Unsigned
	Slide 89: Signed vs Unsigned Number Wheels
	Slide 90: Comparison between signed and unsigned integers
	Slide 91: Comparison between signed and unsigned integers
	Slide 92: Comparison between signed and unsigned integers
	Slide 93: Comparison between signed and unsigned integers
	Slide 94: Overflow
	Slide 95: Overflow
	Slide 96: Limits and Comparisons
	Slide 97: Limits and Comparisons
	Slide 98: Limits and Comparisons
	Slide 99: The sizeof Operator
	Slide 100: The sizeof Operator
	Slide 101: MIN and MAX values for integers
	Slide 102: Min and Max Integer Values
	Slide 103: Expanding Bit Representations
	Slide 104: Expanding the bit representation of a number
	Slide 105
	Slide 106: Truncating Numbers: Signed
	Slide 107: Truncating Numbers: Signed
	Slide 108: Truncating Numbers: Unsigned
	Slide 109: Overflow In Practice: PSY
	Slide 110: Overflow in Signed Addition
	Slide 111
	Slide 112: Overflow
	Slide 113: Overflow In Practice: Gandhi
	Slide 114: Overflow In Practice: Games
	Slide 115: Overflow In Practice: Timestamps
	Slide 116: Overflow in Practice

