
CS 107

Lecture 2: Integer

Representations and

Bits / Bytes

Computer Systems

Summer 2025

Stanford University

Computer Science Department

Reading:

 Reader: Bits and Bytes

 Textbook: Chapter 2.2

This document is copyright (C) Stanford Computer Science, Adam Keppler, and Olayinka Adekola licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Joel Ramirez, Nick Troccoli, Chris Gregg

Some Binary Humor (It is Either Funny or Not)

If you get an 11/100 on a CS test, but you claim it should be counted as a 'C', they'll probably decide you
deserve the upgrade. - https://xkcd.com/953/ 2

https://xkcd.com/953/

Assignment 0: Unix!

Assignmentpage: https://web.stanford.edu/class/cs107/assign0/

Assignment already released, due Friday, 6/27

Late submissions accepted till Sunday 6/29

3

Lab

Signup

https://web.stanford.edu/class/archive/cs/cs107/cs107.1258/cgi-bin/lab_preferences

Labs will begin tomorrow, please make sure to fill out the
preference form.

4

https://web.stanford.edu/class/archive/cs/cs107/cs107.1258/cgi-bin/lab_preferences

Today's Topics
• Numerical Bases

• Binary, Bits, & Bytes

• Octal & Hexadecimal Bases

• ASCII & Characters

• Integer Representations

• Unsigned Numbers

• Signed Numbers

• Two’s Complement

• Two’s Complement Overflow

• Signed vs Unsigned Number Casting in C

• Signed and Unsigned Comparisons

• Data Sizes & The sizeof Operator

• Min and Max Integer Values

• Truncating Integers

• More on Extending the Bit representation of Numbers

• Addressing and Byte Ordering

• Boolean Algebra

5

Combinations of bits can Encode Anything

represent everything

We can encode anything

we want with bits. E.g., the

ASCII character set.

6

Number Representations

• Unsigned Integers: positive and 0 integers. (e.g. 0, 1, 2, … 99999…

• Signed Integers: negative, positive and 0 integers. (e.g. …-2, -1, 0, 1,… 9999…)

• Floating Point Numbers: real numbers. (e,g. 0.1, -12.2, 1.5x1012)

Look up IEEE floating point if you’re interested ☺ !

7

Data Sizes

On the myth computers (and

most 64-bit computers today),

the int representation is

comprised of 32-bits, or four 8-

bit bytes. NOTE: C language

does not mandate sizes. To the

right is Figure 2.3 from your

textbook:

8

Data Sizes

There are guarantees on the

lower-bounds for type sizes, but

you should expect that the myth

machines will have the numbers

in the 64-bit column.

9

Data Sizes

You can be guaranteed the sizes

for int32_t (4 bytes) and

int64_t (8 bytes)

10

Data Sizes

C allows a variety of ways to

order keywords to define a type.

The following all have the same

meaning:

unsigned long

unsigned long int

long unsigned

long unsigned int

11

• Early 2000s: most computers were 32-bit. This means that pointers were 4
bytes (32 bits).

• 32-bit pointers store a memory address from 0 to 232-1, equaling 232 bytes of
addressable memory. This equals 4 Gigabytes, meaning that 32-bit
computers could have at most 4GB of memory (RAM)!

• Because of this, computers transitioned to 64-bit. This means that datatypes
were enlarged; pointers in programs were now 64 bits.

• 64-bit pointers store a memory address from 0 to 264-1, equaling 264 bytes of
addressable memory. This equals 16 Exabytes, meaning that 64-bit
computers could have at most 1024*1024*1024*16 GB of memory (RAM)!

Transitioning To Larger Datatypes

12

Addressing and Byte Ordering

On the myth machines, pointers are 64-bits long, meaning that a program can "address" up to 264 bytes of memory,
because each byte is individually addressable.

This is a lot of memory! It is 16 exabytes, or 1.84 x 1019 bytes. Older, 32-bit machines could only address 232 bytes, or 4
Gigabytes.

64-bit machines can address 4 billion times more memory than 32-bit machines...

Machines will not need to address more than 264 bytes of memory for a long, long time.

13

Overflow

• If you exceed the maximum value of your bit representation, you wrap around
or overflow back to the smallest bit representation.

0b1111 + 0b1 = 0b0000

• If you go below the minimum value of your bit representation, you wrap
around or overflow back to the largest bit representation.

0b0000 - 0b1 = 0b1111

14

Overflow in Unsigned Addition
When integer operations overflow in C, the runtime does not produce an error:
#include<stdio.h>

#include<stdlib.h>

#include<limits.h> // for UINT_MAX

int main() {

unsigned int a = UINT_MAX;

unsigned int b = 1;

unsigned int c = a + b;

printf("a = %u\n",a);

printf("b = %u\n",b);

printf("a + b = %u\n",c);

return 0;}

$./unsigned_overflow

a = 4294967295

b = 1

a + b = 0

Technically, unsigned integers in C don't

overflow, they just wrap. You need to be

aware of the size of your numbers. Here is

one way to test if an addition will fail:

// for addition

<limits.h>

int

int

a

x

#include

unsigned

unsigned

if (a > UINT_MAX

= <something>;

= <something>;

- x) /* `a + x` would overflow */;
15

Unsigned Integers

For positive (unsigned) integers, there is a 1-to-1 relationship between the decimal

representation of a number and its binary representation. If you have a 4-bit

number, there are 16 possible combinations, and the unsigned numbers go from 0

to 15:

0b0000 = 0 0b0001 = 1 0b0010 = 2 0b0011 = 3

0b0100 = 4 0b0101 = 5 0b0110 = 6 0b0111 = 7

0b1000 = 8 0b1001 = 9 0b1010 = 10 0b1011 = 11

0b1100 = 12 0b1101 = 13 0b1110 = 14 0b1111 = 15

The range of an unsigned number is 0 → 2w - 1, where w is the number of bits in

our integer. For example, a 32-bit int can represent numbers from 0 to 232 - 1,

or 0 to 4,294,967,295.
16

Unsigned Integers

17

Computers use a limited number of bits for numbers

#include<stdio.h>

#include<stdlib.h>

int main()

int a

int b

int c

int d

{

= 200;

= 300;

= 400;

= 500;

$ gcc -g -O0 mult-test.c -o mult-test

$./mult-test

-884901888

$ 18

200 * 300 * 400 * 500 = 12,000,000,000

int answer = a * b * c * d;

printf("%d\n",answer);

return 0;

}

Computers use a limited number of bits for numbers

#include<stdio.h>

#include<stdlib.h>

int main() {

int a = 200;

int b = 300;

int c = 400;

int d = 500;

int answer = a * b * c * d;

printf("%d\n",answer);

return 0;

}

Recall that in base 10, you can represent: 10

numbers with one digit (0 - 9),

100 numbers with two digits (00 - 99),

1000 numbers with three digits (000 - 999)

I.e., with n digits, you can represent up to 10n

numbers.

In base 2, you can represent:

2 numbers with one digit (0 - 1)

4 numbers with two digits (00 - 11)

8 numbers with three digits (000 - 111)

I.e., with n digits, you can represent up to 2n

numbers

The C int type is a "32-bit" number, meaning it uses 32 digits. That

means we can represent up to 232 numbers. 19

Turns out it is worse -- ints are signed,

meaning that the largest positive number is
/ 2) - 1 =

- 1 = 2,147,483,647

Computers use a limited number of bits for numbers

#include<stdio.h>

#include<stdlib.h>

int main()

int a

int b

int c

int d

{

= 200;

= 300;

= 400;

= 500;

int answer = a * b * c * d;

printf("%d\n",answer);

return 0;

}

$ gcc -g -O0 mult-test.c -o mult-

test

$./mult-test

-884901888

$

2
32

= 4,294,967,296

200 * 300 * 400 * 500 = 12,000,000,000

(232

2
31

20

Computers use a limited number of bits for numbers

The good news: all of the following produce

the same (wrong) answer:

 (500 * 400) * (300 * 200)

((500 * 400) * 300) * 200

((200 * 500) * 300) * 400

400 * (200 * (300 * 500))

#include<stdio.h>

#include<stdlib.h>

int main()

int a

int b

int c

int d

{

= 200;

= 300;

= 400;

= 500;

int answer = a * b * c * d;

printf("%d\n",answer);

return 0;

}

$ gcc -g -O0 mult-test.c -o mult-

test

$./mult-test

-884901888

$ 21

Let's look at a different program

#include<stdio.h>

#include<stdlib.h>

int main() {

float a = 3.14;

float b = 1e20;

printf("(3.14 + 1e20) - 1e20 = %f\n", (a + b) - b);

printf("3.14 + (1e20 - 1e20) = %f\n", a + (b - b));

return 0;

}

$ gcc

test.c

-g -Og -std=gnu99 float-mult-

-o float-mult-test

$./float-mult-test.c

(3.14 + 1e20) - 1e20 = 0.000000

3.14 + (1e20 - 1e20) = 3.140000

$

bigger problem!
22

Information Storage

23

Information Storage

In C, everything can be thought of as a block of 8 bits

24

Information Storage

In C, everything can be thought of as a block of 8 bits

called a "byte"

25

Byte Range

Because a byte is made up of 8 bits, we can represent the range of a byte as

follows:

00000000 to 11111111

This range is 0 to 255 in decimal.

But, neither binary nor decimal is particularly convenient to write out bytes

(binary is too long, and decimal isn't numerically friendly for byte

representation)

So, we use "hexadecimal," (base 16).

26

Hexadecimal

• When working with bits, oftentimes we have large numbers with 32 or 64 bits.

• Instead, we’ll represent bits in base-16 instead; this is called hexadecimal.

0110 1010 0011
0-150-15 0-15

27

Hexadecimal

• Hexadecimal is base-16, so we need digits for 1-15. How do we do this?

0 1 2 3 4 5 6 7 8 9 a b c d e f
10 11 12 13 14 15

28

Hexadecimal

Hexadecimal has 16 digits, so we augment our normal 0-9 digits with six

more digits: A, B, C, D, E, and F.

Figure 2.2 in the textbook shows the hex digits and their binary and decimal

values:

29

Hexadecimal

• When working with bits, oftentimes we have large numbers with 32 or 64 bits.

• Instead, we’ll represent bits in base-16 instead; this is called hexadecimal.

0-150-150-15

Each is a base-16 digit!

6 A 3

30

Hexadecimal

• We distinguish hexadecimal numbers by prefixing them with 0x, and binary
numbers with 0b. These prefixes also work in C

• E.g. 0xf5 is 0b11110101

0x f 5
1111 0101

31

Practice: Hexadecimal to Binary

What is 0x173A in binary?

Hexadecimal 1 7 3 A

Binary 0001 0111 0011 1010

32

Practice: Hexadecimal to Binary

What is 0b1111001010 in hexadecimal? (Hint: start from the right)

Binary 11 1100 1010

Hexadecimal 3 C A

33

Hexadecimal
Convert: 0b1111001010110110110011 to hexadecimal.

(start from the right)

0b1111001010110110110011

is hexadecimal 3CADB3

34

Hexadecimal
Convert: 0b1111001010110110110011 to hexadecimal.

(start from the right)

0b1111001010110110110011

is hexadecimal 3CADB3

35

Hexadecimal
Convert: 0b1111001010110110110011 to hexadecimal.

(start from the right)

0b1111001010110110110011

is hexadecimal 3CADB3

36

Hexadecimal
Convert: 0b1111001010110110110011 to hexadecimal.

(start from the right)

0b1111001010110110110011

is hexadecimal 3CADB3

37

Hexadecimal
Convert: 0b1111001010110110110011 to hexadecimal.

(start from the right)

0b1111001010110110110011

is hexadecimal 3CADB3

38

Hexadecimal
Convert: 0b1111001010110110110011 to hexadecimal.

(start from the right)

0b1111001010110110110011

is hexadecimal 3CADB3

39

Hexadecim

alConvert: 0b1111001010110110110011 to hexadecimal.

(start from the right)

0b1111001010110110110011

is hexadecimal 3CADB3

40

Decimal to Hexadecimal

To convert from decimal to hexadecimal, you need to repeatedly divide

the number in question by 16, and the remainders make up the digits of

the hex number:

41

Hexidecimal

to Decimal
To convert from hexadecimal to decimal, multiply each of the hexadecimal

digits by the appropriate power of 16:

42

Hexadecimal: It’s funky but concise

• Let’s take a byte (8 bits):

165

0b10100101

0xa5

Base-10: Human-readable,
but cannot easily interpret on/off bits

Base-2: Yes, computers use this,
but not human-readable

Base-16: Easy to convert to Base-2,
More “portable” as a human-readable format
(fun fact: a half-byte is called a nibble or nybble)

43

Let the computer do it!

Honestly, hex to decimal and vice versa are easy to let the computer

handle. You can either use a search engine (Google does this

automatically), or you can use a python one-liner:

44

Let the computer do it!

You can also use Python to convert to and from binary:

(but you should memorize this as it is easy and you will use it frequently)

45

Let the computer do it!

You can also use Python to convert to and from binary:

(also might show up in an offline exam)

46

A signed integer is a negative, 0, or positive
integer.

How can we represent both negative and
positive numbers in binary?

How to Represent A Signed Value

47

Signed Integers

• A signed integer is a negative integer, 0, or a positive integer.

• Problem: How can we represent negative and positive numbers in binary?

Idea: let’s reserve the most

significant bit to store the sign.

48

Sign Magnitude Representation

0110
positive 6

1011
negative 3

49

Sign Magnitude Representation

0000
positive 0

1000
negative 0

50

Sign Magnitude Representation

• We’ve only represented 15 of our 16 available numbers!

1 000 = -0
1 001 = -1
1 010 = -2
1 011 = -3
1 100 = -4
1 101 = -5
1 110 = -6
1 111 = -7

0 000 = 0
0 001 = 1
0 010 = 2
0 011 = 3
0 100 = 4
0 101 = 5
0 110 = 6
0 111 = 7

51

Sign Magnitude Representation AKA Ones
Complement

• Pro: easy to represent, and easy to convert to/from decimal.

• Con: +-0 is not intuitive

• Con: we lose a bit that could be used to store more numbers

• Con: arithmetic is tricky: we need to find the sign, then maybe subtract
(borrow and carry, etc.), then maybe change the sign. This complicates the
hardware support for something as fundamental as addition.

Can we do better?

52

Now Lets Try a Better Approach!

53

A Better Idea

• Ideally, binary addition would just work regardless of whether the number is
positive or negative.

0101
+????
0000

54

A Better Idea

• Ideally, binary addition would just work regardless of whether the number is
positive or negative.

0101
+1011
0000

55

A Better Idea

• Ideally, binary addition would just work regardless of whether the number is
positive or negative.

0011
+????
0000

56

A Better Idea

• Ideally, binary addition would just work regardless of whether the number is
positive or negative.

0011
+1101
0000

57

A Better Idea

• Ideally, binary addition would just work regardless of whether the number is
positive or negative.

0000
+????
0000

58

A Better Idea

• Ideally, binary addition would just work regardless of whether the number is
positive or negative.

0000
+0000
0000

59

A Better Idea

Decimal Positive Negative

0 0000 0000

1 0001 1111

2 0010 1110

3 0011 1101

4 0100 1100

5 0101 1011

6 0110 1010

7 0111 1001

Decimal Positive Negative

8 1000 1000

9 1001 (same as -7!) NA

10 1010 (same as -6!) NA

11 1011 (same as -5!) NA

12 1100 (same as -4!) NA

13 1101 (same as -3!) NA

14 1110 (same as -2!) NA

15 1111 (same as -1!) NA
60

There Seems Like a Pattern Here…

0101
+1011
0000

0011
+1101
0000

0000
+0000
0000

• The negative number is the positive number inverted, plus one!
61

There Seems Like a Pattern Here…

A binary number plus its inverse is all 1s. Add 1 to this to carry over all 1s and get 0!

0101
+1010
1111

1111
+0001
0000

62

Another Trick

• To find the negative equivalent of a number, work right-to-left and write down
all digits through when you reach a 1. Then, invert the rest of the digits.

100100
+??????
000000

63

Another Trick

• To find the negative equivalent of a number, work right-to-left and write down
all digits through when you reach a 1. Then, invert the rest of the digits.

100100
+???100
000000

64

Another Trick

• To find the negative equivalent of a number, work right-to-left and write down
all digits through when you reach a 1. Then, invert the rest of the digits.

100100
+ 011100
000000

65

Two’s Complement

66

Two’s Complement

• In two’s complement, we represent a
positive number as itself, and its
negative equivalent as the two’s
complement of itself.

• The two’s complement of a number is
the binary digits inverted, plus 1.

• This works to convert from positive to
negative, and back from negative to
positive!

67

Two’s Complement

• Con: more difficult to represent, and
difficult to convert to/from decimal and
between positive and negative.

• Pro: only 1 representation for 0!

• Pro: all bits are used to represent as
many numbers as possible

• Pro: the most significant bit still indicates
the sign of a number.

• Pro: addition works for any combination
of positive and negative!

68

Two’s Complement

• Adding two numbers is just…adding! There is no special case needed for
negatives. E.g. what is 2 + -5?

0010
+1011
1101

2

-5

-3

69

Two’s Complement

• Subtracting two numbers is just performing the two’s complement on one of
them and then adding. E.g. 4 – 5 = -1.

0100
-0101

4

5

0100
+1011
1111

4

-5

-1

70

How to Read Two’s Complement #s

• Multiply the most significant bit by -1 and multiply all the other bits by 1 as normal

1 1 1_ 0_
23 22 21 20

= 1*-8 + 1*4 + 1*2 + 0*1 = -2

71

How to Read Two’s Complement #s

• Multiply the most significant bit by -1 and multiply all the other bits by 1 as normal

0 1 1_ 0_
23 22 21 20

= 0*-8 + 1*4 + 1*2 + 0*1 = 6

72

Practice: Two’s Complement

What are the negative or positive equivalents of the numbers below?

a) -4 (1100)

b) 7 (0111)

c) 3 (0011)

73

Practice: Two’s Complement

What are the negative or positive equivalents of the numbers below?

a) -4 (1100) -> 4 (0100)

b) 7 (0111) -> (1001)

c) 3 (0011) -> (1101)

74

Some Extra Slides for Review

75

Two's Complement
In practice, a negative number in two's

complement is obtained by inverting all

the bits of its positive counterpart*, and
then adding 1, or: x = ~x + 1

Example: The number 2 is represented as normal in

binary: 0010

-2 is represented by inverting the bits, and adding 1:

0010☞1101

1101

+ 1

1110

*Inverting all the bits of a number is its "one's complement" 76

Two's Complement
To convert a negative number to a

positive number, perform the same

steps!

Example: The number -5 is represented in two's

complements as: 1011

5 is represented by inverting the bits, and adding 1:

1011☞0100

0100

+ 1

0101

Shortcut: start from the right, and write down

numbers until you get to a 1:

1

Now invert all the rest of the digits:

0101 77

Two's Complement: Neat Properties
There are a number of useful properties

associated with two's complement

numbers:

1. There is only one zero (yay!)

2. The highest order bit (left-most) is 1

for negative, 0 for positive (so it is

easy to tell if a number is negative)

3. Adding two numbers is just…adding!

Example:

2 + -5 = -3

0010☞ 2

+1011☞ -5

1101☞ -3 decimal (wow!)
78

Two's Complement: Neat Properties
More useful properties:

4. Subtracting two numbers is simply

performing the two's complement on

one of them and then adding.

Example:

4 - 5 = -1

0100☞ 4, 0101☞ 5

Find the two's complement of 5: 1011

add:

0100☞ 4

+1011☞ -5

1111☞ -1 decimal 79

Two's Complement: Neat Properties
More useful properties:

5. Multiplication of two's complement

works just by multiplying (throw away

overflow digits).

Example: -2 * -3 = 6

1110☞ -2

x1101☞ -3

1110

0000

1110

+1110

10110110☞ 6
80

Practice
Convert the following 4-bit numbers

from positive to negative, or from

negative to positive using two's

complement notation:

a. -4 (1100)☞

b. 7 (0111)☞

c. 3 (0011)☞

d. -8 (1000)☞

81

Practice
Convert the following 4-bit numbers

from positive to negative, or from

negative to positive using two's

complement notation:

a. -4 (1100)☞ 0100

b. 7 (0111)☞

c. 3 (0011)☞

d. -8 (1000)☞ 1000 (?! If you look at

the chart, +8 cannot be represented

in two's complement with 4 bits!)

1001

1101

82

Practice
Convert the following 8-bit numbers

from positive to negative, or from

negative to positive using two's

complement notation:

a. -4 (11111100)☞

b. 27 (00011011)☞

c. -127 (10000001)☞

d. 1 (00000001)☞ 11111111

83

00000100

11100101

01111111

History: Two’s complement

• Two’s Complement was first proposed by John von
Neumann in First Draft of a Report on the EDVAC
(1945)

• That same year, he also invented the merge sort algorithm

• Many early computers used
sign-magnitude or
one’s complement

• The System/360, developed by IBM in 1964, was
widely popular (had 1024KB memory) and
established two’s complement as the dominant
binary representation of integers

EDSAC (1949)

System/360 (1964)

8-bit one’s complement

+7

-7

0b0000 0111

0b1111 1000

84

Casting Between Signed and Unsigned

Converting between two numbers in C can happen explicitly (using a

parenthesized cast), or implicitly (without a cast):

When casting: the underlying bits do not change, so there isn't any

conversion going on, except that the variable is treated as the type that it is.

NOTE: Converting a signed number to unsigned preserves the bits not the

number!

int tx, ty;

unsigned ux, uy;

…

tx = (int) ux;

uy = (unsigned) ty;

1

2

3

4

5

int tx, ty;

unsigned ux, uy;

…

tx = ux; // cast to signed

uy = ty; // cast to unsigned

1

2

3

4

5

explicit implicit

85

Casting Between Signed and Unsigned

When casting: the underlying bits do not change, so there isn't any

conversion going on, except that the variable is treated as the type that it is.

You cannot convert a signed number to its unsigned counterpart using a cast!

Signed -> Unsigned

-12345 goes to 4294954951

Not 12345

// test_cast.c

#include<stdio.h>

#include<stdlib.h>

int main() {

int v = -12345;

unsigned int uv = (unsigned int) v;

printf("v = %d, uv = %u\n",v,uv);

return 0;

}

1

2

3

4

5

6

7

8

9

10

11

12

$./test_cast

v = -12345, uv = 4294954951

86

IMPORTANT NOTE

• Because Types are just about how we read memory, it is important
to note that casting does not impact the values or bits only the
meaning that we expect them to have

• BEWARE: Expectations are like assumptions they can be violated or
incorrect

87

Casting Between Signed and Unsigned
printf has three 32-bit integer representations:

%d : signed 32-bit int

%u : unsigned 32-bit int

%x : hex 32-bit int

As long as the value is a 32-bit type, printf will treat it according to the

formatter it is applying:

int x = -1;

unsigned u = 3000000000; // 3 billion

printf("x = %u = %d\n", x, x);

printf("u = %u = %d\n", u, u);

1

2

3

4

5

6

$./test_printf

x = 4294967295 = -1

u = 3000000000 = -1294967296

88

Signed vs Unsigned Number Wheels

89

Comparison between signed and unsigned integers

When a C expression has combinations of signed and unsigned variables, you

need to be careful!

If an operation is performed that has both a signed and an unsigned value, C

implicitly casts the signed argument to unsigned and performs the

operation assuming both numbers are non-negative. Let's take a look…

Expression Type Evaluation

0 == 0U

-1 < 0

-1 < 0U

2147483647 > -2147483647 - 1

2147483647U > -2147483647 - 1

2147483647 > (int)2147483648U

-1 > -2

(unsigned)-1 > -2

90

Comparison between signed and unsigned integers

When a C expression has combinations of signed and unsigned variables, you

need to be careful!

If an operation is performed that has both a signed and an unsigned value, C

implicitly casts the signed argument to unsigned and performs the

operation assuming both numbers are non-negative. Let's take a look…

Expression Type Evaluation

0 == 0U Unsigned 1

-1 < 0 Signed 1

-1 < 0U Unsigned 0

2147483647 > -2147483647 - 1 Signed 1

2147483647U > -2147483647 - 1 Unsigned 0

2147483647 > (int)2147483648U Signed 1

-1 > -2 Signed 1

(unsigned)-1 > -2 Unsigned 1

Note: In C, 0 is false and everything else is true. When C produces a boolean value, it allways chooses 1 to represent true.
91

Comparison between signed and unsigned integers

Let's try some more…a bit more abstractly.

int s1, s2, s3, s4;

unsigned int u1, u2, u3, u4;

What is the value of this

expression?

u1 > s3

92

Comparison between signed

and unsigned integersLet's try some more…a bit more abstractly.

int s1, s2, s3, s4;

unsigned int u1, u2, u3, u4;

Which many of the following

statements are true? (assume that

variables are set to values that place

them in the spots shown)

u1 > s3 : true

93

Overflow

0
1

2

8 7
10

9

13

15

14

11

12 4

5

6

3

• What is happening here? Assume 4-bit numbers.

0b1101
+ 0b0100

94

Overflow

• What is happening here? Assume 4-bit numbers.

0b1101
+ 0b0100

0
1

2

8 79
10

13

15

14

11

12 4

5

6

3

Signed

-3 + 4 = 1

No overflow

Unsigned

13 + 4 = 1

Overflow

95

Limits and Comparisons

1. What is
the… Largest unsigned? Largest signed? Smallest signed?

char

int

2. Will the following char comparisons evaluate to true or false?

i.-7 < 4 iii. (char) 130 > 4

ii.-7 < 4U iv. (char) -132 > 2

96

Limits and Comparisons

1. What is
the…

These are available as
UCHAR_MAX, INT_MIN,
INT_MAX, etc. in the
<limits.h> header.

Largest unsigned? Largest signed? Smallest signed?

char

int

28 - 1 = 255 27 – 1 = 127 -27 = -128

232 - 1 =

4294967296

231 - 1 =

2147483647

-231 =

-2147483648

97

Limits and Comparisons

2. Will the following char comparisons evaluate to true or false?

i. -7 < 4

ii. -7 < 4U

iii. (char) 130 > 4

iv. (char) -132 > 2

By default, numeric constants in C are signed ints, unless they are
suffixed with u (unsigned) or L (long).

true

false

false

true

98

The sizeof Operator

long sizeof(type);

// Example
long int_size_bytes = sizeof(int); // 4
long short_size_bytes = sizeof(short); // 2
long char_size_bytes = sizeof(char); // 1

sizeof takes a variable type as a parameter and returns the size of that type, in
bytes.

99

The sizeof Operator
As we have seen, integer types are limited by the number of bits they hold. On

the 64-bit myth machines, we can use the sizeof operator to find how many

bytes each type uses:
int main() {

printf("sizeof(char): %d\n", (int) sizeof(char));

printf("sizeof(short): %d\n", (int) sizeof(short));

printf("sizeof(int): %d\n", (int) sizeof(int));

printf("sizeof(unsigned int): %d\n", (int) sizeof(unsigned int));

printf("sizeof(long): %d\n", (int) sizeof(long));

printf("sizeof(long long): %d\n", (int) sizeof(long long));

printf("sizeof(size_t): %d\n", (int) sizeof(size_t));

printf("sizeof(void *): %d\n", (int) sizeof(void *));

return 0;

}

$./sizeof

sizeof(char): 1

sizeof(short): 2

sizeof(int): 4

sizeof(unsigned int): 4

sizeof(long): 8

sizeof(long long): 8

sizeof(size_t): 8

sizeof(void *): 8

Type Width in bytes Width in bits

char 1 8

short 2 16

int 4 32

long 8 64

void * 8 64 100

MIN and MAX values for integers
Because we now know how bit patterns for integers works, we can figure out the

maximum and minimum values, designated by INT_MAX, UINT_MAX, INT_MIN,

(etc.), which are defined in limits.h

Type
Width

(bytes)

Width

(bits)
Min in hex (name) Max in hex (name)

char 1 8 80 (CHAR_MIN) 7F (CHAR_MAX)

unsigned char 1 8 0 FF (UCHAR_MAX)

short 2 16 8000 (SHRT_MIN) 7FFF (SHRT_MAX)

unsigned short 2 16 0 FFFF (USHRT_MAX)

int 4 32 80000000 (INT_MIN) 7FFFFFFF (INT_MAX)

unsigned int 4 32 0 FFFFFFFF (UINT_MAX)

long 8 64 8000000000000000 (LONG_MIN) 7FFFFFFFFFFFFFFF (LONG_MAX)

unsigned long 8 64 0 FFFFFFFFFFFFFFFF (ULONG_MAX)
101

Min and Max Integer Values

• You can also find constants in the standard library that define the
max and min for each type on that machine(architecture)

• Visit <limits.h> or <cstdint.h> and look for variables like:

 INT_MIN

 INT_MAX

 UINT_MAX

 LONG_MIN

 LONG_MAX

 ULONG_MAX

 …

102

Expanding Bit Representations

• Sometimes, we want to convert between two integers of different sizes (e.g.
short to int, or int to long).

• We might not be able to convert from a bigger data type to a smaller data
type, but we do want to always be able to convert from a smaller data type to
a bigger data type.

• For unsigned values, we can add leading zeros to the representation (“zero
extension”)

• For signed values, we can repeat the sign of the value for new digits (“sign
extension”

• Note: when doing <, >, <=, >= comparison between different size types, it will
promote to the larger type.

103

Expanding the bit representation of a number

For signed values, we want the number to remain the same, just with more

bits. In this case, we perform a "sign extension" by repeating the sign of the

value for the new digits. E.g.,

a 16-bit format, so

short s = 4;

// short is

int i = s;

s = 0000 0000 0000 0100b

// conversion to 32-bit int, so i = 0000 0000 0000 0000 0000 0000 0000 0100b

— or —

short s = -4;

// short is a 16-bit format, so s = 1111 1111 1111 1100b

int i = s;

// conversion to 32-bit int, so i = 1111 1111 1111 1111 1111 1111 1111 1100b

Converting from a smaller type to a larger type is also often called promotion
I.E. the number was promoted from short to int 104

Sign-extension Example

// show_bytes() defined on pg. 45, Bryant and O'Halloran

int main() {

short sx = -12345; // -12345

unsigned short usx = sx; // 53191

int x = sx; // -12345

unsigned ux = usx; // 53191

printf("sx = %d:\t", sx);

show_bytes((byte_pointer) &sx, sizeof(short));

printf("usx = %u:\t", usx);

show_bytes((byte_pointer) &usx, sizeof(unsigned short));

printf("x = %d:\t", x);

show_bytes((byte_pointer) &x, sizeof(int));

printf("ux = %u:\t", ux);

show_bytes((byte_pointer) &ux, sizeof(unsigned));

return 0;

}

$./sign_extension

sx = -12345: c7 cf

usx = 53191: c7 cf

x = -12345: c7 cf ff ff

ux = 53191: c7 cf 00 00

(careful: this was

printed on the little-

endian myth machines!)

105

Truncating Numbers: Signed

What if we want to reduce the

number of bits that a number

holds? E.g.

// 53191

x; // -12345

int x

short

int y

= 53191;

sx = (short)

= sx;

This is a form of overflow! We have altered the value of the number.

Be careful!

We don't have enough bits to store the int in the short for the value we have
in the int, so the strange values occur.

What is y above? We are converting a short to an int, so we sign-extend,

and we get -12345!

1100 1111 1100 0111becomes

1111 1111 1111 1111 1100 1111 1100 0111

Play around here: http://www.convertforfree.com/twos-complement-calculator/ 106

http://www.convertforfree.com/twos-complement-calculator/

Truncating Numbers: Signed

If the number does fit into the

smaller representation in the

current form, it will convert just

fine.

// -3

-3; // -3

int x

short

int y

= -3;

sx = (short)

= sx; // -3

x: 1111 1111 1111 1111 1111 1111 1111 1101becomes

sx: 1111 1111 1111 1101

Play around here: http://www.convertforfree.com/twos-complement-calculator/ 107

http://www.convertforfree.com/twos-complement-calculator/

Truncating Numbers: Unsigned

We can also lose information with

unsigned numbers:
unsigned

unsigned

unsigned

int x

short

int y

= 128000;

sx = (short) x;

= sx;

Bit representation for x = 128000 (32-bit unsigned int):

0000 0000 0000 0001 1111 0100 0000 0000

Truncated unsigned short sx:

1111 0100 0000 0000

which equals 62464 decimal.

Converting back to an unsigned int, y = 62464 108

YouTube fell into this trap — their view counter was a signed, 32-bit int. They fixed it after it was
noticed, but for a while, the view count for Gangnam Style (the first video with over INT_MAX

number of views) was negative.

YouTube: “We never thought a video would be watched in numbers greater than a 32-bit integer
(=2,147,483,647 views), but that was before we met PSY. "Gangnam Style" has been viewed so many
times we had to upgrade to a 64-bit integer (9,223,372,036,854,775,808)!” [link]

“We saw this coming a couple months ago and updated our systems to prepare for it” [link]

Overflow In Practice: PSY

109

Signed overflow wraps around to the negative numbers:

https://www.bbc.com/news/world-asia-30288542
https://www.theverge.com/2014/12/3/7325819/gangnam-style-broke-youtube-view-counter

Overflow in Signed Addition
In the news on January 5, 2022 (!):

https://arstechnica.com/gadgets/2022/01/google-fixes-nightmare-android-bug-

that-stopped-user-from-calling-911/

110

Overflow in Signed Addition
Signed overflow wraps around to the negative numbers.

$./signed_overflow

a = 2147483647

b = 1

a + b = -2147483648

#include<stdio.h>

#include<stdlib.h>

#include<limits.h> // for INT_MAX

int main() {

int a = INT_MAX;

int b = 1;

int c = a + b;

printf("a = %d\n",a);

printf("b = %d\n",b);

printf("a + b = %d\n",c);

return 0;

}

Technically, signed integers in C produce

undefined behavior when they overflow. On two's

complement machines (virtually all machines

these days), it does overflow predictably. You can

test to see if your addition will be correct:

// for addition

#include <limits.h>

int a = <something>;

int x = <something>;

if ((x > 0) && (a > INT_MAX - x)) /* `a + x` would overflow */;

if ((x < 0) && (a < INT_MIN - x)) /* `a + x` would underflow */; 111

Overflow

At which points can overflow occur for
signed and unsigned int? (assume binary values
shown are all 32 bits)

A. Signed and unsigned can both overflow
at points X and Y

B. Signed can overflow only at X, unsigned
only at Y

C. Signed can overflow only at Y, unsigned
only at X

D. Signed can overflow at X and Y,
unsigned only at X

E. Other

X

Y

000…000
000…001

000…010

000…011

111…111
111…110

111…101

111…100

100…010

100…001

100…000

011…101

011…110

011…111

……

112

Overflow In Practice: Gandhi

• In the game “Civilization”, each
civilization leader had an
“aggression” rating. Gandhi was
meant to be peaceful, and had a
score of 1.

• If you adopted “democracy”, all
players’ aggression reduced by 2.
Gandhi’s went from 1 to 255!

• Gandhi then became a big fan of
nuclear weapons.

https://kotaku.com/why-gandhi-is-such-an-asshole-in-civilization-1653818245

113

Overflow In Practice: Games

Impossible Pacman Level 256

Super Mario Bros (NES):
losing all extra lives if you exceed 127

114

https://pacman.fandom.com/wiki/Map_256_Glitch
https://www.mariowiki.com/Extra_life

115

Overflow In Practice: Timestamps

Many systems store timestamps as the number of seconds since Jan. 1, 1970 in
a signed 32-bit integer.

• Problem: the latest timestamp that can be represented this way is 3:14:07 UTC
on Jan. 13 2038!

• Casino erroneous slot machine payout ($42,949,672.76) due to overflow

• Reported vulnerability CVE-2019-3857 in libssh2 may allow a hacker to
remotely execute code

• Apple CoreGraphics overflow bug exploited via iMessage, used in known
spyware

https://arstechnica.com/tech-policy/2017/06/sorry-maam-you-didnt-win-43m-there-was-a-slot-machine-malfunction/
https://nvd.nist.gov/vuln/detail/CVE-2019-3857
https://citizenlab.ca/2021/09/forcedentry-nso-group-imessage-zero-click-exploit-captured-in-the-wild/

Overflow in Practice

• Pacman Level 256

• Make sure to reboot Boeing Dreamliners every 248 days

• Comair/Delta airline had to cancel thousands of flights days before Christmas
– they exceeded 32,767 crew changes (limit of short)

• Many operating systems may have issues storing timestamp values beginning
on Jan 19, 2038

• Donkey Kong Kill Screen

116

https://pacman.fandom.com/wiki/Map_256_Glitch
https://www.engadget.com/2015-05-01-boeing-787-dreamliner-software-bug.html
https://arstechnica.com/uncategorized/2004/12/4490-2/
https://computer.howstuffworks.com/question75.htm
https://errors.fandom.com/wiki/DK_kill_screen

	Slide 1: CS 107 Lecture 2: Integer Representations and Bits / Bytes
	Slide 2: Some Binary Humor (It is Either Funny or Not)
	Slide 3: Assignment 0: Unix!
	Slide 4: Lab Signup
	Slide 5: Today's Topics
	Slide 6: Combinations of bits can Encode Anything represent everything
	Slide 7: Number Representations
	Slide 8: Data Sizes
	Slide 9: Data Sizes
	Slide 10: Data Sizes
	Slide 11: Data Sizes
	Slide 12: Transitioning To Larger Datatypes
	Slide 13: Addressing and Byte Ordering
	Slide 14: Overflow
	Slide 15: Overflow in Unsigned Addition
	Slide 16: Unsigned Integers
	Slide 17: Unsigned Integers
	Slide 18: Computers use a limited number of bits for numbers
	Slide 19: Computers use a limited number of bits for numbers
	Slide 20: Computers use a limited number of bits for numbers
	Slide 21: Computers use a limited number of bits for numbers
	Slide 22: Let's look at a different program
	Slide 23: Information Storage
	Slide 24: Information Storage
	Slide 25: Information Storage
	Slide 26: Byte Range
	Slide 27: Hexadecimal
	Slide 28: Hexadecimal
	Slide 29: Hexadecimal
	Slide 30: Hexadecimal
	Slide 31: Hexadecimal
	Slide 32: Practice: Hexadecimal to Binary
	Slide 33: Practice: Hexadecimal to Binary
	Slide 34: Hexadecimal
	Slide 35: Hexadecimal
	Slide 36: Hexadecimal
	Slide 37: Hexadecimal
	Slide 38: Hexadecimal
	Slide 39: Hexadecimal
	Slide 40: Hexadecimal
	Slide 41
	Slide 42: Hexidecimal to Decimal
	Slide 43: Hexadecimal: It’s funky but concise
	Slide 44: Let the computer do it!
	Slide 45: Let the computer do it!
	Slide 46: Let the computer do it!
	Slide 47
	Slide 48: Signed Integers
	Slide 49: Sign Magnitude Representation
	Slide 50: Sign Magnitude Representation
	Slide 51: Sign Magnitude Representation
	Slide 52: Sign Magnitude Representation AKA Ones Complement
	Slide 53: Now Lets Try a Better Approach!
	Slide 54: A Better Idea
	Slide 55: A Better Idea
	Slide 56: A Better Idea
	Slide 57: A Better Idea
	Slide 58: A Better Idea
	Slide 59: A Better Idea
	Slide 60: A Better Idea
	Slide 61: There Seems Like a Pattern Here…
	Slide 62: There Seems Like a Pattern Here…
	Slide 63: Another Trick
	Slide 64: Another Trick
	Slide 65: Another Trick
	Slide 66: Two’s Complement
	Slide 67: Two’s Complement
	Slide 68: Two’s Complement
	Slide 69: Two’s Complement
	Slide 70: Two’s Complement
	Slide 71: How to Read Two’s Complement #s
	Slide 72: How to Read Two’s Complement #s
	Slide 73: Practice: Two’s Complement
	Slide 74: Practice: Two’s Complement
	Slide 75: Some Extra Slides for Review
	Slide 76: Two's Complement
	Slide 77: Two's Complement
	Slide 78: Two's Complement: Neat Properties
	Slide 79: Two's Complement: Neat Properties
	Slide 80: Two's Complement: Neat Properties
	Slide 81: Practice
	Slide 82: Practice
	Slide 83: Practice
	Slide 84: History: Two’s complement
	Slide 85: Casting Between Signed and Unsigned
	Slide 86: Casting Between Signed and Unsigned
	Slide 87: IMPORTANT NOTE
	Slide 88: Casting Between Signed and Unsigned
	Slide 89: Signed vs Unsigned Number Wheels
	Slide 90: Comparison between signed and unsigned integers
	Slide 91: Comparison between signed and unsigned integers
	Slide 92: Comparison between signed and unsigned integers
	Slide 93: Comparison between signed and unsigned integers
	Slide 94: Overflow
	Slide 95: Overflow
	Slide 96: Limits and Comparisons
	Slide 97: Limits and Comparisons
	Slide 98: Limits and Comparisons
	Slide 99: The sizeof Operator
	Slide 100: The sizeof Operator
	Slide 101: MIN and MAX values for integers
	Slide 102: Min and Max Integer Values
	Slide 103: Expanding Bit Representations
	Slide 104: Expanding the bit representation of a number
	Slide 105
	Slide 106: Truncating Numbers: Signed
	Slide 107: Truncating Numbers: Signed
	Slide 108: Truncating Numbers: Unsigned
	Slide 109: Overflow In Practice: PSY
	Slide 110: Overflow in Signed Addition
	Slide 111
	Slide 112: Overflow
	Slide 113: Overflow In Practice: Gandhi
	Slide 114: Overflow In Practice: Games
	Slide 115: Overflow In Practice: Timestamps
	Slide 116: Overflow in Practice

