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Lecture Plan

• Characters

• Strings

• Common String Operations
• Comparing

• Copying

• Concatenating

• Substrings
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Char

A char is a variable type that represents a single character or “glyph”.

char letterA = 'A'; 

char plus = '+'; 

char zero = '0'; 

char space = ' '; 

char newLine = '\n'; 

char tab = '\t';

char singleQuote = '\'';

char backSlash = '\\';
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ASCII

Under the hood, C represents each char as an integer (its “ASCII value”).
• Uppercase letters are sequentially numbered

• Lowercase letters are sequentially numbered

• Digits are sequentially numbered

• Lowercase letters are 32 more than their uppercase equivalents (bit flip!)

• Fun Fact: The Space is ASCII 32 same as the gap between Upper & Lower

char uppercaseA = 'A'; // Actually 65

char lowercaseA = 'a'; // Actually 97

char zeroDigit = '0’; // Actually 48
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ASCII

Under the hood, C represents each char as an integer (its “ASCII value”).
• Uppercase letters are sequentially numbered

• Lowercase letters are sequentially numbered

• Digits are sequentially numbered

• Lowercase letters are 32 more than their uppercase equivalents (bit flip!)

• Fun Fact: The Space is ASCII 32 same as the gap between Upper & Lower

char uppercaseA = 'A'; // Actually

char lowercaseA = 'a'; // Actually

char zeroDigit = '0’; // Actually
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ASCII

We can take advantage of C representing each char as an integer:

// true

// false

bool areEqual = 'A' == 'A'; 

bool earlierLetter = 'f' < 'c'; 

char uppercaseB = 'A' + 1;

int diff = 'c' - 'a'; // 2

int numLettersInAlphabet = 'z' – 'a' + 1;

// or

int numLettersInAlphabet = 'Z' – 'A' + 1;
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ASCII

We can take advantage of C representing each char as an integer:

// prints out every lowercase character 

for (char ch = 'a'; ch <= 'z'; ch++) {

printf("%c", ch);

}
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Common ctype.h Functions

Function Description

isalpha(ch) true if ch is 'a' through 'z' or 'A' through 'Z'

islower(ch) true if ch is 'a' through 'z'

isupper(ch) true if ch is 'A' through 'Z'

isspace(ch) true if ch is a space, tab, new line, etc.

isdigit(ch) true if ch is '0' through '9'

toupper(ch) returns uppercase equivalent of a letter

tolower(ch) returns lowercase equivalent of a letter

Remember: these return a char; they cannot modify an existing char!
More documentation with man isalpha, man tolower 8



Common ctype.h Functions

// true

// false

bool isLetter = isalpha('A'); 

bool capital = isupper('f'); 

char uppercaseB = toupper('b'); 

bool isADigit = isdigit('4'); // true
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• Strings

• Common String Operations
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• Copying
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C Strings

C has no dedicated variable type for strings. Instead, a string is 
represented as an array of characters with a special ending sentinel value.

'\0' is the null-terminating character; you always need to allocate one extra 
space in an array for it.

"Hello"
1 2 3 4 5index 0 

char 'H' 'e' 'l' 'l' 'o' '\0'
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String Length

Strings are not objects. They do not embed additional information (e.g., string 
length). We must calculate this!

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

value

We can use the provided strlen function to calculate string length. The null-
terminating character does not count towards the length.

int length = strlen(myStr); // e.g. 13

'H' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

Caution: strlen is O(N) because it must scan the entire string! 

We should save the value if we plan to refer to the length later.
12



C Strings As Parameters

When we pass a string as a parameter, it is passed as a char *. C passes the 
location of the first character rather than a copy of the whole array.

int doSomething(char *str) {

...

}

char myString[6];

...

doSomething(myString);
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C Strings As Parameters

When we pass a string as a parameter, it is passed as a char *. C passes the 
location of the first character rather than a copy of the whole array.

int doSomething(char *str) {

...

str[0] = 'c'; // modifies original string! 

printf("%s\n", str); // prints cello

}

char myString[6];

... // e.g. this string is “Hello” 

doSomething(myString);

We can still use a char * the 
same way as a char[].
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Common string.h Functions

Function Description

strlen(str) returns the # of chars in a C string (before null-terminating character).

strcmp(str1, str2), 

strncmp(str1, str2, n)

compares two strings; returns 0 if identical, <0 if str1 comes before 
str2 in alphabet, >0 if str1 comes after str2 in alphabet. strncmp 
stops comparing after at most n characters.

strchr(str, ch) 

strrchr(str, ch)

character search: returns a pointer to the first occurrence of ch in str, 
or NULL if ch was not found in str. strrchr find the last occurrence.

strstr(haystack, needle) string search: returns a pointer to the start of the first occurrence of
needle in haystack, or NULL if needle was not found in haystack.

strcpy(dst, src), 

strncpy(dst, src, n)

copies characters in src to dst, including null-terminating character. 
Assumes enough space in dst. Strings must not overlap. strncpy 
stops after at most n chars, and does not add null-terminating char.

strcat(dst, src), 

strncat(dst, src, n)

concatenate src onto the end of dst. strncat stops concatenating 
after at most n characters. Always adds a null-terminating character.

strspn(str, accept),

strcspn(str, reject)

strspn returns the length of the initial part of str which contains only
characters in accept. strcspn returns the length of the initial part of 
str which does not contain any characters in reject.
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Common string.h Functions

Function Description

strlen(str) returns the # of chars in a C string (before null-terminating character).

strcmp(str1, str2), 

strncmp(str1, str2, n)

compares two strings; returns 0 if identical, <0 if str1 comes before 
str2 in alphabet, >0 if str1 comes after str2 in alphabet. strncmp 
stops comparing after at most n characters.

strchr(str, ch) 

strrchr(str, ch)

character search: returns a pointer to the first occurrence of ch in str, 
or NULL if ch was not found in str. strrchr find the last occurrence.

first occurrence of
ot found in haystack.

strcpy(dst, src),

strncpy(dst, src, n)

eedle) string search: returns a pointer to the start of the
needle in haystack, or NULL if needle was n

copies characters in src to dst, including null-terminating character.
Assumes enough space in dst. Strings must not overlap. strncpy
stops after at most n chars, and does not add null-terminating char.

strcat(dst, src), 

strncat(dst, src, n)

concatenate src onto the end of dst. strncat stops concatenating 
after at most n characters. Always adds a null-terminating character.

strspn(str, accept), 

strcspn(str, reject)

strspn returns the length of the initial part of str which contains only
characters in accept. strcspn returns the length of the initial part of 
str which does not contain any characters in reject.

strstr(haystack, n Many string functions assume valid string

input; i.e., ends in a null terminator.
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Comparing Strings

We cannot compare C strings using comparison operators like ==, < or >. This 
compares addresses!

// e.g. str1 = 0x7f42, str2 = 0x654d
void doSomething(char *str1, char *str2) {

if (str1 > str2) { … // compares 0x7f42 > 0x654d!

Instead, use strcmp.

18



The string library: strcmp

strcmp(str1, str2): compares two strings.

• returns 0 if identical

• <0 if str1 comes before str2 in alphabet

• >0 if str1 comes after str2 in alphabet.

int compResult = strcmp(str1, str2); 

if (compResult == 0) {
// equal

} else if (compResult < 0) {
// str1 comes before str2

} else {
// str1 comes after str2

}
19



Copying Strings

We cannot copy C strings using =. This copies addresses!

// e.g. param1 = 0x7f42, param2 = 0x654d
void doSomething(char *param1, char *param2) {

// copies 0x7f42. Points to same string!
// modifies the one original string!

param2 = param1; 
param2[0] = 'H';

Instead, use strcpy.

20



The string library: strcpy

strcpy(dst, src):
copies the contents of src into the string dst, including the null terminator.

char str1[6]; 
strcpy(str1, "hello");

char str2[6]; 
strcpy(str2, str1); 
str2[0] = 'c';

printf("%s", str1); // hello
printf("%s", str2); // cello

21



Copying Strings - strcpy

char str1[6]; 
strcpy(str1, "hello");

char str2[6]; 
strcpy(str2, str1);

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'str2

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'

'h' ? ? ? ? ?
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Copying Strings - strcpy

char str1[6]; 
strcpy(str1, "hello");

char str2[6]; 
strcpy(str2, str1);

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'str2

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'

'h' 'e' ? ? ? ?
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Copying Strings - strcpy

char str1[6]; 
strcpy(str1, "hello");

char str2[6]; 
strcpy(str2, str1);

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'str2

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'

'h' 'e' 'l' ? ? ?
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Copying Strings - strcpy

char str1[6]; 
strcpy(str1, "hello");

char str2[6]; 
strcpy(str2, str1);

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'str2

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'

'h' 'e' 'l' 'l' ? ?
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Copying Strings - strcpy

char str1[6]; 
strcpy(str1, "hello");

char str2[6]; 
strcpy(str2, str1);

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'str2

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'

'h' 'e' 'l' 'l' 'o' ?
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Copying Strings - strcpy

char str1[6]; 
strcpy(str1, "hello");

char str2[6]; 
strcpy(str2, str1);

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'str2

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' '\0'

'h' 'e' 'l' 'l' 'o' '\0'
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Copying Strings - strcpy

We must make sure there is enough space in the destination to hold the entire 
copy, including the null-terminating character.

char str2[6];
strcpy(str2, "hello, world!");

// not enough space!
// overwrites other memory!

Writing past memory bounds is called a “buffer overflow”. It can allow for 
security vulnerabilities!

28



Copying Strings – Buffer Overflows

char str1[14];
strcpy(str1, "hello, world!"); 
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

? ? ? ? ? ?str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

- other program memory -
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Copying Strings – Buffer Overflows

char str1[14];
strcpy(str1, "hello, world!"); 
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' ? ? ? ? ?str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'
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Copying Strings – Buffer Overflows

str1

0 1 2 3 4 5

'h' 'e' ? ? ? ?str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

31

char str1[14];
strcpy(str1, "hello, world!"); 
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!



Copying Strings – Buffer Overflows

char str1[14];
strcpy(str1, "hello, world!"); 
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' ? ? ?str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'
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Copying Strings – Buffer Overflows

char str1[14];
strcpy(str1, "hello, world!"); 
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' ? ?str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'
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Copying Strings – Buffer Overflows

char str1[14];
strcpy(str1, "hello, world!"); 
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ?str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'
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Copying Strings – Buffer Overflows

char str1[14];
strcpy(str1, "hello, world!"); 
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'
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' ' - other program memory -

Copying Strings – Buffer Overflows

char str1[14];
strcpy(str1, "hello, world!"); 
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

36



' ' 'w' - other program memory -

Copying Strings – Buffer Overflows

char str1[14];
strcpy(str1, "hello, world!"); 
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'
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' ' 'w' 'o-'other program memory -

Copying Strings – Buffer Overflows

char str1[14];
strcpy(str1, "hello, world!"); 
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'
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' ' 'w' 'o-'other'prr'ogram memory -

Copying Strings – Buffer Overflows

char str1[14];
strcpy(str1, "hello, world!"); 
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'
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' ' 'w' 'o-'other'prr'ogram'lm'emory -

Copying Strings – Buffer Overflows

char str1[14];
strcpy(str1, "hello, world!"); 
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'
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' ' 'w' 'o-'other'prr'ogram'lm'emo'ryd-'

Copying Strings – Buffer Overflows

char str1[14];
strcpy(str1, "hello, world!"); 
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'
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' ' 'w' 'o-'other'prr'ogram'lm'emo'ryd-' '!'

Copying Strings – Buffer Overflows

char str1[14];
strcpy(str1, "hello, world!"); 
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'
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' ' 'w' 'o-'other'prr'ogram'lm'emo'ryd-' '!' '\0'

Copying Strings – Buffer Overflows

char str1[14];
strcpy(str1, "hello, world!"); 
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'
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' ' 'w' 'o-'other'prr'ogram'lm'emo'ryd-' '!' '\0'

Copying Strings – Buffer Overflows

char str1[14];
strcpy(str1, "hello, world!"); 
char str2[6];
strcpy(str2, str1); // not enough space - overwrites other memory!

str1

0 1 2 3 4 5

'h' 'e' 'l' 'l' 'o' ','str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'
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Copying Strings - strncpy

strncpy(dst, src, n): copies at most the first n bytes from src into the 
string dst. If there is no null-terminating character in these bytes, then dst will 
not be null terminated!

// copying "hello" 
char str2[5];
strncpy(str2, "hello, world!", 5); // doesn’t copy '\0'!

If there is no null-terminating character, we may not be able to tell where the 
end of the string is anymore. E.g. strlen may continue reading into some 
other memory in search of '\0'!
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Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5); 
int length = strlen(str2);

str1

0 1 2 3 4

? ? ? ? ?str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'
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Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5); 
int length = strlen(str2);

str1

0 1 2 3 4

'h' ? ? ? ?str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'
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Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5); 
int length = strlen(str2);

str1

0 1 2 3 4

'h' 'e' ? ? ?str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'
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Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5); 
int length = strlen(str2);

str1

0 1 2 3 4

'h' 'e' 'l' ? ?str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'
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Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5); 
int length = strlen(str2);

str1

0 1 2 3 4

'h' 'e' 'l' 'l' ?str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'
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Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5); 
int length = strlen(str2);

str1

0 1 2 3 4

'h' 'e' 'l' 'l' 'o'str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'
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Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5); 
int length = strlen(str2);

str1

0 1 2 3 4

'h' 'e' 'l' 'l' 'o'str2 - other program memory -

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'
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Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5); 
int length = strlen(str2);

str1

str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4

'h' 'e' 'l' 'l' 'o' - other program memory -
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Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5); 
int length = strlen(str2);

str1

str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4

'h' 'e' 'l' 'l' 'o' - other program memory -
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Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5); 
int length = strlen(str2);

str1

str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4

'h' 'e' 'l' 'l' 'o' - other program memory -
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Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5); 
int length = strlen(str2);

str1

str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4

'h' 'e' 'l' 'l' 'o' - other program memory -
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Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5); 
int length = strlen(str2);

str1

str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4

'h' 'e' 'l' 'l' 'o' - other program memory -
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Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5); 
int length = strlen(str2);

str1

str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4

'h' 'e' 'l' 'l' 'o' - other program memory -
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Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5); 
int length = strlen(str2);

str1

str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4

'h' 'e' 'l' 'l' 'o' - other program memory -
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Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5); 
int length = strlen(str2);

str1

str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4

'h' 'e' 'l' 'l' 'o' - other program memory -
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Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5); 
int length = strlen(str2);

str1

str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4

'h' 'e' 'l' 'l' 'o' - other program memory -
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Copying Strings - strncpy

char str2[5];
strncpy(str2, "hello, world!", 5); 
int length = strlen(str2);

str1

str2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4

'h' 'e' 'l' 'l' 'o' - other program memory -
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Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

? ? ? ? ? ? ? ? ? ? ? ? ? ?
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Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' ? ? ? ? ? ? ? ? ? ? ? ? ?
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Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' ? ? ? ? ? ? ? ? ? ? ? ?
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Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' ? ? ? ? ? ? ? ? ? ? ?
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Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' ? ? ? ? ? ? ? ? ? ?
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Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ? ? ? ? ? ? ? ? ?
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Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ? ? ? ? ? ? ? ? ?

69



Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5); 
printf("%s\n", str1);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ? ? ? ? ? ? ? ? ?

70



Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5); 
printf("%s\n", str1);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ? ? ? ? ? ? ? ? ?
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Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5); 
printf("%s\n", str1);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ? ? ? ? ? ? ? ? ?
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Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5); 
printf("%s\n", str1);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ? ? ? ? ? ? ? ? ?
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Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5); 
printf("%s\n", str1);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ? ? ? ? ? ? ? ? ?
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Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5); 
printf("%s\n", str1);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ? ? ? ? ? ? ? ? ?
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Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5); 
printf("%s\n", str1);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ? ? ? ? ? ? ? ? ?

76



Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5); 
printf("%s\n", str1);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ? ? ? ? ? ? ? ? ?
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Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5); 
printf("%s\n", str1);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ? ? ? ? ? ? ? ? ?
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Copying Strings - strncpy

char str1[14];
strncpy(str1, "hello there", 5); 
printf("%s\n", str1);

str1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

'h' 'e' 'l' 'l' 'o' ? ? ? ? ? ? ? ? ?

hello⍰⍰J⍰⍰⍰
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Copying Strings - strncpy

If necessary, we can add a null-terminating character ourselves.

// copying "hello"
char str2[6]; // room for string and '\0' 
strncpy(str2, "hello, world!", 5); // doesn’t copy '\0'! 
str2[5] = '\0'; // add null-terminating char
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String Copying Exercise

What value should go in the blank at right?

A. 4

B. 5

C. 6

D. 12

E. strlen("hello")

char str[ ];

strcpy(str, "hello");
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String Copying Exercise

What value should go in the blank at right?

A. 4

B. 5

C. 6

D. 12

E. strlen("hello")

char str[ ];

strcpy(str, "hello");
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String Copying Exercise

What value should go in the blank at right?

A. 4

B. 5

C. 6

D. 12

E. strlen("hello")

char str[ ];

strcpy(str, "hello");

83

Why not? 



String Copying Exercise

What value should go in the blank at right?

A. 4

B. 5

C. 6

D. 12

E. strlen("hello")

char str[ ];

strcpy(str, "hello");

84

Why not? 

Need to account for the \0 !



String Exercise

What is printed out by the following program?

int main(int argc, char *argv[]) { 

    char str[9];

strcpy(str, "Hi earth"); 

str[2] = '\0';

printf("str = %s, len = %zu\n", str, strlen(str));

return 0;

} A. str = Hi, len = 8
B. str = Hi, len = 2
C. str = Hi earth, len = 8
D. str = Hi earth, len = 2
E. None/other

1

2

3

4

5

6

7

8

85



String Exercise

What is printed out by the following program?

int main(int argc, char *argv[]) { 

    char str[9];

strcpy(str, "Hi earth"); 

str[2] = '\0';

printf("str = %s, len = %zu\n", str, strlen(str));

return 0;

} A. str = Hi, len = 8
B. str = Hi, len = 2
C. str = Hi earth, len = 8
D. str = Hi earth, len = 2
E. None/other

1

2

3

4

5

6

7

8
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Concatenating Strings

We cannot concatenate C strings using + like in python. This adds addresses!

// e.g. param1 = 0x7f, param2 = 0x65
void doSomething(char *param1, char *param2) {

printf("%s", param1 + param2); // adds 0x7f and 0x65!

Instead, use strcat.

87



The string library: str(n)cat

strcat(dst, src): concatenates the contents of src into the string dst.

strncat(dst, src, n): same, but concats at most n bytes from src.

char str1[13];       // enough space for strings + '\0'
strcpy(str1, "hello "); 
strcat(str1, "world!");
printf("%s", str1);

// removes old '\0', adds new '\0' at end
// hello world!

Both strcat and strncat remove the old '\0' and add a new one at the end.
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Concatenating Strings

char str1[13]; 
strcpy(str1, "hello "); 
char str2[7]; 
strcpy(str2, "world!");

strcat(str1,

0 1

str2);

2 3 4 5 6 7 8 9 10 11 12

str1 'h' 'e' 'l' 'l' 'o' ' ' '\0' ? ? ? ? ? ?

0 1 2 3 4 5 6

str2 'w' 'o' 'r' 'l' 'd' '!' '\0'
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Concatenating Strings

char str1[13]; 
strcpy(str1, "hello "); 
char str2[7]; 
strcpy(str2, "world!");

strcat(str1,

0 1

str2);

2 3 4 5 6 7 8 9 10 11 12

str1 'h' 'e' 'l' 'l' 'o' ' ' 'w' ? ? ? ? ? ?

0 1 2 3 4 5 6

str2 'w' 'o' 'r' 'l' 'd' '!' '\0'
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Concatenating Strings

char str1[13]; 
strcpy(str1, "hello "); 
char str2[7]; 
strcpy(str2, "world!");

strcat(str1,

0 1

str2);

2 3 4 5 6 7 8 9 10 11 12

str1 'h' 'e' 'l' 'l' 'o' ' ' 'w' 'o' ? ? ? ? ?

0 1 2 3 4 5 6

str2 'w' 'o' 'r' 'l' 'd' '!' '\0'
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Concatenating Strings

char str1[13]; 
strcpy(str1, "hello "); 
char str2[7]; 
strcpy(str2, "world!");

strcat(str1,

0 1

str2);

2 3 4 5 6 7 8 9 10 11 12

str1 'h' 'e' 'l' 'l' 'o' ' ' 'w' 'o' 'r' ? ? ? ?

0 1 2 3 4 5 6

str2 'w' 'o' 'r' 'l' 'd' '!' '\0'
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Concatenating Strings

char str1[13]; 
strcpy(str1, "hello "); 
char str2[7]; 
strcpy(str2, "world!");

strcat(str1,

0 1

str2);

2 3 4 5 6 7 8 9 10 11 12

str1 'h' 'e' 'l' 'l' 'o' ' ' 'w' 'o' 'r' 'l' ? ? ?

0 1 2 3 4 5 6

str2 'w' 'o' 'r' 'l' 'd' '!' '\0'
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Concatenating Strings

char str1[13]; 
strcpy(str1, "hello "); 
char str2[7]; 
strcpy(str2, "world!");

strcat(str1,

0 1

str2);

2 3 4 5 6 7 8 9 10 11 12

str1 'h' 'e' 'l' 'l' 'o' ' ' 'w' 'o' 'r' 'l' 'd' ? ?

0 1 2 3 4 5 6

str2 'w' 'o' 'r' 'l' 'd' '!' '\0'
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Concatenating Strings

char str1[13]; 
strcpy(str1, "hello "); 
char str2[7]; 
strcpy(str2, "world!");

strcat(str1,

0 1

str2);

2 3 4 5 6 7 8 9 10 11 12

str1 'h' 'e' 'l' 'l' 'o' ' ' 'w' 'o' 'r' 'l' 'd' '!' ?

0 1 2 3 4 5 6

str2 'w' 'o' 'r' 'l' 'd' '!' '\0'
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Concatenating Strings

char str1[13]; 
strcpy(str1, "hello "); 
char str2[7]; 
strcpy(str2, "world!");

strcat(str1,

0 1

str2);

2 3 4 5 6 7 8 9 10 11 12

str1 'h' 'e' 'l' 'l' 'o' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4 5 6

str2 'w' 'o' 'r' 'l' 'd' '!' '\0'
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Concatenating Strings

char str1[13]; 
strcpy(str1, "hello "); 
char str2[7]; 
strcpy(str2, "world!");

strcat(str1,

0 1

str2);

2 3 4 5 6 7 8 9 10 11 12

str1 'h' 'e' 'l' 'l' 'o' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

0 1 2 3 4 5 6

str2 'w' 'o' 'r' 'l' 'd' '!' '\0'
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Substrings and char *

You can also create a char * variable yourself that points to an address within 
an existing string.

char myString[3];

myString[0] = 'H';

myString[1] = 'i';

myString[2] = '\0';

char *otherStr = myString; // points to 'H'
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Substrings

char *s are pointers to characters. We can use them to create substrings of 
larger strings.

// Want just "car" 
char chars[8];
strcpy(chars, "racecar"); 
char *str1 = chars;

0xf1 0xf2 0xf3 0xf4 0xf5 0xf6 0xf7 0xf8

'r' 'a' 'c' 'e' 'c' 'a' 'r' '\0'

str1 0xf1

chars

0xee
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Substrings

Since C strings are pointers to characters, we can adjust the pointer to omit 
characters at the beginning.

// Want just "car" 
char chars[8];
strcpy(chars, "racecar"); 
char *str1 = chars;
char *str2 = chars + 4;

'r' 'a' 'c' 'e' 'c' 'a' 'r' '\0'

0xf1 0xf2 0xf3 0xf4 0xf5 0xf6 0xf7 0xf8

chars

0xee

0xf1

0xd2

0xf5str1 str2
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Substrings

Since C strings are pointers to characters, we can adjust the pointer to omit 
characters at the beginning.

char chars[8]; 
strcpy(chars, "racecar"); 
char *str1 = chars;
char *str2 = chars + 4;
printf("%s\n", str1); // racecar
printf("%s\n", str2); // car

'r' 'a' 'c' 'e' 'c' 'a' 'r' '\0'

0xf1 0xf2 0xf3 0xf4 0xf5 0xf6 0xf7 0xf8

chars

0xee

0xf1

0xd2

0xf5str1 str2
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Substrings

'r' 'a' 'c' 'e' 'f' 'a' 'r' '\0'

str2

0xd2

0xf5

0xee

0xf1str1

Since C strings are pointers to characters, we can adjust the pointer to omit 
characters at the beginning. NOTE: the pointer still refers to the same 
characters!

char chars[8]; 
strcpy(chars, "racecar"); 
char *str1 = chars;
char *str2 = chars + 4;
str2[0] = 'f';
printf("%s %s\n", chars, str1); 
printf("%s\n", str2);

0xf1 0xf2 0xf3 0xf4 0xf5 0xf6 0xf7 0xf8

chars
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Substrings

Since C strings are pointers to characters, we can adjust the pointer to omit 
characters at the beginning. NOTE: the pointer still refers to the same 
characters!

char chars[8]; 
strcpy(chars, "racecar"); 
char *str1 = chars;
char *str2 = chars + 4;
str2[0] = 'f';
printf("%s %s\n", chars, str1); 
printf("%s\n", str2);

// racefar racefar
// far

'r' 'a' 'c' 'e' 'f' 'a' 'r' '\0'

str2

0xd2

0xf5

0xee

0xf1str1

0xf1 0xf2 0xf3 0xf4 0xf5 0xf6 0xf7 0xf8

chars
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char * vs. char[]

char myString[]

vs

char *myString

You can create char * pointers to point to any character in an existing string and 
reassign them since they are just pointer variables. You cannot reassign an 
array.

char myString[6]; 
strcpy(myString, "Hello");

// not allowed!myString = "Another string";
---
char *myOtherString = myString; 
myOtherString = somethingElse; // ok
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Substrings

To omit characters at the end, make a new string that is a partial copy of the 
original.

// Want just "race"
char str1[8]; 
strcpy(str1, "racecar");

char str2[5]; 
strncpy(str2, str1, 4); 
str2[4] = '\0'; 
printf("%s\n", str1); 
printf("%s\n", str2);

// racecar
// race
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Substrings

We can combine pointer arithmetic and copying to make any substrings we’d 
like.

// Want just "ace" 
char str1[8];
strcpy(str1, "racecar");

char str2[4];
strncpy(str2, str1 + 1, 3); 
str2[3] = '\0'; 
printf("%s\n", str1); 
printf("%s\n", str2);

// racecar
// ace
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Initializing strings

// create space for array first
// then use string function to copy in content 
char buf1[6];
strcpy(buf1, "hello");

// initialize array to exactly the size that fits
// string + null terminator 
char buf2[] = "hello";

// will not work (why?) 
char buf3[6];
buf3 = "hello";
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• We’ll talk more about char * vs char[] in lecture 5

• Some useful distinctions in the meantime:
• char * is an 8-byte pointer – it stores an address of a character

• char[] is an array of characters – it stores the actual characters in a string

• When you pass a char[] as a parameter, it is automatically passed as a char * (pointer to 
its first character)

108

* Vs []



C Strings

109

C strings are arrays of characters ending with a null-terminating character '\0'.

String operations such as strlen use the null-terminating character to find the 
end of the string.

Side note: use strlen to get the length of a string. Don’t use sizeof!

index 0 

value 'H' 'e' 'l' 'l' 'o' ',' ' ' 'w' 'o' 'r' 'l' 'd' '!' '\0'

1 2 3 4 5 6 7 8 9 10 11 12 13



Key Takeaways

// 5
// Hello

char str[6]; 
strcpy(str, "Hello");
int length = strlen(str); 
printf("%s\n", str);

char *ptr = str + 1; 
printf("%s\n", ptr); // ello

0xf0 0xf1 0xf2 0xf3 0xf4 0xf5

'H' 'e' 'l' 'l' 'o' '\0'

address 

charstr

0xee

ptr
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Lecture Plan

• Characters

• Strings

• Common String Operations
• Comparing

• Copying

• Concatenating

• Substrings

• Practice
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String copying exercise

9char buf[ ]; 

strcpy(buf, "Potatoes"); 

printf("%s\n", buf); 

char *word = buf + 2; 

strncpy(word, "mat", 3);

printf("%s\n", buf);

Line 1: What value should go in the blank?

Line 6: What is printed?

1

2

3

4

5

6

A. 7
B. 8
C. 9

A. matoes
B. mattoes
C. Pomat

D. 12
E. strlen("Potatoes")
F. Something else

D. Pomatoes
E. Something else
F. Compile error
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String copying exercise

char buf[ 9 ]; 

strcpy(buf, "Potatoes"); 

printf("%s\n", buf); 

char *word = buf + 2; 

strncpy(word, "mat", 3);

printf("%s\n", buf);

Line 1: What value should go in the blank?

Line 6: What is printed?

1

2

3

4

5

6

A. 7
B. 8
C. 9

A. matoes
B. mattoes
C. Pomat

D. 12
E. strlen("Potatoes")
F. Something else

D. Pomatoes
E. Something else
F. Compile error

0xe0 0xe1 0xe2 0xe3 0xe4 0xe5 0xe6 0xe7 0xe8

'P' 'o' 't' 'a' 't' 'o' 'e' 's' '\0'

0xf0

word

buf
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Copycat exercise

Challenge: implement strcat using other string functions.

char src[9];

strcpy(src, "We Climb");

char dst[200]; // lots of space 

strcpy(dst, "The Hill ");

strcat(dst, src);
How could we replace a call to 
strcat with a call to strcpy 
instead?
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Copycat exercise

Challenge: implement strcat using other string functions.

char src[9];

strcpy(src, "We Climb");

char dst[200]; // lots of space 

strcpy(dst, "The Hill ");

strcat(dst, src); strcpy(dst + strlen(dst), src);
equivalent
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Searching For Letters

strchr returns a pointer to the first occurrence of a character in a string, or 
NULL if the character is not in the string.

char daisy[6];
strcpy(daisy, "Daisy");
char *letterA = strchr(daisy, 'a');
printf("%s\n", daisy); // Daisy
printf("%s\n", letterA);

If there are multiple occurrences of the letter, strchr returns a pointer to the
first one. Use strrchr to obtain a pointer to the last occurrence.
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Searching For Letters

strchr returns a pointer to the first occurrence of a character in a string, or 
NULL if the character is not in the string.

char daisy[6];
strcpy(daisy, "Daisy");
char *letterA = strchr(daisy, 'a');
printf("%s\n", daisy); // Daisy
printf("%s\n", letterA); // aisy

If there are multiple occurrences of the letter, strchr returns a pointer to the
first one. Use strrchr to obtain a pointer to the last occurrence.
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Searching For Strings

118

strstr returns a pointer to the first occurrence of the second string in the first, 
or NULL if it cannot be found.

char daisy[10]; 
strcpy(daisy, "Daisy Dog");
char *substr = strstr(daisy, "Dog");
printf("%s\n", daisy); // Daisy Dog
printf("%s\n", substr);

If there are multiple occurrences of the string, strstr returns a pointer to the
first one.



Searching For Strings

119

strstr returns a pointer to the first occurrence of the second string in the first, 
or NULL if it cannot be found.

char daisy[10]; 
strcpy(daisy, "Daisy Dog");
char *substr = strstr(daisy, "Dog");
printf("%s\n", daisy); // Daisy Dog
printf("%s\n", substr); // Dog

If there are multiple occurrences of the string, strstr returns a pointer to the
first one.



String Spans

120

strspn returns the length of the initial part of the first string which contains 
only characters in the second string.

char daisy[10]; 
strcpy(daisy, "Daisy Dog");
int spanLength = strspn(daisy, "aDeoi");

“How many places can we go in the first string before I 
encounter a character not in the second string?”



String Spans

121

strspn returns the length of the initial part of the first string which contains 
only characters in the second string.

char daisy[10]; 
strcpy(daisy, "Daisy Dog");
int spanLength = strspn(daisy, "aDeoi"); // 3

“How many places can we go in the first string before I 
encounter a character not in the second string?”



String Spans

encounter a character in the second string?”
122

strcspn (c = “complement”) returns the length of the initial part of the first 
string which contains only characters not in the second string.

char daisy[10]; 
strcpy(daisy, "Daisy Dog");
int spanLength = strcspn(daisy, "driso");

“How many places can we go in the first string before I



String Spans

encounter a character in the second string?”
123

strcspn (c = “complement”) returns the length of the initial part of the first 
string which contains only characters not in the second string.

char daisy[10]; 
strcpy(daisy, "Daisy Dog");
int spanLength = strcspn(daisy, "driso"); // 2

“How many places can we go in the first string before I



String Diamond

• Write a function diamond that accepts a string parameter and prints its letters 
in a "diamond" format as shown below.
• For example, diamond("DAISY") should print:

D 
DA 
DAI
DAIS 
DAISY
AISY 
ISY
SY
Y
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