
This document is copyright (C) Stanford Computer Science, Adam Keppler, and Olayinka Adekola licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Joel Ramirez, Nick Troccoli, Chris Gregg

CS107 Lecture 4

reading:
Reader: Ch 4, C Primer

s t r i n g \0

Lecture Plan

• Characters

• Strings

• Common String Operations
• Comparing

• Copying

• Concatenating

• Substrings

2

Char

A char is a variable type that represents a single character or “glyph”.

char letterA = 'A';

char plus = '+';

char zero = '0';

char space = ' ';

char newLine = '\n';

char tab = '\t';

char singleQuote = '\'';

char backSlash = '\\';

3

ASCII

Under the hood, C represents each char as an integer (its “ASCII value”).
• Uppercase letters are sequentially numbered

• Lowercase letters are sequentially numbered

• Digits are sequentially numbered

• Lowercase letters are 32 more than their uppercase equivalents (bit flip!)

• Fun Fact: The Space is ASCII 32 same as the gap between Upper & Lower

char uppercaseA = 'A'; // Actually 65

char lowercaseA = 'a'; // Actually 97

char zeroDigit = '0’; // Actually 48

4

ASCII

Under the hood, C represents each char as an integer (its “ASCII value”).
• Uppercase letters are sequentially numbered

• Lowercase letters are sequentially numbered

• Digits are sequentially numbered

• Lowercase letters are 32 more than their uppercase equivalents (bit flip!)

• Fun Fact: The Space is ASCII 32 same as the gap between Upper & Lower

char uppercaseA = 'A'; // Actually

char lowercaseA = 'a'; // Actually

char zeroDigit = '0’; // Actually

5

0b1000001

0b1100001

0b0110000

ASCII

We can take advantage of C representing each char as an integer:

// true

// false

bool areEqual = 'A' == 'A';

bool earlierLetter = 'f' < 'c';

char uppercaseB = 'A' + 1;

int diff = 'c' - 'a'; // 2

int numLettersInAlphabet = 'z' – 'a' + 1;

// or

int numLettersInAlphabet = 'Z' – 'A' + 1;

6

ASCII

We can take advantage of C representing each char as an integer:

// prints out every lowercase character

for (char ch = 'a'; ch <= 'z'; ch++) {

printf("%c", ch);

}

7

Common ctype.h Functions

Function Description

isalpha(ch) true if ch is 'a' through 'z' or 'A' through 'Z'

islower(ch) true if ch is 'a' through 'z'

isupper(ch) true if ch is 'A' through 'Z'

isspace(ch) true if ch is a space, tab, new line, etc.

isdigit(ch) true if ch is '0' through '9'

toupper(ch) returns uppercase equivalent of a letter

tolower(ch) returns lowercase equivalent of a letter

Remember: these return a char; they cannot modify an existing char!
More documentation with man isalpha, man tolower 8

Common ctype.h Functions

// true

// false

bool isLetter = isalpha('A');

bool capital = isupper('f');

char uppercaseB = toupper('b');

bool isADigit = isdigit('4'); // true

9

Lecture Plan

• Characters

• Strings

• Common String Operations
• Comparing

• Copying

• Concatenating

• Substrings

10

C Strings

C has no dedicated variable type for strings. Instead, a string is
represented as an array of characters with a special ending sentinel value.

'\0' is the null-terminating character; you always need to allocate one extra
space in an array for it.

"Hello"
1 2 3 4 5index 0

char 'H' 'e' 'l' 'l' 'o' '\0'

11

String Length

Strings are not objects. They do not embed additional information (e.g., string
length). We must calculate this!

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

value

We can use the provided strlen function to calculate string length. The null-
terminating character does not count towards the length.

int length = strlen(myStr); // e.g. 13

'H' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

Caution: strlen is O(N) because it must scan the entire string!

We should save the value if we plan to refer to the length later.
12

C Strings As Parameters

When we pass a string as a parameter, it is passed as a char *. C passes the
location of the first character rather than a copy of the whole array.

int doSomething(char *str) {

...

}

char myString[6];

...

doSomething(myString);

13

C Strings As Parameters

When we pass a string as a parameter, it is passed as a char *. C passes the
location of the first character rather than a copy of the whole array.

int doSomething(char *str) {

...

str[0] = 'c'; // modifies original string!

printf("%s\n", str); // prints cello

}

char myString[6];

... // e.g. this string is “Hello”

doSomething(myString);

We can still use a char * the
same way as a char[].

14

Lecture Plan

• Characters

• Strings

• Common String Operations
• Comparing

• Copying

• Concatenating

• Substrings

15

Common string.h Functions

Function Description

strlen(str) returns the # of chars in a C string (before null-terminating character).

strcmp(str1, str2),

strncmp(str1, str2, n)

compares two strings; returns 0 if identical, <0 if str1 comes before
str2 in alphabet, >0 if str1 comes after str2 in alphabet. strncmp
stops comparing after at most n characters.

strchr(str, ch)

strrchr(str, ch)

character search: returns a pointer to the first occurrence of ch in str,
or NULL if ch was not found in str. strrchr find the last occurrence.

strstr(haystack, needle) string search: returns a pointer to the start of the first occurrence of
needle in haystack, or NULL if needle was not found in haystack.

strcpy(dst, src),

strncpy(dst, src, n)

copies characters in src to dst, including null-terminating character.
Assumes enough space in dst. Strings must not overlap. strncpy
stops after at most n chars, and does not add null-terminating char.

strcat(dst, src),

strncat(dst, src, n)

concatenate src onto the end of dst. strncat stops concatenating
after at most n characters. Always adds a null-terminating character.

strspn(str, accept),

strcspn(str, reject)

strspn returns the length of the initial part of str which contains only
characters in accept. strcspn returns the length of the initial part of
str which does not contain any characters in reject.

16

Common string.h Functions

Function Description

strlen(str) returns the # of chars in a C string (before null-terminating character).

strcmp(str1, str2),

strncmp(str1, str2, n)

compares two strings; returns 0 if identical, <0 if str1 comes before
str2 in alphabet, >0 if str1 comes after str2 in alphabet. strncmp
stops comparing after at most n characters.

strchr(str, ch)

strrchr(str, ch)

character search: returns a pointer to the first occurrence of ch in str,
or NULL if ch was not found in str. strrchr find the last occurrence.

first occurrence of
ot found in haystack.

strcpy(dst, src),

strncpy(dst, src, n)

eedle) string search: returns a pointer to the start of the
needle in haystack, or NULL if needle was n

copies characters in src to dst, including null-terminating character.
Assumes enough space in dst. Strings must not overlap. strncpy
stops after at most n chars, and does not add null-terminating char.

strcat(dst, src),

strncat(dst, src, n)

concatenate src onto the end of dst. strncat stops concatenating
after at most n characters. Always adds a null-terminating character.

strspn(str, accept),

strcspn(str, reject)

strspn returns the length of the initial part of str which contains only
characters in accept. strcspn returns the length of the initial part of
str which does not contain any characters in reject.

strstr(haystack, n Many string functions assume valid string

input; i.e., ends in a null terminator.

17

Comparing Strings

We cannot compare C strings using comparison operators like ==, < or >. This
compares addresses!

// e.g. str1 = 0x7f42, str2 = 0x654d
void doSomething(char *str1, char *str2) {

if (str1 > str2) { … // compares 0x7f42 > 0x654d!

Instead, use strcmp.

18

The string library: strcmp

strcmp(str1, str2): compares two strings.

• returns 0 if identical

• <0 if str1 comes before str2 in alphabet

• >0 if str1 comes after str2 in alphabet.

int compResult = strcmp(str1, str2);

if (compResult == 0) {
// equal

} else if (compResult < 0) {
// str1 comes before str2

} else {
// str1 comes after str2

}
19

Copying Strings

We cannot copy C strings using =. This copies addresses!

// e.g. param1 = 0x7f42, param2 = 0x654d
void doSomething(char *param1, char *param2) {

// copies 0x7f42. Points to same string!
// modifies the one original string!

param2 = param1;
param2[0] = 'H';

Instead, use strcpy.

20

The string library: strcpy

strcpy(dst, src):
copies the contents of src into the string dst, including the null terminator.

char str1[6];
strcpy(str1, "hello");

char str2[6];
strcpy(str2, str1);
str2[0] = 'c';

printf("%s", str1); // hello
printf("%s", str2); // cello

21

Copying Strings - strcpy

char str1[6];
strcpy(str1, "hello");

char str2[6];
strcpy(str2, str1);

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'str2

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'

'h' ? ? ? ? ?

22

Copying Strings - strcpy

char str1[6];
strcpy(str1, "hello");

char str2[6];
strcpy(str2, str1);

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'str2

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'

'h' 'e' ? ? ? ?

23

Copying Strings - strcpy

char str1[6];
strcpy(str1, "hello");

char str2[6];
strcpy(str2, str1);

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'str2

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'

'h' 'e' 'l' ? ? ?

24

Copying Strings - strcpy

char str1[6];
strcpy(str1, "hello");

char str2[6];
strcpy(str2, str1);

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'str2

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'

'h' 'e' 'l' 'l' ? ?

25

Copying Strings - strcpy

char str1[6];
strcpy(str1, "hello");

char str2[6];
strcpy(str2, str1);

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'str2

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'

'h' 'e' 'l' 'l' 'o' ?

26

Copying Strings - strcpy

char str1[6];
strcpy(str1, "hello");

char str2[6];
strcpy(str2, str1);

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'str2

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'

'h' 'e' 'l' 'l' 'o' '\0'

27

Copying Strings - strcpy

We must make sure there is enough space in the destination to hold the entire
copy, including the null-terminating character.

char str2[6];
strcpy(str2, "hello, world!");

// not enough space!
// overwrites other memory!

Writing past memory bounds is called a “buffer overflow”. It can allow for
security vulnerabilities!

28

Copying Strings – Buffer Overflows

char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

? ? ? ? ? ?str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

- other program memory -

29

Copying Strings – Buffer Overflows

char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' ? ? ? ? ?str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

30

Copying Strings – Buffer Overflows

str1

0 1 2 3 4 5

'h' 'e' ? ? ? ?str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

31

char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

Copying Strings – Buffer Overflows

char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' ? ? ?str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

32

Copying Strings – Buffer Overflows

char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' ? ?str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

33

Copying Strings – Buffer Overflows

char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ?str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

34

Copying Strings – Buffer Overflows

char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

35

' ' - other program memory -

Copying Strings – Buffer Overflows

char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

36

' ' 'w' - other program memory -

Copying Strings – Buffer Overflows

char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

37

' ' 'w' 'o-'other program memory -

Copying Strings – Buffer Overflows

char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

38

' ' 'w' 'o-'other'prr'ogram memory -

Copying Strings – Buffer Overflows

char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

39

' ' 'w' 'o-'other'prr'ogram'lm'emory -

Copying Strings – Buffer Overflows

char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

40

' ' 'w' 'o-'other'prr'ogram'lm'emo'ryd-'

Copying Strings – Buffer Overflows

char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

41

' ' 'w' 'o-'other'prr'ogram'lm'emo'ryd-' '!'

Copying Strings – Buffer Overflows

char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

42

' ' 'w' 'o-'other'prr'ogram'lm'emo'ryd-' '!' '\0'

Copying Strings – Buffer Overflows

char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

43

' ' 'w' 'o-'other'prr'ogram'lm'emo'ryd-' '!' '\0'

Copying Strings – Buffer Overflows

char str1[14];
strcpy(str1, "hello, world!");
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

44

Copying Strings - strncpy

strncpy(dst, src, n): copies at most the first n bytes from src into the
string dst. If there is no null-terminating character in these bytes, then dst will
not be null terminated!

// copying "hello"
char str2[5];
strncpy(str2, "hello, world!", 5); // doesn’t copy '\0'!

If there is no null-terminating character, we may not be able to tell where the
end of the string is anymore. E.g. strlen may continue reading into some
other memory in search of '\0'!

45

Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1

0 1 2 3 4

? ? ? ? ?str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

46

Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1

0 1 2 3 4

'h' ? ? ? ?str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

47

Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1

0 1 2 3 4

'h' 'e' ? ? ?str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

48

Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1

0 1 2 3 4

'h' 'e' 'l' ? ?str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

49

Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1

0 1 2 3 4

'h' 'e' 'l' 'l' ?str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

50

Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1

0 1 2 3 4

'h' 'e' 'l' 'l' 'o'str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

51

Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1

0 1 2 3 4

'h' 'e' 'l' 'l' 'o'str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

52

Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1

str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4

'h' 'e' 'l' 'l' 'o' - other program memory -

53

Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1

str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4

'h' 'e' 'l' 'l' 'o' - other program memory -

54

Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1

str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4

'h' 'e' 'l' 'l' 'o' - other program memory -

55

Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1

str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4

'h' 'e' 'l' 'l' 'o' - other program memory -

56

Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1

str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4

'h' 'e' 'l' 'l' 'o' - other program memory -

57

Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1

str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4

'h' 'e' 'l' 'l' 'o' - other program memory -

58

Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1

str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4

'h' 'e' 'l' 'l' 'o' - other program memory -

59

Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1

str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4

'h' 'e' 'l' 'l' 'o' - other program memory -

60

Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1

str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4

'h' 'e' 'l' 'l' 'o' - other program memory -

61

Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5);
int length = strlen(str2);

str1

str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4

'h' 'e' 'l' 'l' 'o' - other program memory -

62

Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

? ? ? ? ? ? ? ? ? ? ? ? ? ?

63

Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' ? ? ? ? ? ? ? ? ? ? ? ? ?

64

Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' ? ? ? ? ? ? ? ? ? ? ? ?

65

Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' ? ? ? ? ? ? ? ? ? ? ?

66

Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' ? ? ? ? ? ? ? ? ? ?

67

Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ? ? ? ? ? ? ? ? ?

68

Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ? ? ? ? ? ? ? ? ?

69

Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5);
printf("%s\n", str1);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ? ? ? ? ? ? ? ? ?

70

Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5);
printf("%s\n", str1);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ? ? ? ? ? ? ? ? ?

71

Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5);
printf("%s\n", str1);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ? ? ? ? ? ? ? ? ?

72

Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5);
printf("%s\n", str1);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ? ? ? ? ? ? ? ? ?

73

Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5);
printf("%s\n", str1);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ? ? ? ? ? ? ? ? ?

74

Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5);
printf("%s\n", str1);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ? ? ? ? ? ? ? ? ?

75

Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5);
printf("%s\n", str1);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ? ? ? ? ? ? ? ? ?

76

Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5);
printf("%s\n", str1);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ? ? ? ? ? ? ? ? ?

77

Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5);
printf("%s\n", str1);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ? ? ? ? ? ? ? ? ?

78

Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5);
printf("%s\n", str1);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ? ? ? ? ? ? ? ? ?

hello⍰⍰J⍰⍰⍰

79

Copying Strings - strncpy

If necessary, we can add a null-terminating character ourselves.

// copying "hello"
char str2[6]; // room for string and '\0'
strncpy(str2, "hello, world!", 5); // doesn’t copy '\0'!
str2[5] = '\0'; // add null-terminating char

80

String Copying Exercise

What value should go in the blank at right?

A. 4

B. 5

C. 6

D. 12

E. strlen("hello")

char str[];

strcpy(str, "hello");

81

String Copying Exercise

What value should go in the blank at right?

A. 4

B. 5

C. 6

D. 12

E. strlen("hello")

char str[];

strcpy(str, "hello");

82

String Copying Exercise

What value should go in the blank at right?

A. 4

B. 5

C. 6

D. 12

E. strlen("hello")

char str[];

strcpy(str, "hello");

83

Why not?

String Copying Exercise

What value should go in the blank at right?

A. 4

B. 5

C. 6

D. 12

E. strlen("hello")

char str[];

strcpy(str, "hello");

84

Why not?

Need to account for the \0 !

String Exercise

What is printed out by the following program?

int main(int argc, char *argv[]) {

 char str[9];

strcpy(str, "Hi earth");

str[2] = '\0';

printf("str = %s, len = %zu\n", str, strlen(str));

return 0;

} A. str = Hi, len = 8
B. str = Hi, len = 2
C. str = Hi earth, len = 8
D. str = Hi earth, len = 2
E. None/other

1

2

3

4

5

6

7

8

85

String Exercise

What is printed out by the following program?

int main(int argc, char *argv[]) {

 char str[9];

strcpy(str, "Hi earth");

str[2] = '\0';

printf("str = %s, len = %zu\n", str, strlen(str));

return 0;

} A. str = Hi, len = 8
B. str = Hi, len = 2
C. str = Hi earth, len = 8
D. str = Hi earth, len = 2
E. None/other

1

2

3

4

5

6

7

8

86

Concatenating Strings

We cannot concatenate C strings using + like in python. This adds addresses!

// e.g. param1 = 0x7f, param2 = 0x65
void doSomething(char *param1, char *param2) {

printf("%s", param1 + param2); // adds 0x7f and 0x65!

Instead, use strcat.

87

The string library: str(n)cat

strcat(dst, src): concatenates the contents of src into the string dst.

strncat(dst, src, n): same, but concats at most n bytes from src.

char str1[13]; // enough space for strings + '\0'
strcpy(str1, "hello ");
strcat(str1, "world!");
printf("%s", str1);

// removes old '\0', adds new '\0' at end
// hello world!

Both strcat and strncat remove the old '\0' and add a new one at the end.

88

Concatenating Strings

char str1[13];
strcpy(str1, "hello ");
char str2[7];
strcpy(str2, "world!");

strcat(str1,

0 1

str2);

2 3 4 5 6 7 8 9 10 11 12

str1 'h' 'e' 'l' 'l' 'o' ' ' '\0' ? ? ? ? ? ?

0 1 2 3 4 5 6

str2 'w' 'o' 'r' 'l' 'd' '!' '\0'

89

Concatenating Strings

char str1[13];
strcpy(str1, "hello ");
char str2[7];
strcpy(str2, "world!");

strcat(str1,

0 1

str2);

2 3 4 5 6 7 8 9 10 11 12

str1 'h' 'e' 'l' 'l' 'o' ' ' 'w' ? ? ? ? ? ?

0 1 2 3 4 5 6

str2 'w' 'o' 'r' 'l' 'd' '!' '\0'

90

Concatenating Strings

char str1[13];
strcpy(str1, "hello ");
char str2[7];
strcpy(str2, "world!");

strcat(str1,

0 1

str2);

2 3 4 5 6 7 8 9 10 11 12

str1 'h' 'e' 'l' 'l' 'o' ' ' 'w' 'o' ? ? ? ? ?

0 1 2 3 4 5 6

str2 'w' 'o' 'r' 'l' 'd' '!' '\0'

91

Concatenating Strings

char str1[13];
strcpy(str1, "hello ");
char str2[7];
strcpy(str2, "world!");

strcat(str1,

0 1

str2);

2 3 4 5 6 7 8 9 10 11 12

str1 'h' 'e' 'l' 'l' 'o' ' ' 'w' 'o' 'r' ? ? ? ?

0 1 2 3 4 5 6

str2 'w' 'o' 'r' 'l' 'd' '!' '\0'

92

Concatenating Strings

char str1[13];
strcpy(str1, "hello ");
char str2[7];
strcpy(str2, "world!");

strcat(str1,

0 1

str2);

2 3 4 5 6 7 8 9 10 11 12

str1 'h' 'e' 'l' 'l' 'o' ' ' 'w' 'o' 'r' 'l' ? ? ?

0 1 2 3 4 5 6

str2 'w' 'o' 'r' 'l' 'd' '!' '\0'

93

Concatenating Strings

char str1[13];
strcpy(str1, "hello ");
char str2[7];
strcpy(str2, "world!");

strcat(str1,

0 1

str2);

2 3 4 5 6 7 8 9 10 11 12

str1 'h' 'e' 'l' 'l' 'o' ' ' 'w' 'o' 'r' 'l' 'd' ? ?

0 1 2 3 4 5 6

str2 'w' 'o' 'r' 'l' 'd' '!' '\0'

94

Concatenating Strings

char str1[13];
strcpy(str1, "hello ");
char str2[7];
strcpy(str2, "world!");

strcat(str1,

0 1

str2);

2 3 4 5 6 7 8 9 10 11 12

str1 'h' 'e' 'l' 'l' 'o' ' ' 'w' 'o' 'r' 'l' 'd' '!' ?

0 1 2 3 4 5 6

str2 'w' 'o' 'r' 'l' 'd' '!' '\0'

95

Concatenating Strings

char str1[13];
strcpy(str1, "hello ");
char str2[7];
strcpy(str2, "world!");

strcat(str1,

0 1

str2);

2 3 4 5 6 7 8 9 10 11 12

str1 'h' 'e' 'l' 'l' 'o' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4 5 6

str2 'w' 'o' 'r' 'l' 'd' '!' '\0'

96

Concatenating Strings

char str1[13];
strcpy(str1, "hello ");
char str2[7];
strcpy(str2, "world!");

strcat(str1,

0 1

str2);

2 3 4 5 6 7 8 9 10 11 12

str1 'h' 'e' 'l' 'l' 'o' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4 5 6

str2 'w' 'o' 'r' 'l' 'd' '!' '\0'

97

Substrings and char *

You can also create a char * variable yourself that points to an address within
an existing string.

char myString[3];

myString[0] = 'H';

myString[1] = 'i';

myString[2] = '\0';

char *otherStr = myString; // points to 'H'

98

Substrings

char *s are pointers to characters. We can use them to create substrings of
larger strings.

// Want just "car"
char chars[8];
strcpy(chars, "racecar");
char *str1 = chars;

0xf1 0xf2 0xf3 0xf4 0xf5 0xf6 0xf7 0xf8

'r' 'a' 'c' 'e' 'c' 'a' 'r' '\0'

str1 0xf1

chars

0xee

99

Substrings

Since C strings are pointers to characters, we can adjust the pointer to omit
characters at the beginning.

// Want just "car"
char chars[8];
strcpy(chars, "racecar");
char *str1 = chars;
char *str2 = chars + 4;

'r' 'a' 'c' 'e' 'c' 'a' 'r' '\0'

0xf1 0xf2 0xf3 0xf4 0xf5 0xf6 0xf7 0xf8

chars

0xee

0xf1

0xd2

0xf5str1 str2

100

Substrings

Since C strings are pointers to characters, we can adjust the pointer to omit
characters at the beginning.

char chars[8];
strcpy(chars, "racecar");
char *str1 = chars;
char *str2 = chars + 4;
printf("%s\n", str1); // racecar
printf("%s\n", str2); // car

'r' 'a' 'c' 'e' 'c' 'a' 'r' '\0'

0xf1 0xf2 0xf3 0xf4 0xf5 0xf6 0xf7 0xf8

chars

0xee

0xf1

0xd2

0xf5str1 str2

101

Substrings

'r' 'a' 'c' 'e' 'f' 'a' 'r' '\0'

str2

0xd2

0xf5

0xee

0xf1str1

Since C strings are pointers to characters, we can adjust the pointer to omit
characters at the beginning. NOTE: the pointer still refers to the same
characters!

char chars[8];
strcpy(chars, "racecar");
char *str1 = chars;
char *str2 = chars + 4;
str2[0] = 'f';
printf("%s %s\n", chars, str1);
printf("%s\n", str2);

0xf1 0xf2 0xf3 0xf4 0xf5 0xf6 0xf7 0xf8

chars

102

Substrings

Since C strings are pointers to characters, we can adjust the pointer to omit
characters at the beginning. NOTE: the pointer still refers to the same
characters!

char chars[8];
strcpy(chars, "racecar");
char *str1 = chars;
char *str2 = chars + 4;
str2[0] = 'f';
printf("%s %s\n", chars, str1);
printf("%s\n", str2);

// racefar racefar
// far

'r' 'a' 'c' 'e' 'f' 'a' 'r' '\0'

str2

0xd2

0xf5

0xee

0xf1str1

0xf1 0xf2 0xf3 0xf4 0xf5 0xf6 0xf7 0xf8

chars

103

char * vs. char[]

char myString[]

vs

char *myString

You can create char * pointers to point to any character in an existing string and
reassign them since they are just pointer variables. You cannot reassign an
array.

char myString[6];
strcpy(myString, "Hello");

// not allowed!myString = "Another string";

char *myOtherString = myString;
myOtherString = somethingElse; // ok

104

Substrings

To omit characters at the end, make a new string that is a partial copy of the
original.

// Want just "race"
char str1[8];
strcpy(str1, "racecar");

char str2[5];
strncpy(str2, str1, 4);
str2[4] = '\0';
printf("%s\n", str1);
printf("%s\n", str2);

// racecar
// race

105

Substrings

We can combine pointer arithmetic and copying to make any substrings we’d
like.

// Want just "ace"
char str1[8];
strcpy(str1, "racecar");

char str2[4];
strncpy(str2, str1 + 1, 3);
str2[3] = '\0';
printf("%s\n", str1);
printf("%s\n", str2);

// racecar
// ace

106

Initializing strings

// create space for array first
// then use string function to copy in content
char buf1[6];
strcpy(buf1, "hello");

// initialize array to exactly the size that fits
// string + null terminator
char buf2[] = "hello";

// will not work (why?)
char buf3[6];
buf3 = "hello";

107

• We’ll talk more about char * vs char[] in lecture 5

• Some useful distinctions in the meantime:
• char * is an 8-byte pointer – it stores an address of a character

• char[] is an array of characters – it stores the actual characters in a string

• When you pass a char[] as a parameter, it is automatically passed as a char * (pointer to
its first character)

108

* Vs []

C Strings

109

C strings are arrays of characters ending with a null-terminating character '\0'.

String operations such as strlen use the null-terminating character to find the
end of the string.

Side note: use strlen to get the length of a string. Don’t use sizeof!

index 0

value 'H' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

1 2 3 4 5 6 7 8 9 10 11 12 13

Key Takeaways

// 5
// Hello

char str[6];
strcpy(str, "Hello");
int length = strlen(str);
printf("%s\n", str);

char *ptr = str + 1;
printf("%s\n", ptr); // ello

0xf0 0xf1 0xf2 0xf3 0xf4 0xf5

'H' 'e' 'l' 'l' 'o' '\0'

address

charstr

0xee

ptr

110

Lecture Plan

• Characters

• Strings

• Common String Operations
• Comparing

• Copying

• Concatenating

• Substrings

• Practice

111

String copying exercise

9char buf[];

strcpy(buf, "Potatoes");

printf("%s\n", buf);

char *word = buf + 2;

strncpy(word, "mat", 3);

printf("%s\n", buf);

Line 1: What value should go in the blank?

Line 6: What is printed?

1

2

3

4

5

6

A. 7
B. 8
C. 9

A. matoes
B. mattoes
C. Pomat

D. 12
E. strlen("Potatoes")
F. Something else

D. Pomatoes
E. Something else
F. Compile error

112

String copying exercise

char buf[9];

strcpy(buf, "Potatoes");

printf("%s\n", buf);

char *word = buf + 2;

strncpy(word, "mat", 3);

printf("%s\n", buf);

Line 1: What value should go in the blank?

Line 6: What is printed?

1

2

3

4

5

6

A. 7
B. 8
C. 9

A. matoes
B. mattoes
C. Pomat

D. 12
E. strlen("Potatoes")
F. Something else

D. Pomatoes
E. Something else
F. Compile error

0xe0 0xe1 0xe2 0xe3 0xe4 0xe5 0xe6 0xe7 0xe8

'P' 'o' 't' 'a' 't' 'o' 'e' 's' '\0'

0xf0

word

buf

113

Copycat exercise

Challenge: implement strcat using other string functions.

char src[9];

strcpy(src, "We Climb");

char dst[200]; // lots of space

strcpy(dst, "The Hill ");

strcat(dst, src);
How could we replace a call to
strcat with a call to strcpy
instead?

114

Copycat exercise

Challenge: implement strcat using other string functions.

char src[9];

strcpy(src, "We Climb");

char dst[200]; // lots of space

strcpy(dst, "The Hill ");

strcat(dst, src); strcpy(dst + strlen(dst), src);
equivalent

115

Searching For Letters

strchr returns a pointer to the first occurrence of a character in a string, or
NULL if the character is not in the string.

char daisy[6];
strcpy(daisy, "Daisy");
char *letterA = strchr(daisy, 'a');
printf("%s\n", daisy); // Daisy
printf("%s\n", letterA);

If there are multiple occurrences of the letter, strchr returns a pointer to the
first one. Use strrchr to obtain a pointer to the last occurrence.

116

Searching For Letters

strchr returns a pointer to the first occurrence of a character in a string, or
NULL if the character is not in the string.

char daisy[6];
strcpy(daisy, "Daisy");
char *letterA = strchr(daisy, 'a');
printf("%s\n", daisy); // Daisy
printf("%s\n", letterA); // aisy

If there are multiple occurrences of the letter, strchr returns a pointer to the
first one. Use strrchr to obtain a pointer to the last occurrence.

117

Searching For Strings

118

strstr returns a pointer to the first occurrence of the second string in the first,
or NULL if it cannot be found.

char daisy[10];
strcpy(daisy, "Daisy Dog");
char *substr = strstr(daisy, "Dog");
printf("%s\n", daisy); // Daisy Dog
printf("%s\n", substr);

If there are multiple occurrences of the string, strstr returns a pointer to the
first one.

Searching For Strings

119

strstr returns a pointer to the first occurrence of the second string in the first,
or NULL if it cannot be found.

char daisy[10];
strcpy(daisy, "Daisy Dog");
char *substr = strstr(daisy, "Dog");
printf("%s\n", daisy); // Daisy Dog
printf("%s\n", substr); // Dog

If there are multiple occurrences of the string, strstr returns a pointer to the
first one.

String Spans

120

strspn returns the length of the initial part of the first string which contains
only characters in the second string.

char daisy[10];
strcpy(daisy, "Daisy Dog");
int spanLength = strspn(daisy, "aDeoi");

“How many places can we go in the first string before I
encounter a character not in the second string?”

String Spans

121

strspn returns the length of the initial part of the first string which contains
only characters in the second string.

char daisy[10];
strcpy(daisy, "Daisy Dog");
int spanLength = strspn(daisy, "aDeoi"); // 3

“How many places can we go in the first string before I
encounter a character not in the second string?”

String Spans

encounter a character in the second string?”
122

strcspn (c = “complement”) returns the length of the initial part of the first
string which contains only characters not in the second string.

char daisy[10];
strcpy(daisy, "Daisy Dog");
int spanLength = strcspn(daisy, "driso");

“How many places can we go in the first string before I

String Spans

encounter a character in the second string?”
123

strcspn (c = “complement”) returns the length of the initial part of the first
string which contains only characters not in the second string.

char daisy[10];
strcpy(daisy, "Daisy Dog");
int spanLength = strcspn(daisy, "driso"); // 2

“How many places can we go in the first string before I

String Diamond

• Write a function diamond that accepts a string parameter and prints its letters
in a "diamond" format as shown below.
• For example, diamond("DAISY") should print:

D
DA
DAI
DAIS
DAISY
AISY
ISY
SY
Y

124

	Slide 1: CS107 Lecture 4
	Slide 2: Lecture Plan
	Slide 3: Char
	Slide 4: ASCII
	Slide 5: ASCII
	Slide 6: ASCII
	Slide 7: ASCII
	Slide 8: Common ctype.h Functions
	Slide 9: Common ctype.h Functions
	Slide 10: Lecture Plan
	Slide 11: C Strings
	Slide 12: String Length
	Slide 13: C Strings As Parameters
	Slide 14: C Strings As Parameters
	Slide 15: Lecture Plan
	Slide 16: Common string.h Functions
	Slide 17: Common string.h Functions
	Slide 18: Comparing Strings
	Slide 19: The string library: strcmp
	Slide 20: Copying Strings
	Slide 21: The string library: strcpy
	Slide 22: Copying Strings - strcpy
	Slide 23: Copying Strings - strcpy
	Slide 24: Copying Strings - strcpy
	Slide 25: Copying Strings - strcpy
	Slide 26: Copying Strings - strcpy
	Slide 27: Copying Strings - strcpy
	Slide 28: Copying Strings - strcpy
	Slide 29: Copying Strings – Buffer Overflows
	Slide 30: Copying Strings – Buffer Overflows
	Slide 31: Copying Strings – Buffer Overflows
	Slide 32: Copying Strings – Buffer Overflows
	Slide 33: Copying Strings – Buffer Overflows
	Slide 34: Copying Strings – Buffer Overflows
	Slide 35: Copying Strings – Buffer Overflows
	Slide 36: Copying Strings – Buffer Overflows
	Slide 37: Copying Strings – Buffer Overflows
	Slide 38: Copying Strings – Buffer Overflows
	Slide 39: Copying Strings – Buffer Overflows
	Slide 40: Copying Strings – Buffer Overflows
	Slide 41: Copying Strings – Buffer Overflows
	Slide 42: Copying Strings – Buffer Overflows
	Slide 43: Copying Strings – Buffer Overflows
	Slide 44: Copying Strings – Buffer Overflows
	Slide 45: Copying Strings - strncpy
	Slide 46: Copying Strings - strncpy
	Slide 47: Copying Strings - strncpy
	Slide 48: Copying Strings - strncpy
	Slide 49: Copying Strings - strncpy
	Slide 50: Copying Strings - strncpy
	Slide 51: Copying Strings - strncpy
	Slide 52: Copying Strings - strncpy
	Slide 53: Copying Strings - strncpy
	Slide 54: Copying Strings - strncpy
	Slide 55: Copying Strings - strncpy
	Slide 56: Copying Strings - strncpy
	Slide 57: Copying Strings - strncpy
	Slide 58: Copying Strings - strncpy
	Slide 59: Copying Strings - strncpy
	Slide 60: Copying Strings - strncpy
	Slide 61: Copying Strings - strncpy
	Slide 62: Copying Strings - strncpy
	Slide 63: Copying Strings - strncpy
	Slide 64: Copying Strings - strncpy
	Slide 65: Copying Strings - strncpy
	Slide 66: Copying Strings - strncpy
	Slide 67: Copying Strings - strncpy
	Slide 68: Copying Strings - strncpy
	Slide 69: Copying Strings - strncpy
	Slide 70: Copying Strings - strncpy
	Slide 71: Copying Strings - strncpy
	Slide 72: Copying Strings - strncpy
	Slide 73: Copying Strings - strncpy
	Slide 74: Copying Strings - strncpy
	Slide 75: Copying Strings - strncpy
	Slide 76: Copying Strings - strncpy
	Slide 77: Copying Strings - strncpy
	Slide 78: Copying Strings - strncpy
	Slide 79: Copying Strings - strncpy
	Slide 80: Copying Strings - strncpy
	Slide 81: String Copying Exercise
	Slide 82: String Copying Exercise
	Slide 83: String Copying Exercise
	Slide 84: String Copying Exercise
	Slide 85: String Exercise
	Slide 86: String Exercise
	Slide 87: Concatenating Strings
	Slide 88: The string library: str(n)cat
	Slide 89: Concatenating Strings
	Slide 90: Concatenating Strings
	Slide 91: Concatenating Strings
	Slide 92: Concatenating Strings
	Slide 93: Concatenating Strings
	Slide 94: Concatenating Strings
	Slide 95: Concatenating Strings
	Slide 96: Concatenating Strings
	Slide 97: Concatenating Strings
	Slide 98: Substrings and char *
	Slide 99: Substrings
	Slide 100: Substrings
	Slide 101: Substrings
	Slide 102: Substrings
	Slide 103: Substrings
	Slide 104: char * vs. char[]
	Slide 105: Substrings
	Slide 106: Substrings
	Slide 107: Initializing strings
	Slide 108: * Vs []
	Slide 109: C Strings
	Slide 110: Key Takeaways
	Slide 111: Lecture Plan
	Slide 112: String copying exercise
	Slide 113: String copying exercise
	Slide 114: Copycat exercise
	Slide 115: Copycat exercise
	Slide 116: Searching For Letters
	Slide 117: Searching For Letters
	Slide 118: Searching For Strings
	Slide 119: Searching For Strings
	Slide 120: String Spans
	Slide 121: String Spans
	Slide 122: String Spans
	Slide 123: String Spans
	Slide 124: String Diamond

