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Lecture Plan

e Characters




A char is a variable type that represents a single character or “glyph”.

char letterA

char plus

char zero

char space =

char newLine = '\n';
char tab = '\t';

char singleQuote = '"\'"';
char backSlash = "\\';




Under the hood, C represents each char as an integer (its “ASCIl value”).

* Uppercase letters are sequential
* Lowercase letters are sequential

vy humbered
y numbered

* Digits are sequentially numberec

* Lowercase letters are 32 more than their uppercase equivalents (bit flip!)

* Fun Fact: The Space is ASCIl 32 same as the gap between Upper & Lower

char uppercaseA 'A';
char lowercaseA a';

char zeroDigit = '0’;

// Actually 65
// Actually 97
// Actually 48



Under the hood, C represents each char as an integer (its “ASCIl value”).
e Uppercase letters are sequentially numbered

* Lowercase letters are sequentially numbered

* Digits are sequentially numberec
* Lowercase letters are 32 more than their uppercase equivalents (bit flip!)
* Fun Fact: The Space is ASCIl 32 same as the gap between Upper & Lower

char uppercaseA ; // Actually 0b1000001
char lowercaseA ; // Actually 0b1100001

char zeroDigit = : // Actually 0b0110000




We can take advantage of C representing each char as an integer:

bool areFEqual = ; // true
bool earlierletter = '"f' < '¢'; // false
char uppercaseB = 'A'" + 1;

int diff = '¢' - 'a'; // 2

int numLettersInAlphabet 'z!' = 'a' + 1;

// or
int numLettersInAlphabet '2' — 'A' 4+ 1;




We can take advantage of C representing each char as an integer:

// prints out every lowercase character

for (char ch = 'a'; ch <= '"z'; ch++) {

printf ("%c", ch);




Common ctype.h Functions

Function Description

isalpha(ch) |trueifchis 'a' through 'z' or 'A' through 'Z'

islower(ch) |trueifchis 'a' through 'z’

isupper(ch) |trueifchis A’ through 'Z'

isspace(ch) |trueifchisa space,tab, new line, etc.

isdigit(ch) |trueifchis '@’ through '9'

toupper(ch) |returnsuppercase equivalent of a letter

tolower(ch) |returnslowercase equivalent of a letter

Remember: these return a char; they cannot modify an existing char!
More documentation with man isalpha, man tolower




Common ctype.h Functions

isLetter = i1salpha('A'");
capital = 1supper('f’
uppercaseB = toupper (

1sADigit = 1sdigit('4’




Lecture Plan




C Strings

C has no dedicated variable type for strings. Instead, a string is
represented as an array of characters with a special ending sentinel value.

"\0"' is the null-terminating character; you always need to allocate one extra
space in an array for it.




String Length

Strings are not objects. They do not embed additional information (e.g., string

length). We must calculate this!

index

value

\o'

We can use the provided strlen function to calculate string length. The null-

terminating character does not count towards the length.

int length = strlen(myStr); // e.g. 13

Caution: strlenis O(N) because it must scan the entire string!
We should save the value if we plan to refer to the length later.




C Strings As Parameters

When we pass a string as a parameter, it is passed as a char *. C passes the
location of the first character rather than a copy of the whole array.

int doSomething(char *str) {

char myString[6];

doSomething(myString);




C Strings As Parameters

When we pass a string as a parameter, it is passed as a char *. C passes the
location of the first character rather than a copy of the whole array.

int doSomething(char *str) {

str[@] = 'c¢'; // modifies original string!

printf("%s\n", str); // prints cello

We can still use a char * the
same way as a charf].

char myString[6];

// e.g. this string is “Hello”
doSomething(myString);




Lecture Plan

* Common String Operations
* Comparing
* Copying
* Concatenating
e Substrings




Common string.h Functions

Function

Description

strlen(str)

returns the # of chars in a C string (before null-terminating character).

strcmp(strl, str2),
strncmp(strl, str2, n)

compares two strings; returns O if identical, <0 if strl comes before
str2 in alphabet, >0 if strl comes after str2 in alphabet. strncmp
stops comparing after at most n characters.

strchr(str, ch)
strrchr(str, ch)

character search: returns a pointer to the first occurrence of ch in str,
or NULL if ch was not found in str. strrchr find the last occurrence.

strstr(haystack, needle)

string search: returns a pointer to the start of the first occurrence of
needle in haystacR, or NULL if needle was not found in haystack.

strcpy(dst, src),
strncpy(dst, src, n)

copies characters in src to dst, including null-terminating character.
Assumes enough space in dst. Strings must not overlap. strncpy
stops after at most n chars, and does not add null-terminating char.

strcat(dst, src),
strncat(dst, src, n)

concatenate src onto the end of dst. strncat stops concatenating
after at most n characters. Always adds a null-terminating character.

strspn(str, accept),
strcspn(str, reject)

strspn returns the length of the initial part of str which contains only
characters in accept. strcspn returns the length of the initial part of
str which does not contain any characters in reject.




Common string.h Functions

Function Description

strlen(str) returns the # of chars in a C string (before null-terminating character).

strcmp(strl, str2), compares two strings; returns O if identical, <0 if str1 comes before
strncmp(strl, str2, n) str2 in alphabet, >0 if strl comes after str2 in alphabet. strncmp
stops comparing after at most n characters.

strchr(str, ch) character search: returns a pointer to the first occurrence of ch in str,
strrchr(str, ch) or NULL if ch was not found in str. strrchr find the last occurrence.

strstr(haystack, a1 Many string functions assume valid string |firstoccurrence of
- o . . ot found in haystacRk.
Input; i.e., ends in a null terminator. —
strcpy(dst, src), minating character.

strncpy(dst, src, n) Assumes enough space in dst. Strings must not overlap. strncpy
stops after at most n chars, and does not add null-terminating char.

strcat(dst, src), concatenate src onto the end of dst. strncat stops concatenating
strncat(dst, src, n) after at most n characters. Always adds a null-terminating character.

strspn(str, accept), strspn returns the length of the initial part of str which contains only
strcspn(str, reject) characters in accept. strcspn returns the length of the initial part of
str which does not contain any characters in reject.




Comparing Strings

We cannot compare C strings using comparison operators like ==, < or >. This
compares addresses!

// e.g. strl = 0x7f42, str2 = 0x654d
void doSomething(char *strl, char *str2) {

if (strl > str2) { .. // compares Ox7f42 > 0x654d!
Instead, use strcmp.




The string library: strcmp

strcmp(strl, str2):compares two strings.
* returns O if identical

* <0 if strl comes before str2 in alphabet

>0 if strl comes after str2 in alphabet.

int compResult = strcmp(strl, str2);

if (compResult == 0) {
// equal
} else if (compResult < 0) {

// strl comes before str2
} else {
// strl comes after str2

¥




Copying Strings

We cannot copy C strings using =. This copies addresses!

// e.g. paraml = Ox7f42, param2 = 0x654d
void doSomething(char *paraml, char *param2) {

param2 = paraml; // copies Ox7f42. Points to same string!
param2[@] = 'H'; // modifies the one original string!

Instead, use strcpy.




The string library: strcpy

strcpy(dst, src):
copies the contents of src into the string dst, including the null terminator.

char stri[6];
strcpy(strl, "hello");

char str2[6];
strcpy(str2, strl);
str2[@0] = 'c';

printf("%s", strl);
printf("%s", str2);




Copying Strings - strcpy

char stri[6];
strcpy(strl, "hello");

char str2[6];
strcpy(str2, strl);

strl




Copying Strings - strcpy

char stri[6];
strcpy(strl, "hello");

char str2[6];
strcpy(str2, strl);

str1 | h' | e [ '1' | L' [ 'o' | "\@'

str2 ‘h' | 'e' ? ? ? ?

23




Copying Strings - strcpy

char stri[6];
strcpy(strl, "hello");

char str2[6];
strcpy(str2, strl);

str1 | h' | e [ '1' | L' [ 'o' | "\@'

str2 ‘h | ‘e | '] ? ? ?

24



Copying Strings - strcpy

char stri[6];
strcpy(strl, "hello");

char str2[6];
strcpy(str2, strl);

str1 | h' | e [ '1' | L' [ 'o' | "\@'

str2 ‘h* | ‘'e" | '1' | 'l ? ?

25



Copying Strings - strcpy

char stri[6];
strcpy(strl, "hello");

char str2[6];
strcpy(str2, strl);

str1 | h' | e [ '1' | L' [ 'o' | "\@'

str2 'h' ‘e "1 "1 ‘o' ?

26



Copying Strings - strcpy

char stri[6];
strcpy(strl, "hello");

char str2[6];
strcpy(str2, strl);

str1 | h' | e [ '1' | L' [ 'o' | "\@'

str2 | 'h' | ‘e | '1' | '1' | ‘o' | "\e'

27



Copying Strings - strcpy

We must make sure there is enough space in the destination to hold the entire
copy, including the null-terminating character.

char str2[6]; // not enough space!
strcpy(str2, "hello, world!"); // overwrites other memory!

Writing past memory bounds is called a “buffer overflow”. It can allow for
security vulnerabilities!




Copying Strings — Buffer Overflows

char strl[14];

strcpy(strl, "hello, world!");
char str2[6];

strcpy(str2, strl); // not enough space - overwrites other memory!
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Copying Strings — Buffer Overflows

char strl[14];

strcpy(strl, "hello, world!");
char str2[6];

strcpy(str2, strl); // not enough space - overwrites other memory!




Copying Strings - strncpy

strncpy(dst, src, n):copies at most the first n bytes from src into the
string dst. If there is no null-terminating character in these bytes, then dst will
not be null terminated!

// copying "hello"
char str2[5];
strncpy(str2, "hello, world!", 5); // doesn’t copy '\0'!

If there is no null-terminating character, we may not be able to tell where the
end of the string is anymore. E.g. strlen may continue reading into some
other memory in search of '\0"'!




Copying Strings - strncpy

char str2[5];

strncpy(str2, "hello, world!", 5);
int length = strlen(str2);
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Copying Strings - strncpy

char str2[5];

strncpy(str2, "hello, world!", 5);
int length = strlen(str2);




Copying Strings - strncpy

char str2[5];

strncpy(str2, "hello, world!", 5);
int length = strlen(str2);




Copying Strings - strncpy

char strl[14];
strncpy(strl, "hello there", 5);




Copying Strings - strncpy

char strl[14];
strncpy(strl, "hello there", 5);

l

lhl




Copying Strings - strncpy

char strl[14];
strncpy(strl, "hello there", 5);

l

Iel




Copying Strings - strncpy

char strl[14];
strncpy(strl, "hello there", 5);

l

lll




Copying Strings - strncpy

char strl[14];
strncpy(strl, "hello there", 5);

l

lll




Copying Strings - strncpy

char strl[14];
strncpy(strl, "hello there", 5);

l

lol




Copying Strings - strncpy

char strl[14];
strncpy(strl, "hello there", 5);




Copying Strings - strncpy
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strncpy(strl, "hello there", 5);
printf("%s\n", strl);
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Copying Strings - strncpy

char strl[14];

strncpy(strl, "hello there", 5);
printf("%s\n", strl);




Copying Strings - strncpy

If necessary, we can add a null-terminating character ourselves.

// copying "hello"
char str2[6]; // room for string and '\0'

strncpy(str2, "hello, world!", 5); // doesn’t copy '\@'!
str2[5] = '"\@'; // add null-terminating char




String Copying Exercise

What value should go in the blank at right? |char str] 1;
strcpy(str, "hello");

E. strlen("hello")
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String Copying Exercise

What value should go in the blank at right? |char str] 1;
A. 4

strcpy(str, "hello");

B. 5

D. 12
E. strlen("hello") «—— whynot?

Need to account for the \0 !




String Exercise

What is printed out by the following program?

1 int main(int argc, char *argv[]) {
2 char str[9];
strcpy(str, "Hi earth");
str[2] = "\0';
printf("str = %s, len = %zu\n", str, strlen(str));
return 9;
str = Hi, len = 8
str = Hi, len = 2
str = Hi earth, len

str = Hi earth, len
None/other




String Exercise

What is printed out by the following program?

1 int main(int argc, char *argv[]) {
2 char str[9];
strcpy(str, "Hi earth");
str[2] = "\0';
printf("str = %s, len = %zu\n", str, strlen(str));
return 9;
A. str = Hi, len = 8
[B. str = Hi, len = 2 |
str = Hi earth, len

str = Hi earth, len
None/other




Concatenating Strings

We|cannot|concatenate C strings using + like in python. This adds addresses!

// e.g. paraml = Ox7f, param2 = Ox65
void doSomething(char *paraml, char *param2) {

printf("%s", paraml + param2); // adds ox7f and ©x65!

Instead, use strcat.




The string library: str(n)cat

strcat(dst, src):concatenates the contents of src into the string dst.
strncat(dst, src, n):same, but concats at most n bytes from src.

char strl[13]; // enough space for strings + '\0'
strcpy(strl, "hello ");

strcat(strl, "world!"); // removes old '\@', adds new '\@' at end
printf("%s", strl); // hello world!

Both strcat and strncat remove the old \O' and add a new one at the end.




Concatenating Strings

char strl[13];
strcpy(strl, "hello ");
char str2[7];
strcpy(str2, "world!");

strcat(strl, str2);
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Concatenating Strings

char strl[13];
strcpy(strl, "hello ");
char str2[7];
strcpy(str2, "world!");

strcat(strl, str2);




Substrings and char *

You can also create a char * variable yourself that points to an address within
an existing string.

char myString[3];
myString[@] = 'H';
myString[1] = 'i';

myString[2] = "\0';

char *otherStr = myString; // points to 'H’




Substrings

char *s are pointers to characters. We can use them to create substrings of
larger strings.

// Want just "car”

char chars[8];
strcpy(chars, "racecar");
char *strl = chars;

chars ‘r’

stri ‘@Xfl




Substrings

Since C strings are pointers to characters, we can adjust the pointer to omit
characters at the beginning.

// Want just "car”
char chars|[8];

strcpy(chars, "racecar");
char *strl = chars;

char *str2 = chars + 4;

chars ‘r’

stri ‘@xfl




Substrings

Since C strings are pointers to characters, we can adjust the pointer to omit
characters at the beginning.

char chars|[8];
strcpy(chars, "racecar");
char *strl = chars;

char *str2 = chars + 4;

printf("%s\n", strl); // racecar
printf("%s\n", str2); // car

chars ‘r’

stri ‘@xfl




Substrings

Since C strings are pointers to characters, we can adjust the pointer to omit
characters at the beginning. NOTE: the pointer still refers to the same
characters!

char chars[8];
strcpy(chars, "racecar");

char *strl = chars;
char *str2 = chars + 4;

str2[0] = 'f';
printf("%s %s\n", chars, strl);
printf("%s\n", str2);

chars | '’

stril ‘ Oxf1l




Substrings

Since C strings are pointers to characters, we can adjust the pointer to omit
characters at the beginning. NOTE: the pointer still refers to the same
characters!

char chars[8];
strcpy(chars, "racecar");

char *strl = chars;
char *str2 = chars + 4;

str2[0] = 'f';
printf("%s %s\n", chars, strl); // racefar racefar
printf("%s\n", str2); // far

chars ‘r

stril ‘fol




char * vs. char|]

char myString| ]
VS
char *myString

You can create char * pointers to point to any character in an existing string and

reassign them since they are just pointer variables. You cannot reassign an
array.

char myString[6];
strcpy(myString, "Hello");
myString = "Another string"; // not allowed!

char *myOtherString = myString;
myOtherString = somethingElse; // ok




Substrings

To omit characters at the end, make a new string that is a partial copy of the
original.

// Want just "race"
char strl[8];
strcpy(strl, "racecar");

char str2[5];

strncpy(str2, strl, 4);

str2[4] = '"\0';

printf("%s\n", strl); // racecar
printf("%s\n", str2); // race




Substrings

We can combine pointer arithmetic and copying to make any substrings we’d
like.

// Want just "ace
char strl[8];
strcpy(strl, "racecar");

char str2[4];

strncpy(str2, strl + 1, 3);

str2[3] = '\0@';

printf("%s\n", strl); // racecar
printf("%s\n", str2); // ace




Initializing strings

// create space for array first

// then use string function to copy 1in content
char bufl[6];

strcpy(bufl, "hello");

// initialize array to exactly the size that fits
// string + null terminator
char buf2[] = "hello";

// will not work (why?)
char buf3[6];
buf3 = "hello";




 We'll talk more about char * vs char[] in lecture 5

* Some useful distinctions in the meantime:
e char * is an 8-byte pointer — it stores an address of a character
e char[] is an array of characters — it stores the actual characters in a string

 When you pass a char[] as a parameter, it is automatically passed as a char * (pointer to
its first character)




C strings are arrays of characters ending with a null-terminating character '\0'.

index

Value lHl lel lll Ill IOI l,l 1 1 lWl IOI lr‘l lll ldl I!I I\@I

String operations such as strlen use the null-terminating character to find the
end of the string.

Side note: use strlen to get the length of a string. Don’t use sizeof!
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Key Takeaways

ptr

char str[6];

strcpy(str, "Hello");

int length = strlen(str);
printf("%s\n", str);

char *ptr = str + 1;
printf("%s\n", ptr);

// 5
// Hello

// ello



Lecture Plan

* Practice




String copying exercise

char buf] 1;
strcpy(buf, "Potatoes");
printf("%s\n", buf);
char *word = buf + 2;
strncpy(word, "mat", 3);

printf("%s\n", buf);

Line 1: What value should go in the blank?

D. 12
. strlen("Potatoes")
F.  Something else

Line 6: What is printed?

A. matoes D. Pomatoes
B. mattoes E.  Something else
C. Pomat ~.  Compile error




String copying exercise

char buf[ 9 ];
strcpy(buf, "Potatoes");
printf("%s\n", buf);
char *word = buf + 2;
strncpy(word, "mat", 3);

printf("%s\n", buf);

Line 1: What value should go in the blank?

D. 12
E. strlen("Potatoes")
F.  Something else

Line 6: What is printed?

A. matoes QE:;EpmatoéE:>
B. mattoes E.  Something else

C. Pomat ~.  Compile error




Copycat exercise

Challenge: implement strcat using other string functions.

char src[9];

strcpy(src, "We Climb");
char dst[200]; // lots of space

strcpy(dst, "The Hill ");

How could we replace a call to
strcat(dst, src); « strcat with a call to strcpy
instead?




Copycat exercise

Challenge: implement strcat using other string functions.

char src[9];

strcpy(src, "We Climb");
char dst[200]; // lots of space

strcpy(dst, "The Hill ");

equivalent

strcat(dst, src); =« > strcpy(dst + strlen(dst), src);




Searching For Letters

strchr returns a pointer to the first occurrence of a character in a string, or
NULL if the character is not in the string.

char daisy[6];

strcpy(daisy, "Daisy");

char *letterA = strchr(daisy, 'a');
printf("%s\n", daisy); // Daisy
printf("%s\n", letterA);

If there are multiple occurrences of the letter, strchr returns a pointer to the
first one. Use strrchr to obtain a pointer to the last occurrence.
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Searching For Letters

strchr returns a pointer to the first occurrence of a character in a string, or
NULL if the character is not in the string.

char daisy[6];

strcpy(daisy, "Daisy");

char *letterA = strchr(daisy, 'a');
printf("%s\n", daisy); // Daisy
printf("%s\n", letterA); // aisy

If there are multiple occurrences of the letter, strchr returns a pointer to the
first one. Use strrchr to obtain a pointer to the last occurrence.
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Searching For Strings

strstr returns a pointer to the first occurrence of the second string in the first,
or NULL if it cannot be found.

char daisy[10];

strcpy(daisy, "Daisy Dog");

char *substr = strstr(daisy, "Dog");
printf("%s\n", daisy); // Daisy Dog
printf("%s\n", substr);

If there are multiple occurrences of the string, strstr returns a pointer to the
first one.
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Searching For Strings

strstr returns a pointer to the first occurrence of the second string in the first,
or NULL if it cannot be found.

char daisy[10];
strcpy(daisy, "Daisy Dog");
char *substr = strstr(daisy, "Dog");

printf("%s\n", daisy); // Daisy Dog
printf("%s\n", substr); // Dog

If there are multiple occurrences of the string, strstr returns a pointer to the
first one.
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strspn returns the length of the initial part of the first string which contains
only characters in the second string.

char daisy[10];
strcpy(daisy, "Daisy Dog");
int spanLength = strspn(daisy, "aDeoi");

“How many places can we go in the first string before |
encounter a character not in the second string?”
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strspn returns the length of the initial part of the first string which contains
only characters in the second string.

char daisy[10];
strcpy(daisy, "Daisy Dog");
int spanLength = strspn(daisy, "aDeoi"); // 3

“How many places can we go in the first string before |
encounter a character not in the second string?”
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strcspn (c = “complement”) returns the length of the initial part of the first
string which contains only characters not in the second string.

char daisy[10];
strcpy(daisy, "Daisy Dog");
int spanLength = strcspn(daisy, "driso");

“How many places can we go in the first string before |
encounter a character in the second string?”
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strcspn (c = “complement”) returns the length of the initial part of the first
string which contains only characters not in the second string.

char daisy[10];
strcpy(daisy, "Daisy Dog");
int spanLength = strcspn(daisy, "driso"); /] 2

“How many places can we go in the first string before |
encounter a character in the second string?”
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String Diamond

* Write a function diamond that accepts a string parameter and prints its letters
in a "diamond" format as shown below.

* For example, diamond ("DAISY") should print:

D
DA
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