
This document is copyright (C) Stanford Computer Science, Lisa Yan, and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Marty Stepp, Cynthia Lee, Chris Gregg, Jerry Cain and others.
1

CS107 Lecture 3
Byte Ordering & Bitwise

Operators

reading:

Bryant & O’Hallaron, Ch. 2.1

Announcements

• Assign 0 due today, late (without penalty) Sunday

• Assign 1 out and due 7/4, late (with cap penalty) 7/5-7/6

• Office Hours are after lecture M/W/F

Casting Between Signed and Unsigned

Converting between two numbers in C can happen explicitly (using a

parenthesized cast), or implicitly (without a cast):

When casting: the underlying bits do not change, so there isn't any

conversion going on, except that the variable is treated as the type that it is.

NOTE: Converting a signed number to unsigned preserves the bits not the

number!

int tx, ty;

unsigned ux, uy;

…

tx = (int) ux;

uy = (unsigned) ty;

1

2

3

4

5

int tx, ty;

unsigned ux, uy;

…

tx = ux; // cast to signed

uy = ty; // cast to unsigned

1

2

3

4

5

explicit implicit

3

Casting Between Signed and Unsigned

When casting: the underlying bits do not change, so there isn't any

conversion going on, except that the variable is treated as the type that it is.

You cannot convert a signed number to its unsigned counterpart using a cast!

Signed -> Unsigned

-12345 goes to 4294954951

Not 12345

// test_cast.c

#include<stdio.h>

#include<stdlib.h>

int main() {

int v = -12345;

unsigned int uv = (unsigned int) v;

printf("v = %d, uv = %u\n",v,uv);

return 0;

}

1

2

3

4

5

6

7

8

9

10

11

12

$./test_cast

v = -12345, uv = 4294954951

4

Casting

5

• What happens at the byte level when we cast between variable types? The
bytes remain the same! This means they may be interpreted differently
depending on the type.

int v = -12345;

unsigned int uv = v;

printf("v = %d, uv = %u\n", v, uv);

This prints out: "v = -12345, uv = 4294954951". Why?

IMPORTANT NOTE

Because Types are just about how we read memory, it is important
to note that casting does not impact the values or bits only the
meaning that we expect them to have

6

Casting Between Signed and Unsigned

printf has three 32-bit integer representations:

%d : signed 32-bit int

%u : unsigned 32-bit int

%x : hex 32-bit int

As long as the value is a 32-bit type, printf will treat it according to the

formatter it is applying:
int x = -1;

unsigned u = 3000000000; // 3 billion

printf("x = %u = %d\n", x, x);

printf("u = %u = %d\n", u, u);

1

2

3

4

5

6

$./test_printf

x = 4294967295 = -1

u = 3000000000 = -1294967296

7

Casting

12

Comparisons Between Different Types

• Be careful when comparing signed and unsigned integers. C will implicitly
cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation Correct?

0 == 0U

-1 < 0

-1 < 0U

2147483647 > -

2147483647 - 1

2147483647U > -

2147483647 - 1

2147483647 >

(int)2147483648U

-1 > -2

(unsigned)-1 > -2

13

Comparisons Between Different Types

• Be careful when comparing signed and unsigned integers. C will implicitly
cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation Correct?

0 == 0U Unsigned 1 yes

-1 < 0

-1 < 0U

2147483647 > -

2147483647 - 1

2147483647U > -

2147483647 - 1

2147483647 >

(int)2147483648U

-1 > -2

(unsigned)-1 > -2

14

Comparisons Between Different Types

• Be careful when comparing signed and unsigned integers. C will implicitly
cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation Correct?

0 == 0U Unsigned 1 yes

-1 < 0 Signed 1 yes

-1 < 0U

2147483647 > -

2147483647 - 1

2147483647U > -

2147483647 - 1

2147483647 >

(int)2147483648U

-1 > -2

(unsigned)-1 > -2

15

Comparisons Between Different Types

• Be careful when comparing signed and unsigned integers. C will implicitly
cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation Correct?

0 == 0U Unsigned 1 yes

-1 < 0 Signed 1 yes

-1 < 0U Unsigned 0 No!

2147483647 > -

2147483647 - 1

2147483647U > -

2147483647 - 1

2147483647 >

(int)2147483648U

-1 > -2

(unsigned)-1 > -2

16

Comparisons Between Different Types

• Be careful when comparing signed and unsigned integers. C will implicitly
cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation Correct?

0 == 0U Unsigned 1 yes

-1 < 0 Signed 1 yes

-1 < 0U Unsigned 0 No!

2147483647 > -

2147483647 - 1
Signed 1 yes

2147483647U > -

2147483647 - 1

2147483647 >

(int)2147483648U

-1 > -2

(unsigned)-1 > -2

17

Comparisons Between Different Types

• Be careful when comparing signed and unsigned integers. C will implicitly
cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation Correct?

0 == 0U Unsigned 1 yes

-1 < 0 Signed 1 yes

-1 < 0U Unsigned 0 No!

2147483647 > -

2147483647 - 1
Signed 1 yes

2147483647U > -

2147483647 - 1
Unsigned 0 No!

2147483647 >

(int)2147483648U

-1 > -2

(unsigned)-1 > -2

18

Comparisons Between Different Types

• Be careful when comparing signed and unsigned integers. C will implicitly
cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation Correct?

0 == 0U Unsigned 1 yes

-1 < 0 Signed 1 yes

-1 < 0U Unsigned 0 No!

2147483647 > -

2147483647 - 1
Signed 1 yes

2147483647U > -

2147483647 - 1
Unsigned 0 No!

2147483647 >

(int)2147483648U
Signed 1 No!

-1 > -2

(unsigned)-1 > -2

19

Comparisons Between Different Types

• Be careful when comparing signed and unsigned integers. C will implicitly
cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation Correct?

0 == 0U Unsigned 1 yes

-1 < 0 Signed 1 yes

-1 < 0U Unsigned 0 No!

2147483647 > -

2147483647 - 1
Signed 1 yes

2147483647U > -

2147483647 - 1
Unsigned 0 No!

2147483647 >

(int)2147483648U
Signed 1 No!

-1 > -2 Signed 1 yes

(unsigned)-1 > -2

20

Comparisons Between Different Types

• Be careful when comparing signed and unsigned integers. C will implicitly
cast the signed argument to unsigned, and then performs the operation
assuming both numbers are non-negative.

Expression Type Evaluation Correct?

0 == 0U Unsigned 1 yes

-1 < 0 Signed 1 yes

-1 < 0U Unsigned 0 No!

2147483647 > -

2147483647 - 1
Signed 1 yes

2147483647U > -

2147483647 - 1
Unsigned 0 No!

2147483647 >

(int)2147483648U
Signed 1 No!

-1 > -2 Signed 1 yes

(unsigned)-1 > -2 Unsigned 1 yes
21

Comparison between signed and unsigned integers

Let's try some more…a bit more abstractly.

int s1, s2, s3, s4;

unsigned int u1, u2, u3, u4;

What is the value of this

expression?

u1 > s3

32

Comparison between signed

and unsigned integersLet's try some more…a bit more abstractly.

int s1, s2, s3, s4;

unsigned int u1, u2, u3, u4;

Which many of the following

statements are true? (assume that

variables are set to values that place

them in the spots shown)

u1 > s3 : true

33

Overflow

0
1

2

8 7
10

9

13

15

14

11

12 4

5

6

3

• What is happening here? Assume 4-bit numbers.

0b1101
+ 0b0100

34

Overflow

• What is happening here? Assume 4-bit numbers.

0b1101
+ 0b0100

0
1

2

8 79
10

13

15

14

11

12 4

5

6

3

Signed

-3 + 4 = 1

No overflow

Unsigned

13 + 4 = 1

Overflow

35

Limits and Comparisons

1. What is
the… Largest unsigned? Largest signed? Smallest signed?

char

int

2. Will the following char comparisons evaluate to true or false?

i.-7 < 4 iii. (char) 130 > 4

ii.-7 < 4U iv. (char) -132 > 2

36

The sizeof Operator

long sizeof(type);

// Example
long int_size_bytes = sizeof(int); // 4
long short_size_bytes = sizeof(short); // 2
long char_size_bytes = sizeof(char); // 1

sizeof takes a variable type as a parameter and returns the size of that type, in
bytes.

39

The sizeof Operator
As we have seen, integer types are limited by the number of bits they hold. On

the 64-bit myth machines, we can use the sizeof operator to find how many

bytes each type uses:
int main() {

printf("sizeof(char): %d\n", (int) sizeof(char));

printf("sizeof(short): %d\n", (int) sizeof(short));

printf("sizeof(int): %d\n", (int) sizeof(int));

printf("sizeof(unsigned int): %d\n", (int) sizeof(unsigned int));

printf("sizeof(long): %d\n", (int) sizeof(long));

printf("sizeof(long long): %d\n", (int) sizeof(long long));

printf("sizeof(size_t): %d\n", (int) sizeof(size_t));

printf("sizeof(void *): %d\n", (int) sizeof(void *));

return 0;

}

$./sizeof

sizeof(char): 1

sizeof(short): 2

sizeof(int): 4

sizeof(unsigned int): 4

sizeof(long): 8

sizeof(long long): 8

sizeof(size_t): 8

sizeof(void *): 8

Type Width in bytes Width in bits

char 1 8

short 2 16

int 4 32

long 8 64

void * 8 64 40

MIN and MAX values for integers
Because we now know how bit patterns for integers works, we can figure out the

maximum and minimum values, designated by INT_MAX, UINT_MAX, INT_MIN,

(etc.), which are defined in limits.h

Type
Width

(bytes)

Width

(bits)
Min in hex (name) Max in hex (name)

char 1 8 80 (CHAR_MIN) 7F (CHAR_MAX)

unsigned char 1 8 0 FF (UCHAR_MAX)

short 2 16 8000 (SHRT_MIN) 7FFF (SHRT_MAX)

unsigned short 2 16 0 FFFF (USHRT_MAX)

int 4 32 80000000 (INT_MIN) 7FFFFFFF (INT_MAX)

unsigned int 4 32 0 FFFFFFFF (UINT_MAX)

long 8 64 8000000000000000 (LONG_MIN) 7FFFFFFFFFFFFFFF (LONG_MAX)

unsigned long 8 64 0 FFFFFFFFFFFFFFFF (ULONG_MAX)
41

Min and Max Integer Values

• You can also find constants in the standard library that define the
max and min for each type on that machine(architecture)

• Visit <limits.h> or <cstdint.h> and look for variables like:

 INT_MIN

 INT_MAX

 UINT_MAX

 LONG_MIN

 LONG_MAX

 ULONG_MAX

 …

42

Expanding Bit Representations

• Sometimes, we need to convert between two integers of different sizes
(e.g. short to int, or int to long).

• We might not be able to convert from a bigger data type to a smaller data
type and retain all information, but we should always be able to convert
from a smaller data type to a larger data type.

• For unsigned values, we can prepend leading zeros to the representation
("zero extension")

• For signed values, we can repeat the sign of the value for new digits ("sign
extension")

• Note: when doing <, >, <=, >= comparison between different size types, it
will promote the smaller type to the larger one.

Expanding Bit Representation

unsigned short s = 4;

// short is a 16-bit format, so s = 0000 0000 0000 0100b

unsigned int i = s;

// conversion to 32-bit int, so i = 0000 0000 0000 0000 0000 0000 0000 0100b

Expanding Bit Representation

short s = 4;

// short is a 16-bit format, so s = 0000 0000 0000 0100b

int i = s;

// conversion to 32-bit int, so i = 0000 0000 0000 0000 0000 0000 0000 0100b

— or —

short s = -4;

// short is a 16-bit format, so s = 1111 1111 1111 1100b

int i = s;

// conversion to 32-bit int, so i = 1111 1111 1111 1111 1111 1111 1111 1100b

Truncating Bit Representation

If we want to reduce the bit size of a number, C truncates the representation and
discards the more significant bits.

What happens here? Let's look at the bits in x (a 32-bit int), 53191:
0000 0000 0000 0000 1100 1111 1100 0111

When we cast x to a short, it only has 16-bits, and C truncates the number:
 1100 1111 1100 0111
This is -12345! And when we cast sx back an int, we sign-extend the number.
1111 1111 1111 1111 1100 1111 1100 0111 // still -12345

int x = 53191;

short sx = x;

int y = sx;

Truncating Bit Representation

If we want to reduce the bit size of a number, C truncates the representation
and discards the more significant bits.

What happens here? Let's look at the bits in x (a 32-bit int), -3:
1111 1111 1111 1111 1111 1111 1111 1101

When we cast x to a short, it only has 16-bits, and C truncates the number:
 1111 1111 1111 1101
This is -3! If the number does fit, it will convert fine. y looks like this:
1111 1111 1111 1111 1111 1111 1111 1101 // still -3

int x = -3;

short sx = x;

int y = sx;

Truncating Bit Representation

If we want to reduce the bit size of a number, C truncates the representation and
discards the more significant bits.

What happens here? Let's look at the bits in x (a 32-bit unsigned int), 128000:
0000 0000 0000 0001 1111 0100 0000 0000

When we cast x to a short, it only has 16-bits, and C truncates the number:
 1111 0100 0000 0000
This is 62464! Unsigned numbers can lose info too. Here is what y looks like:
0000 0000 0000 0000 1111 0100 0000 0000 // still 62464

unsigned int x = 128000;

unsigned short sx = x;

unsigned int y = sx;

Now that we understand
values are really stored in

binary, how can we manipulate
them at the bit level?

Bitwise Operators

5
0

• You’re already familiar with many operators in C:
• Arithmetic operators: +, -, *, /, %

• Comparison operators: ==, !=, <, >, <=, >=

• Logical Operators: &&, ||, !

• Today, we’re introducing a new category of operators: bitwise operators:
• &, |, ~, ^, <<, >>

And (&)

5
1

AND is a binary operator. The AND of 2 bits is 1 if both bits are 1, and 0
otherwise.

output = a & b;

a b output

0 0 0

0 1 0

1 0 0

1 1 1

& with 1 to let a bit through, & with 0 to zero out a bit

Or (|)

52

OR is a binary operator. The OR of 2 bits is 1 if either (or both) bits is 1.

output = a | b;

a b output

0 0 0

0 1 1

1 0 1

1 1 1
| with 1 to turn on a bit, | with 0 to let a bit go through

Not (~)

53

NOT is a unary operator. The NOT of a bit is 1 if the bit is 0, or 1 otherwise.

output = ~a;

a output

0 1

1 0

Exclusive Or (^)

54

Exclusive Or (XOR) is a binary operator. The XOR of 2 bits is 1 if exactly one of
the bits is 1, or 0 otherwise.

output = a ^ b;

a b output

0 0 0

0 1 1

1 0 1

1 1 0

^ with 1 to flip a bit, ^ with 0 to let a bit go through

Operators on Multiple Bits

• When these operators are applied to numbers (multiple bits), the operator is
applied to the corresponding bits in each number. For example:

AND OR XOR NOT

0110 0110 0110

& 1100 | 1100 ^ 1100 ~ 1100

0100 1110 1010 0011

Note: these are different from the logical
operators AND (&&), OR (||) and NOT (!).

55

13

Operators on Multiple Bits

• When these operators are applied to numbers (multiple bits), the operator is
applied to the corresponding bits in each number. For example:

AND OR XOR NOT

0110 0110 0110

& 1100 | 1100 ^ 1100 ~ 1100

0100 1110 1010 0011

This is different from logical AND (&&). The logical
AND returns true if both are nonzero, or false
otherwise. With &&, this would be 6 && 12,
which would evaluate to true (1).

14

Operators on Multiple Bits

• When these operators are applied to numbers (multiple bits), the operator is
applied to the corresponding bits in each number. For example:

AND OR XOR NOT

0110 0110 0110

& 1100 | 1100 ^ 1100 ~ 1100

0100 1110 1010 0011

This is different from logical OR (||). The logical
OR returns true if either are nonzero, or false
otherwise. With ||, this would be 6 || 12, which
would evaluate to true (1).

Operators on Multiple Bits

• When these operators are applied to numbers (multiple bits), the operator is
applied to the corresponding bits in each number. For example:

AND OR XOR NOT

0110 0110 0110

& 1100 | 1100 ^ 1100 ~ 1100

0100 1110 1010 0011

This is different from logical NOT (!). The logical NOT
returns true if this is zero, and false otherwise. With !,
this would be !12, which would evaluate to false (0).

58

Demo: Bits Playground

Bitmasks

We will frequently want to manipulate or otherwise isolate specific bits in a
larger collection of them. A bitmask is a constructed bit pattern that we can use,
along with standard bit operators like &, |, ^, ~, <<, and >>, to do this.

Motivating Example: Bit vectors
 Aside: C++ relies on bit vectors to efficiently implement vector<bool>.

Bit Vectors and Sets

61

• We can use bit vectors (ordered collections of bits) to represent finite sets, and
perform functions such as union, intersection, and complement.

• Example: we can represent current courses taken using a char.

0 0 1 0 0 0 1 1

Bit Vectors and Sets

• How do we find the union of two sets of courses taken? Use OR:

00100011

| 01100001

01100011

62

0 0 1 0 0 0 1 1

Bit Vectors and Sets

• How do we find the intersection of two sets of courses taken? Use AND:

00100011

& 01100001

00100001

63

0 0 1 0 0 0 1 1

Bit Masking

• We will frequently want to manipulate or isolate out specific bits in a larger
collection of bits. A bitmask is a constructed bit pattern that we can use, along
with bit operators, to do this.

• Example: how do we update our bit vector to indicate we’ve taken CS107?

00100011

| 00001000

00101011
64

0 0 1 0 0 0 1 1

Bit Masking

65

#define CS106A 0x1 /* 0000 0001 */
#define CS106B 0x2 /* 0000 0010 */
#define CS106X 0x4 /* 0000 0100 */
#define CS107 0x8 /* 0000 1000 */
#define CS110 0x10 /* 0001 0000 */
#define CS103 0x20 /* 0010 0000 */
#define CS109 0x40 /* 0100 0000 */
#define CS161 0x80 /* 1000 0000 */

char myClasses = ...;
myClasses = myClasses | CS107; // Add CS107

Bit Masking

66

#define CS106A 0x1 /* 0000 0001 */
#define CS106B 0x2 /* 0000 0010 */
#define CS106X 0x4 /* 0000 0100 */
#define CS107 0x8 /* 0000 1000 */
#define CS110 0x10 /* 0001 0000 */
#define CS103 0x20 /* 0010 0000 */
#define CS109 0x40 /* 0100 0000 */
#define CS161 0x80 /* 1000 0000 */

char myClasses = ...;
myClasses |= CS107; // Add CS107

23

Bit Masking

• Example: how do we update our bit vector to indicate we’ve not taken CS103?

00100011

& 11011111

00000011

0 0 1 0 0 0 1 1

char myClasses = ...;
myClasses = myClasses & ~CS103; // Remove CS103

24

Bit Masking

• Example: how do we update our bit vector to indicate we’ve not taken CS103?

00100011

& 11011111

00000011

0 0 1 0 0 0 1 1

char myClasses = ...;
myClasses &= ~CS103; // Remove CS103

25

Bit Masking

• Example: how do we check if we’ve taken CS106B?

00100011

& 00000010

00000010

0 0 1 0 0 0 1 1

char myClasses = ...;
if (myClasses & CS106B) {...

// taken CS106B!

Bit Masking

• Example: how do we check if we’ve not taken CS107?

0 0 1 0 0 0 1 1

00100011

& 00001000

00000000

char myClasses = ...;
if (!(myClasses & CS107)) {...

// not taken CS107!
70

Bitwise Operator Tricks

• | with 1 is useful for turning select bits on
• & with 0 is useful for turning select bits off
• | is useful for taking the union of bits
• & is useful for taking the intersection of bits
• ^ is useful for flipping isolated bits
• ~ is useful for flipping all bits

Introducing GDB

Is there a way to step through the
execution of a program and print out
values as it’s running? e.g., to view

binary representations? Yes!

The GDB Debugger

• GDB is a command-line debugger, a text-based debugger with similar
functionality to other debuggers you may have used, such as in Qt Creator

• It lets you put breakpoints at specific places in your program to pause there
• It lets you step through execution line by line
• It lets you print out values of variables in various ways (including binary)
• It lets you track down where your program crashed
• And much, much more!

GDB is essential to your success in CS107 this quarter! We’ll be building our
familiarity with GDB over the course of the quarter.

GDB as an Interpreter

75

• gdb live_session run gdb on live_session executable

• p print variable (p varname) or evaluated expression (p 3L << 10)
• p/t, p/x

• p/d, p/u, p/c

• <enter>

• q

binary and hex formats.

Execute last command again

Quit gdb

Important When first launching gdb:

• Gdb is not running any program and therefore can’t print variables

• It can still process operators on constants

gdb on a program

76

• gdb live_session

• b

run gdb on executable

Set breakpoint on a function (e.g., b main)
or line (b 42)

Run with provided args

control forward execution (next, step into, continue)

• r 82

• n, s, continue

• p print variable (p varname) or evaluated expression (p 3L << 10)
• p/t, p/x

• p/d, p/u, p/c

• info

binary and hex formats.

args, locals

Important: gdb does not run the current line until you hit “next”

Demo: Bitmasks and GDB

gdb: highly recommended

78

At this point, setting breakpoints/stepping in gdb may seem like overkill for what
could otherwise be achieved by copious printf statements.

However, gdb is incredibly useful for assign1 (and all assignments):

• A fast “C interpreter”: p + <expression>
• Sandbox/try out ideas around bitshift operators, signed/unsigned types, etc.
• Can print values out in binary!

• Once you’re happy, then make changes to your C file

• Tip: Open two terminal windows and SSH into myth in both
• Keep one for emacs, the other for gdb/command-line

• Easily reference C file line numbers and variables while accessing gdb

• Tip: Every time you update your C file, make and then rerun gdb.

Gdb takes practice! But the payoff is tremendous!©

I've seen a few students who have been frustrated with stepping through functions in gdb.
Sometimes, they will accidentally step into a function like strlen or printf and get stuck.

There are three important gdb commands about stepping through a program:

step (abbreviation: s) : executes the next line and goes into function calls.

next (abbreviation: n) : executes the next line, and does not go into function calls. I.e., if you

want to run a line with strlen or printf but don't want to attempt to go into that function,

use next.

display (abbreviation: disp) : displays a variable (or other item) after each step.

finish (abbreviation: fin) : completes a function and returns to the calling function. This is the

command you want if you accidentally go into a function like strlen or printf! This

continues the program until the end of the function, putting you back into the calling function3 .

gdb step, next, finish

Bit Masking

Bit masking is also useful for integer representations as well. For instance, we
might want to check the value of the most-significant bit, or just one of the
middle bytes.

Example: If I have a 32-bit integer j, what operation should I perform if I want to
get just the lowest byte in j?

 int j = ...;
 int k = j & 0xff;// mask to get just lowest byte

Practice: Bit Masking

Practice 1: write an expression that, given a 32-bit integer j, sets its least-
significant byte to all 1s, but preserves all other bytes.

 j | 0xff

Practice 2: write an expression that, given a 32-bit integer j, flips
("complements") all but the least-significant byte, and preserves the last byte.
 j ^ ~0xff

Practice: Bit Masking

Practice 1: write an expression that, given a 32-bit integer j, sets its least-
significant byte to all 1s, but preserves all other bytes.

 j | 0xff

Practice 2: write an expression that, given a 32-bit integer j, flips
("complements") all but the least-significant byte, and preserves the last byte.
 j ^ ~0xff

Powers of 2

Without using loops, how can we detect if a
number num is a power of 2? What’s special
about its binary representation and how can
we take advantage of that?

Code: Powers of 2

bool is_power_of_2(unsigned long num){
 return (num != 0) && ((num & (num -1)) == 0)
}

Left Shift (<<)

86

The LEFT SHIFT operator shifts a bit pattern a certain number of positions to the
left. New lower order bits are filled in with 0s, and bits shifted off the end are
lost.

x << k;

x <<= k;

// evaluates to x shifted to the left by k bits

// shifts x to the left by k bits

8-bit examples:
00110111 << 2 results in 11011100
01100011 << 4 results in 00110000

10010101 << 4 results in 01010000

Right Shift (>>)

87

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.

x >> k;

x >>= k;

// evaluates to x shifted to the right by k bits

// shifts x to the right by k bits

Question: how should we fill in new higher-order bits?

Idea: let’s follow left-shift and fill with 0s.

short x = 2;

x >>= 1;

// 0000 0000 0000 0010

// 0000 0000 0000 0001

printf("%d\n", x); // 1

Right Shift (>>)

88

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.

x >> k;

x >>= k;

// evaluates to x shifted to the right by k
bit

// shifts x to the right by k bits

Question: how should we fill in new higher-order bits?

Idea: let’s follow left-shift and fill with 0s.

short x = -2; // 1111 1111 1111 1110

x >>= 1; // 0111 1111 1111 1111

printf("%d\n", x); // 32767!

Right Shift (>>)

89

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.

x >> k;

x >>= k;

// evaluates to x shifted to the right by k
bit

// shifts x to the right by k bits

Question: how should we fill in new higher-order bits?

Problem: always filling with zeros means we may change the sign bit.

Solution: let’s fill with the sign bit!

Right Shift (>>)

90

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.

x >> k;

x >>= k;

// evaluates to x shifted to the right by k
bit

// shifts x to the right by k bits

Question: how should we fill in new higher-order bits?

Solution: let’s fill with the sign bit!

short x = 2;

x >>= 1;

// 0000 0000 0000 0010

// 0000 0000 0000 0001

printf("%d\n", x); // 1

Right Shift (>>)

91

The RIGHT SHIFT operator shifts a bit pattern a certain number of positions to
the right. Bits shifted off the end are lost.

x >> k;

x >>= k;

// evaluates to x shifted to the right by k
bit

// shifts x to the right by k bits

Question: how should we fill in new higher-order bits?

Solution: let’s fill with the sign bit!

short x = -2; // 1111 1111 1111 1110

x >>= 1; // 1111 1111 1111 1111

printf("%d\n", x); // -1!

Right Shift (>>)

92

There are two kinds of right shifts, depending on the value and type you are
shifting:

• Logical Right Shift: fill new high-order bits with 0s.

• Arithmetic Right Shift: fill new high-order bits with the most-significant bit.

Unsigned numbers are right-shifted using Logical Right Shift.

Signed numbers are right-shifted using Arithmetic Right Shift.

This way, the sign of the number (if applicable) is preserved!

Shift Operation Pitfalls

93

1. Technically, the C standard does not precisely define whether a right shift for
signed integers is logical or arithmetic. However, almost all
compilers/machines use arithmetic, and you can most likely assume this.

2. Operator precedence can be tricky! For example:

1<<2 + 3<<4 means 1 << (2+3) << 4 because addition and
subtraction have higher precedence than shifts! Always use parentheses
to be sure:

(1<<2) + (3<<4)

Bit Operator Pitfalls

94

• The default type of a number literal in your code is an int.

• Let’s say you want a long with the index-32 bit as 1:

long num = 1 << 32;

• This doesn’t work! 1 is by default an int, and you can’t shift an int by 32
because it only has 32 bits. You must specify that you want 1 to be a long.

long num = 1L << 32;

Bitwise Warmup

How can we use bitmasks + bitwise operators to…

0b00001101

1. …turn on a particular
set of bits?

2. …turn off a particular
set of bits?

3. …flip a particular
set of bits?

0b00001101 0b00001101 0b00001101

0b00001111 0b00001001 0b00001011

97

Bitwise Warmup

How can we use bitmasks + bitwise operators to…

0b00001101

1. …turn on a particular
set of bits?

2. …turn off a particular
set of bits?

3. …flip a particular
set of bits? XOR

0b00001101 0b00001101 0b00001101
0b00000010 | 0b11111011 & 0b00000110 ^

OR

0b00001111 0b00001001 0b00001011

98

AND

More Exercises

Suppose we have a 64-bit number.

How can we use bit operators, and the constant 1L or -1L to…

• …design a mask that turns on the i-th bit of a number for any i (0, 1, 2, …, 63)?

• …design a mask that zeros out (i.e., turns off) the bottom i bits (and keeps the
rest of the bits the same)?

long x = 0b1010010;

99

More Exercises

Suppose we have a 64-bit number.

How can we use bit operators, and the constant 1L or -1L to…

• …design a mask that turns on the i-th bit of a number for any i (0, 1, 2, …, 63)?

x | (1L << i)

• …design a mask that zeros out (i.e., turns off) the bottom i bits (and keeps the
rest of the bits the same)?

x & (-1L << i)

long x = 0b1010010;

10
0

On your own

10
1

• Print a variable

• Print (in binary, then in hex) result of left-shifting 14 and 32 by 4 bits.

• Print (in binary, then in hex) result of subtracting 1 from 128

1 << 32

• Why is this zero? Compare with 1 << 31.

• Print in hex to make it easier to count zeros.

References and Advanced Reading

•References:
•Two's complement calculator: http://www.convertforfree.com/twos-complement-

calculator/

•Wikipedia on Two's complement: https://en.wikipedia.org/wiki/

Two%27s_complement

•The sizeof operator: http://www.geeksforgeeks.org/sizeof-operator-c/

•Advanced Reading:
•Signed overflow: https://stackoverflow.com/questions/16056758/c-c-unsigned-

integer-overflow

•Integer overflow in C: https://www.gnu.org/software/autoconf/manual/

autoconf-2.62/html_node/Integer-Overflow.html

•https://stackoverflow.com/questions/34885966/when-an-int-is-cast-to-a-short-and-

truncated-how-is-the-new-value-determined

http://www.convertforfree.com/twos-complement-
http://www.convertforfree.com/twos-complement-
http://www.convertforfree.com/twos-complement-
http://www.convertforfree.com/twos-complement-
http://www.geeksforgeeks.org/sizeof-operator-c/
http://www.geeksforgeeks.org/sizeof-operator-c/
http://www.geeksforgeeks.org/sizeof-operator-c/
http://www.geeksforgeeks.org/sizeof-operator-c/
http://www.geeksforgeeks.org/sizeof-operator-c/
http://www.gnu.org/software/autoconf/manual/
http://www.gnu.org/software/autoconf/manual/

References and Advanced Reading

•References:

•argc and argv: http://crasseux.com/books/ctutorial/argc-and-argv.html

•The C Language: https://en.wikipedia.org/wiki/C_(programming_language)

•Kernighan and Ritchie (K&R) C: https://www.youtube.com/watch?v=de2Hsvxaf8M

•C Standard Library: http://www.cplusplus.com/reference/clibrary/

•https://en.wikipedia.org/wiki/Bitwise_operations_in_C

•http://en.cppreference.com/w/c/language/operator_precedence

•Advanced Reading:

•After All These Years, the World is Still Powered by C Programming

• Is C Still Relevant in the 21st Century?

•Why Every Programmer Should Learn C

http://crasseux.com/books/ctutorial/argc-and-argv.html
http://crasseux.com/books/ctutorial/argc-and-argv.html
http://crasseux.com/books/ctutorial/argc-and-argv.html
http://crasseux.com/books/ctutorial/argc-and-argv.html
http://crasseux.com/books/ctutorial/argc-and-argv.html
http://www.youtube.com/watch?v=de2Hsvxaf8M
http://www.youtube.com/watch?v=de2Hsvxaf8M
http://www.cplusplus.com/reference/clibrary/
http://en.cppreference.com/w/c/language/operator_precedence
http://en.cppreference.com/w/c/language/operator_precedence

	Slide 1: CS107 Lecture 3 Byte Ordering & Bitwise Operators
	Slide 2: Announcements
	Slide 3: Casting Between Signed and Unsigned
	Slide 4: Casting Between Signed and Unsigned
	Slide 5: Casting
	Slide 6: IMPORTANT NOTE
	Slide 7: Casting Between Signed and Unsigned
	Slide 12: Casting
	Slide 13: Comparisons Between Different Types
	Slide 14: Comparisons Between Different Types
	Slide 15: Comparisons Between Different Types
	Slide 16: Comparisons Between Different Types
	Slide 17: Comparisons Between Different Types
	Slide 18: Comparisons Between Different Types
	Slide 19: Comparisons Between Different Types
	Slide 20: Comparisons Between Different Types
	Slide 21: Comparisons Between Different Types
	Slide 32: Comparison between signed and unsigned integers
	Slide 33: Comparison between signed and unsigned integers
	Slide 34: Overflow
	Slide 35: Overflow
	Slide 36: Limits and Comparisons
	Slide 39: The sizeof Operator
	Slide 40: The sizeof Operator
	Slide 41: MIN and MAX values for integers
	Slide 42: Min and Max Integer Values
	Slide 43: Expanding Bit Representations
	Slide 44: Expanding Bit Representation
	Slide 45: Expanding Bit Representation
	Slide 46: Truncating Bit Representation
	Slide 47: Truncating Bit Representation
	Slide 48: Truncating Bit Representation
	Slide 49: Now that we understand values are really stored in binary, how can we manipulate them at the bit level?
	Slide 50: Bitwise Operators
	Slide 51: And (&)
	Slide 52: Or (|)
	Slide 53: Not (~)
	Slide 54: Exclusive Or (^)
	Slide 55: Operators on Multiple Bits
	Slide 56: Operators on Multiple Bits
	Slide 57: Operators on Multiple Bits
	Slide 58: Operators on Multiple Bits
	Slide 59
	Slide 60: Bitmasks
	Slide 61: Bit Vectors and Sets
	Slide 62: Bit Vectors and Sets
	Slide 63: Bit Vectors and Sets
	Slide 64: Bit Masking
	Slide 65: Bit Masking
	Slide 66: Bit Masking
	Slide 67: Bit Masking
	Slide 68: Bit Masking
	Slide 69: Bit Masking
	Slide 70: Bit Masking
	Slide 72: Bitwise Operator Tricks
	Slide 73: Introducing GDB
	Slide 74: The GDB Debugger
	Slide 75: GDB as an Interpreter
	Slide 76: gdb on a program
	Slide 77
	Slide 78: gdb: highly recommended
	Slide 79: gdb step, next, finish
	Slide 80: Bit Masking
	Slide 81: Practice: Bit Masking
	Slide 82: Practice: Bit Masking
	Slide 83: Powers of 2
	Slide 84
	Slide 85
	Slide 86: Left Shift (<<)
	Slide 87: Right Shift (>>)
	Slide 88: Right Shift (>>)
	Slide 89: Right Shift (>>)
	Slide 90: Right Shift (>>)
	Slide 91: Right Shift (>>)
	Slide 92: Right Shift (>>)
	Slide 93: Shift Operation Pitfalls
	Slide 94: Bit Operator Pitfalls
	Slide 97: Bitwise Warmup
	Slide 98: Bitwise Warmup
	Slide 99: More Exercises
	Slide 100: More Exercises
	Slide 101: On your own
	Slide 102: References and Advanced Reading
	Slide 103: References and Advanced Reading

