
CS107, Lecture 6
More Pointers and Arrays

Reading: K&R (5.2-5.5) or Essential C section 6

This document is copyright (C) Stanford Computer Science, Adam Keppler, and Olayinka Adekola licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Joel Ramirez, Nick Troccoli, Chris Gregg

CS107 Topic 3: How can we
effectively manage all types

of memory in our
programs?

2

3

Some Pointers

https://xkcd.com/138/

Lecture Plan

• Pointers, Parameters, & Memory

• Arrays in Memory

• Arrays of Pointers

• Pointer Arithmetic

• Other topics: const, struct and ternary

4

Where is our data?

• It depends!

• Hard codes are in `initialized
data`

• Function locals are on the stack

• Dynamically Allocated Memory
on the heap
• More on this later!

5

Read-only Strings

There is another convenient way to create a string if we do not need to modify it
later. We can create a char * and set it directly equal to a string literal.

char *myString = "Hello, world!";

...

printf("%s", myString); // Hello, world!

6

Why Read-Only?

7

char *myString = "Hello, world!";

...

printf("%s", myString);

Lives Here

What About this?

8

char str[14];

strcpy(str, "Hello, world!");

...

printf("%s", myString);

What About this?

9

char str[14];

strcpy(str, "Hello, world!");

...

printf("%s", myString);

Read/Write

Read-Only

What About this?

10

char str[14];

strcpy(str, "Hello, world!");

...

printf("%s", myString);

str stored in read/write, so we are safe

Creates Read/Write Slot on the Stack

Saved in Read-Only Mode

Exercise 1

We want to write a function that prints out the square of a number. What
should go in each of the blanks?

void printSquare(__?__) {
int square = __?__ * __?__;
printf("%d", square);

}

int main(int argc, char *argv[]) {
int num = 3;
printSquare(__?__); // should print 9

}

11

Exercise 1

We want to write a function that prints out the square of a number. What
should go in each of the blanks?

void printSquare(int x) {
x = x * x;
printf("%d", x);

}

int main(int argc, char *argv[]) {
int num = 3;
printSquare(num); // should print 9

}

We are performing a calculation with

some input and do not care about any

changes to the input, so we pass the

data type itself.

12

Exercise 2

We want to write a function that flips the case of a letter. What should go in
each of the blanks?

void flipCase(__?__) {
if (isupper(__?__)) {

__?__ = __?__;
} else if (islower(__?__)) {

__?__ = __?__;
}

}

int main(int argc, char *argv[]) {
char ch = 'g';
flipCase(__?__);
printf("%c", ch); // We want this to print ‘G’

} 13

Exercise 2

We want to write a function that flips the case of a letter. What should go in
each of the blanks?

void flipCase(char *letter) {
if (isupper(*letter)) {

*letter = tolower(*letter);
} else if (islower(*letter)) {

*letter = toupper(*letter);
}

}

int main(int argc, char *argv[]) {
char ch = 'g';
flipCase(&ch);
printf("%c", ch); // want this to print ‘G’

}

We are modifying a specific

instance of the letter, so we pass

the location of the letter we would

like to modify.

14

Exercise 3

Sometimes, we would like to modify a string’s pointer itself, rather than just the
characters it points to. E.g. we want to write a function skipSpaces that
modifies a string pointer to skip past any initial spaces. What should go in each
of the blanks?

void skipSpaces(__1__) {
...

}

int main(int argc, char *argv[]) {
char *str = " hello";
skipSpaces(__2__);
printf("%s", str); // should print "hello"

} 15

Exercise 3

Sometimes, we would like to modify a string’s pointer itself, rather than just the
characters it points to. E.g. we want to write a function skipSpaces that
modifies a string pointer to skip past any initial spaces. What should go in each
of the blanks?

void skipSpaces(char **strPtr) {
...

}

int main(int argc, char *argv[]) {
char *str = " hi";
skipSpaces(&str);
printf("%s", str); // should print "hi"

}

We are modifying a specific

instance of the string pointer, so

we pass the location of the string

pointer we would like to modify.

16

Common string.h Functions

Function Description

strlen(str) returns the # of chars in a C string (before null-terminating character).

strcmp(str1, str2),

strncmp(str1, str2, n)

compares two strings; returns 0 if identical, <0 if str1 comes before
str2 in alphabet, >0 if str1 comes after str2 in alphabet. strncmp
stops comparing after at most n characters.

strchr(str, ch)

strrchr(str, ch)

character search: returns a pointer to the first occurrence of ch in str,
or NULL if ch was not found in str. strrchr find the last occurrence.

strstr(haystack, needle) string search: returns a pointer to the start of the first occurrence of
needle in haystack, or NULL if needle was not found in haystack.

strcpy(dst, src),

strncpy(dst, src, n)

copies characters in src to dst, including null-terminating character.
Assumes enough space in dst. Strings must not overlap. strncpy
stops after at most n chars, and does not add null-terminating char.

strcat(dst, src),

strncat(dst, src, n)

concatenate src onto the end of dst. strncat stops concatenating
after at most n characters. Always adds a null-terminating character.

strspn(str, accept),

strcspn(str, reject)

strspn returns the length of the initial part of str which contains only
characters in accept. strcspn returns the length of the initial part of
str which does not contain any characters in reject.

17

Pointers to Strings
Address Value

…

0x105 0xf

…

…

0x13 '\0'

0x12 'i'

0x11 'h'

0x10 ' '

0xf ' '

…

myStr

DATA SEGMENT

void skipSpaces(char **strPtr) {
int numSpaces = strspn(*strPtr, " ");
*strPtr += numSpaces;

}

int main(int argc, char *argv[]) {
char *myStr = " hi";
skipSpaces(&myStr);
printf("%s\n", myStr); // hi
return 0;

}

main()STACK

18

Pointers to Strings
Address Value

…

0x105 0xf

…

…

0x13 '\0'

0x12 'i'

0x11 'h'

0x10 ' '

0xf ' '

…

myStr

DATA SEGMENT

void skipSpaces(char **strPtr) {
int numSpaces = strspn(*strPtr, " ");
*strPtr += numSpaces;

}

int main(int argc, char *argv[]) {
char *myStr = " hi";
skipSpaces(&myStr);
printf("%s\n", myStr); // hi
return 0;

}

main()STACK

19

Pointers to Strings
Address Value

…

0x105 0xf

…

…

0xf0 0x105

…

…

0x13 '\0'

0x12 'i'

0x11 'h'

0x10 ' '

0xf ' '

…

DATA SEGMENT

void skipSpaces(char **strPtr) {
int numSpaces = strspn(*strPtr, " ");
*strPtr += numSpaces;

}

int main(int argc, char *argv[]) {
char *myStr = " hi";
skipSpaces(&myStr);
printf("%s\n", myStr); // hi
return 0;

}

myStr

strPtr

main()

skipSpaces()

STACK

20

Pointers to Strings
Address Value

…

0x105 0xf

…

…

0xf0 0x105

0xe8 2

…

…

0x13 '\0'

0x12 'i'

0x11 'h'

0x10 ' '

0xf ' '

…

DATA SEGMENT

void skipSpaces(char **strPtr) {
int numSpaces = strspn(*strPtr, " ");
*strPtr += numSpaces;

}

int main(int argc, char *argv[]) {
char *myStr = " hi";
skipSpaces(&myStr);
printf("%s\n", myStr); // hi
return 0;

}

myStr

strPtr

numSpaces

main()

skipSpaces()

STACK

21

Pointers to Strings
Address Value

…

0x105 0x11

…

…

0xf0 0x105

0xe8 2

…

…

0x13 '\0'

0x12 'i'

0x11 'h'

0x10 ' '

0xf ' '

…

DATA SEGMENT

void skipSpaces(char **strPtr) {
int numSpaces = strspn(*strPtr, " ");
*strPtr += numSpaces;

}

int main(int argc, char *argv[]) {
char *myStr = " hi";
skipSpaces(&myStr);
printf("%s\n", myStr); // hi
return 0;

}

myStr

strPtr

numSpaces

main()

skipSpaces()

STACK

22

Pointers to Strings
Address Value

…

0x105 0x11

…

…

0x13 '\0'

0x12 'i'

0x11 'h'

0x10 ' '

0xf ' '

…

DATA SEGMENT

void skipSpaces(char **strPtr) {
int numSpaces = strspn(*strPtr, " ");
*strPtr += numSpaces;

}

int main(int argc, char *argv[]) {
char *myStr = " hi";
skipSpaces(&myStr);
printf("%s\n", myStr); // hi
return 0;

}

myStrSTACK main()

23

Pointers to Strings
Address Value

…

0x105 0x11

…

…

0x13 '\0'

0x12 'i'

0x11 'h'

0x10 ' '

0xf ' '

…

DATA SEGMENT

void skipSpaces(char **strPtr) {
int numSpaces = strspn(*strPtr, " ");
*strPtr += numSpaces;

}

int main(int argc, char *argv[]) {
char *myStr = " hi";
skipSpaces(&myStr);
printf("%s\n", myStr); // hi
return 0;

}

myStrmain()STACK

24

Skip spaces

void skip_spaces(char **p_str) {

int num = strspn(*p_str, " ");

*p_str = *p_str + num;

}

int main(int argc, char *argv[]){

char *str = " Hi!";

skip_spaces(&str);

printf("%s", str); // "Hi!"

return 0;

}

1

2

3

4

5

6

7

8

9

10

What diagram most accurately depicts
program state at Line 4 (before
skip_spaces returns to main)?

str

' ' ' ' 'H' 'i' '!' '\0'

p_str

str
p_str

' ' ' ' 'H' 'i' '!' '\0'

str

' ' ' ' 'H' 'i' '!' '\0'

p_str

A.

B.

C.

25

Skip spaces

str

' ' ' ' 'H' 'i' '!' '\0'

p_str

str
p_str

' ' ' ' 'H' 'i' '!' '\0'

str

' ' ' ' 'H' 'i' '!' '\0'

p_str

A.

B.

C.

void skip_spaces(char **p_str) {

int num = strspn(*p_str, " ");

*p_str = *p_str + num;

}

int main(int argc, char *argv[]){

char *str = " Hi!";

skip_spaces(&str);

printf("%s", str); // "Hi!"

return 0;

}

1

2

3

4

5

6

7

8

9

10

What diagram most accurately depicts
program state at Line 4 (before
skip_spaces returns to main)?

26

Beware: Making Copies
Address Value

…

0x105 0xf

…

…

0xf0 0xf

…

…

0x13 '\0'

0x12 'i'

0x11 'h'

0x10 ' '

0xf ' '

…

DATA SEGMENT

void skipSpaces(char *strPtr) {
int numSpaces = strspn(strPtr, " ");
strPtr += numSpaces;

}

int main(int argc, char *argv[]) {
char *myStr = " hi";
skipSpaces(myStr);
printf("%s\n", myStr); // hi
return 0;

}

myStr

strPtr

main()

skipSpaces()

STACK

This advances skipSpace’s own

copy of the string pointer, not the

instance in main.

27

Recap

Pointers let us store the

addresses of data and pass

them as parameters. We

can use double pointers if

we want to change the value

of a pointer in another

function.

28

How to draw memory diagrams?

Choose whatever style is convenient for you,

keeping in mind that (1) memory is contiguous,

and (2) C types are different sizes.
29

Address Value

…

0x105 '\0'

0x104 'y'

0x103 'l'

0x102 'p'

0x101 'p'

0x100 'a'

…

…

0xf 0x100

…

str

myStr

main()

myFunc()

STACK
Address Value

0x1f2 '\0'

0x1f1 'i'

0x1f0 'h'

...

0xff

0xfe

0xfd

0xfc

0xfb

0xfa

0xf9

0xf8

str

mystr

main()

STACK

0x1f0myFunc()

Lecture Plan

• Pointers, Parameters, & Memory

• Arrays in Memory

• Arrays of Pointers

• Pointer Arithmetic

• Other topics: const, struct and ternary

30

Arrays

Address Value

…

0x105 '\0'

0x104 'e'

0x103 'l'

0x102 'p'

0x101 'p'

0x100 'a'

…

When you declare an array, contiguous memory is allocated
on the stack to store the contents of the entire array.

char str[6];

strcpy(str, "apple");

The array variable (e.g. str) is not a pointer; it refers to the
entire array contents. In fact, sizeof returns the size of the
entire array!

int arrayBytes = sizeof(str); // 6
str

STACK

31

Arrays

An array variable refers to an entire block of memory. You cannot reassign an
existing array to be equal to a new array.

int nums[] = {1, 2, 3};

int nums2[] = {4, 5, 6, 7};

nums = nums2; // not allowed!

An array’s size cannot be changed once you create it; you must create another
new array instead.

32

Arrays as Parameters

When you pass an array as a parameter, C makes a
copy of the address of the first array element, and
passes it (a pointer) to the function.

void myFunc(char *myStr) {
...

}

int main(int argc, char *argv[]) {
char str[3];
strcpy(str, "hi");
myFunc(str);
...

}

Address Value

0x1f2 '\0'

0x1f1 'i'

0x1f0 'h'
...

0xff

0xfe

0xfd

0xfc

0xfb

0xfa

0xf9

0xf8
...

str

mystr

main()

STACK

0x1f0myFunc()

33

Arrays as Parameters

When you pass an array as a parameter, C makes a
copy of the address of the first array element and
passes it (a pointer) to the function.
void myFunc(char *myStr) {

…
}

int main(int argc, char *argv[]) {
char str[3];
strcpy(str, "hi");
// equivalent
char *arrPtr = str;
myFunc(arrPtr);
...

}

Address Value

0x1f2 '\0'

0x1f1 'i'

0x1f0 'h'

0x1e8 0x1f0
…

0x10 0x1f0
…

str

myStr

main()

STACK

arrPtr

myFunc()

34

Arrays as Parameters

This also means we can no longer get the full size of
the array using sizeof, because now it is just a
pointer.

void myFunc(char *myStr) {
int size = sizeof(myStr); // 8

}

int main(int argc, char *argv[]) {
char str[3];
strcpy(str, "hi");
int size = sizeof(str); // 3
myFunc(str);
...

}

Address Value

0x1f2 '\0'

0x1f1 'i'

0x1f0 'h'
...

0xff

0xfe

0xfd

0xfc

0xfb

0xfa

0xf9

0xf8

str

mystr

main()

STACK

0x1f0myFunc()

35

sizeof returns:

1) If local to the array, its size in bytes

2) If a pointer, 8 bytes for the pointer.

Therefore, when we pass an array as a

parameter, we can no longer use sizeof
to get its full size.

36

Arrays vs. Pointers

• When you create an array, you are making space for each element in the array.

• When you create a pointer, you are making space for an 8 byte address.

• Arrays “decay to pointers” when you perform arithmetic or pass as parameter.

• You can set a pointer equal to an array; that pointer will point to the array’s first
element

• &arr does nothing on arrays, but &ptr on pointers gets its address

• sizeof(arr) gets the size of an array in bytes, but sizeof(ptr) is always 8

37

Lecture Plan

• Pointers, Parameters, & Memory

• Arrays in Memory

• Arrays of Pointers

• Pointer Arithmetic

• Other topics: const, struct and ternary

38

Arrays Of Pointers

You can make an array of pointers to e.g. group multiple strings together:

char *stringArray[5]; // space to store 5 char *s

This stores 5 char *s, not all of the characters for 5 strings!

char *str0 = stringArray[0]; // first char *

39

Visualizing Args

40

Visualizing Args

Question:

What’s the value

of argv[0]?

41

Lecture Plan

• Pointers, Parameters, & Memory

• Arrays in Memory

• Arrays of Pointers

• Pointer Arithmetic

• Other topics: const, struct and ternary

42

Pointer Arithmetic

When you do pointer arithmetic, you are adjusting
the pointer by a certain number of places (e.g.
characters).

char *str = "apple"; // e.g. 0xff0

char *str1 = str + 1; // e.g. 0xff1

char *str3 = str + 3; // e.g. 0xff3

printf("%s", str); // apple

printf("%s", str1); // pple

printf("%s", str3); // le

Address Value

…

0xff5 '\0'

0xff4 'e'

0xff3 'l'

0xff2 'p'

0xff1 'p'

0xff0 'a'

…

DATA SEGMENT

43

Pointer Arithmetic

Pointer arithmetic does not work in bytes. Instead,
it works in the size of the type it points to.

// nums points to an int array

int *nums = … // e.g. 0xff0

int *nums1 = nums + 1; // e.g. 0xff4

int *nums3 = nums + 3; // e.g. 0xffc

printf("%d", *nums); // 52

printf("%d", *nums1); // 23

printf("%d", *nums3); // 34

Address Value

…

0x1004 1

0x1000 16

0xffc 34

0xff8 12

0xff4 23

0xff0 52

…

STACK

44

Pointer Arithmetic

Pointer arithmetic does not work in bytes. Instead,
it works in the size of the type it points to.

// nums points to an int array

int *nums = … // e.g. 0xff0

int *nums3 = nums + 3; // e.g. 0xffc

int *nums2 = nums3 - 1; // e.g. 0xff8

printf("%d", *nums); // 52

printf("%d", *nums2); // 12

printf("%d", *nums3); // 34

Address Value

…

0x1004 1

0x1000 16

0xffc 34

0xff8 12

0xff4 23

0xff0 52

…

STACK

45

Pointer Arithmetic

When you use bracket notation with a pointer, you are
actually performing pointer arithmetic and dereferencing:

char *str = "apple"; // e.g. 0xff0

// both of these add two places to str,

// and then dereference to get the char there.

// E.g. get memory at 0xff2.

char thirdLetter = str[2]; // 'p'

char thirdLetter = *(str + 2); // 'p'

Address Value

…

0xff5 '\0'

0xff4 'e'

0xff3 'l'

0xff2 'p'

0xff1 'p'

0xff0 'a'

…

DATA SEGMENT

46

Pointer Arithmetic

Pointer arithmetic with two pointers does not give the byte
difference. Instead, it gives the number of places they
differ by.

// nums points to an int array

int *nums = … // e.g. 0xff0

int *nums3 = nums + 3; // e.g. 0xffc

int diff = nums3 - nums; // 3

Address Value

…

0x1004 1

0x1000 16

0xffc 34

0xff8 12

0xff4 23

0xff0 52

…

STACK

47

How does the code know how many bytes it should look at once it visits an
address? At compile time, C can figure out the sizes of different data types, and
the sizes of what they point to.

int x = 2;

int *xPtr = &x; // e.g. 0xff0

// C knows to print out just the 4 bytes at xPtr

printf("%d", *xPtr); // 2

Pointer Arithmetic

48

How does the code know how many bytes it should add when performing
pointer arithmetic? At compile time, C can figure out the sizes of different data
types, and the sizes of what they point to.

int nums[] = {1, 2, 3};

// C knows to add 4 bytes here
int *intPtr = nums + 1;

char str[6];
strcpy(str, "CS107");

// C knows to add 1 byte here
char *charPtr = str + 1;

Pointer Arithmetic

49

Lecture Plan

• Pointers, Parameters, & Memory

• Arrays in Memory

• Arrays of Pointers

• Pointer Arithmetic

• Other topics: const, struct and ternary

50

Const

51

• Use const to declare global constants in your program. This indicates the

variable cannot change after being created.

const double PI = 3.1415;

const int DAYS_IN_WEEK = 7;

int main(int argc, char *argv[]) {

…

if (x == DAYS_IN_WEEK) {

…

}

…

}

Const

52

• Use const with pointers to indicate that the data that is pointed to

cannot change.

char str[6];

strcpy(str, "Hello");

const char *s = str;

// Cannot use s to change characters it points to

s[0] = 'h';

Const

53

Sometimes we use const with pointer parameters to indicate that the function will not / should

not change what it points to. The actual pointer can be changed, however.

// This function promises to not change str’s characters int

countUppercase(const char *str) {
int count = 0;

for (int i = 0; i < strlen(str); i++) { if

(isupper(str[i])) {
count++;

}

}

return count;

}

Const

54

By definition, C gets upset when you set a non-const pointer equal to a const

pointer. You need to be consistent with const to reflect what you cannot

modify.

// This function promises to not change str’s characters

int countUppercase(const char *str) {

// compiler warning and error

char *strToModify = str;
strToModify[0] = …

}

Const

55

By definition, C gets upset when you set a non-const pointer equal to a const

pointer. You need to be consistent with const to reflect what you cannot

modify. Think of const as part of the variable type.

// This function promises to not change str’s characters

int countUppercase(const char *str) {
const char *strToModify = str;

strToModify[0] = …

}

Const

56

const can be confusing to interpret in some variable types.

// cannot modify this char

const char c = 'h';

// cannot modify chars pointed to by str

const char *str = …

// cannot modify chars pointed to by *strPtr

const char **strPtr = …

Const

// const LEFT of * → VALUE immutable (can't change the chars in the string)
const char *p;

const char **p

p ──────► inner_ptr ──────► "Hello"
(can modify) (can modify) (cannot modify)

// const RIGHT of * → POINTER immutable (can't change where p points)
char * const p;

const char ** const p

p ──────► inner_ptr ──────► "Hello"
(cannot modify) (can modify) (cannot modify)

57

Const

58

// Create an array
char arr[14];
strcpy(arr, "Hello");

// Constant Data
// Pointer to constant data (modifiable pointer, non-modifiable data)
const char * str1 = arr;
// *str1 = 'h'; // This is not allowed

// Constant Pointer
// Constant pointer to data (non-modifiable pointer, modifiable data).
char * const str2 = arr;
// str2 = "New String"; // This is not allowed
str2[0] = 'h'; // This is allowed

// Constant Pointer to Constant Data
// Constant pointer to constant data (non-modifiable pointer, non-modifiable data).
const char * const str3 = arr;
// *str3 = 'h'; // This is not allowed
// str3 = "New String"; // This is not allowed

Const

// pointer to a pointer to a char
char **p1;
// pointer to a pointer to a const char (can change pointer not char)
const char **p2;

// const pointer to pointer to char (can’t change top level pointer)
char ** const p3;
// const pointer to pointer to const char (can’t change top level pointer or char)
const char ** const p4;

// pointer to const pointer to char (top level can change, but intermediary pointer cannot)
char * const *p5;
// pointer to const pointer to const char (top level can change, but intermediary pointer and char cannot)
const char * const *p6;

// const pointer to const pointer to char (char is the only thing that can change)
char * const * const p7;
// const pointer to const pointer to const char (nothing can change)
const char * const * const p8;

59

Const

pointer pointer chars
char **p1; // ✓ p1, ✓ *p1, ✓ **p1

const char **p2; // ✓ p2, ✓ *p2 ✗ **p2

char ** const p3; // ✗ p3 ✓ *p3, ✓ **p3

const char ** const p4; // ✗ p4 ✓ *p4 ✗ **p4

char * const *p5; // ✓ p5 ✗ *p5 ✓ **p5

const char * const *p6; // ✓ p6 ✗ *p6 ✗ **p6

char * const * const p7; // ✗ p7 ✗ *p7 ✓ **p7

const char * const * const p8; // ✗ p7 ✗ *p7 ✗ **p7

60

const vs #define

#define is a hard-coded substitution that
gcc will make when compiling your code.

Const signals that this variable (in this
scope) should not be modified.

• In CS107, you often won’t have to
declare const variables, but you will be
provided parameters or use functions
that have it

• Const directly modifies the adjacent keyword

#define THIRD_BIT 1 << 3

// cannot modify this char
const char c = 'h';

// cannot modify chars
pointed to by str
const char *str = …

// cannot modify chars
pointed to by *strPtr
const char **strPtr = …

61

const

62

1
2

3
4
5
6

char buf[6];
strcpy(buf, "Hello");

const char *str = buf;
str[0] = 'M';

str = "Mello";
buf[0] = 'M';

Which lines (if any) above will cause an error due to violating const?

Remember that const char * means that the characters at the location it stores

cannot be changed.

const

1
2

3
4
5
6

Which lines (if any) above will cause an error due to violating const?

Remember that const char * means that the characters at the location it stores

cannot be changed.

Line 1 makes a typical

modifiable character

array of 6 characters.

63

char buf[6];
strcpy(buf, "Hello");

const char *str = buf;
str[0] = 'M';

str = "Mello";
buf[0] = 'M';

const

1
2

3
4
5
6

Which lines (if any) above will cause an error due to violating const?

Remember that const char * means that the characters at the location it stores

cannot be changed.

Line 2 copies characters

into this modifiable

character array.

64

char buf[6];
strcpy(buf, "Hello");

const char *str = buf;
str[0] = 'M';

str = "Mello";
buf[0] = 'M';

const

1
2

3
4
5
6

Which lines (if any) above will cause an error due to violating const?

Remember that const char * means that the characters at the location it stores

cannot be changed.

Line 3 makes a const

pointer that points to

the first element of buf.

We cannot use str to

change the characters

it points to because it is

const.

65

char buf[6];
strcpy(buf, "Hello");

const char *str = buf;
str[0] = 'M';

str = "Mello";
buf[0] = 'M';

const

1
2

3
4
5
6

Which lines (if any) above will cause an error due to violating const?

Remember that const char * means that the characters at the location it stores

cannot be changed.

Line 4 is not allowed –

it attempts to use a

const pointer to

characters to modify

those characters.

66

char buf[6];
strcpy(buf, "Hello");

const char *str = buf;
str[0] = 'M';

str = "Mello";
buf[0] = 'M';

const

1
2

3
4
5
6

Which lines (if any) above will cause an error due to violating const?

Remember that const char * means that the characters at the location it stores

cannot be changed.

Line 5 is ok – str’s type means

that while you cannot change

the characters at which it

points, you can change str itself

to point somewhere else. str is

not const – its characters are.

67

char buf[6];
strcpy(buf, "Hello");

const char *str = buf;
str[0] = 'M';

str = "Mello";
buf[0] = 'M';

const

1
2

3
4
5
6

Which lines (if any) above will cause an error due to violating const?

Remember that const char * means that the characters at the location it stores

cannot be changed.

Line 6 is ok – buf is a modifiable

char array, and we can use it to

change its characters.

Declaring str as const doesn’t

mean that place in memory is not

modifiable at all – it just means that

you cannot modify it using str.

68

char buf[6];
strcpy(buf, "Hello");

const char *str = buf;
str[0] = 'M';

str = "Mello";
buf[0] = 'M';

Structs

69

A struct is a way to define a new variable type that is a group of other
variables.

struct date {

int month;

int day;

};

…

// declaring a struct type

// members of each date structure

struct date today;

today.month = 1;

today.day = 28;

// construct structure instances

struct date new_years_eve = {12, 31}; // shorter initializer syntax

Structs

70

Wrap the struct definition in a typedef to avoid having to include the word

struct every time you make a new variable of that type.

typedef struct date {
int month;
int day;

} date;

…

date today;

today.month = 1;

today.day = 28;

date new_years_eve = {12, 31};

Structs

71

If you pass a struct as a parameter, like for other parameters, C passes a copy

of the entire struct.

void advance_day(date d) {

d.day++;

}

int main(int argc, char *argv[]) {
date my_date = {1, 28};
advance_day(my_date);
printf("%d", my_date.day); // 28
return 0;

}

Structs

72

If you pass a struct as a parameter, like for other parameters, C passes a copy

of the entire struct. Use a pointer to modify a specific instance.

void advance_day(date *d) {

(*d).day++;

}

int main(int argc, char *argv[]) {
date my_date = {1, 28};
advance_day(&my_date);
printf("%d", my_date.day); // 29
return 0;

}

Structs

73

The arrow operator lets you access the field of a struct pointed to by a
pointer.

void advance_day(date *d) {

d->day++; // equivalent to (*d).day++;

}

int main(int argc, char *argv[]) {
date my_date = {1, 28};
advance_day(&my_date);
printf("%d", my_date.day); // 29
return 0;

}

Structs

74

C allows you to return structs from functions as well. It returns

whatever is contained within the struct.

date create_new_years_date() {

date d = {1, 1};

return d; // or return (date){1, 1};

}

int main(int argc, char *argv[]) {

date my_date = create_new_years_date();

printf("%d", my_date.day); // 1
return 0;

}

Stack Safety

date create_new_years_date() {
date d = {1, 1};
return d; // or return (date){1, 1};

}

int main(int argc, char *argv[]) {
date * my_date = &create_new_years_date(); // <- Error unsafe (compiler error)!
printf("%d", my_date->day);
return 0;

}

// More on this in the next lecture!

75

Stack Safety

char * sample_arr() {
char arr[2048];
strcpy(arr, "Hi");
return arr; // <- Error unsafe! Can’t return stack array/memory

}

int main(int argc, char *argv[]) {
char * ptr = sample_arr(); // <- Error unsafe (runtime error)!
printf("%s", ptr);
return 0;

}
// Most modern compilers will at least warn
// More on this in the next lecture!

76

Structs

77

sizeof gives you the entire size of a struct, which is the sum of the sizes of all

its contents.

typedef struct date {
int month;

int day;

} date;

int main(int argc, char *argv[]) {

int size = sizeof(date); // 8

return 0;

}

Arrays of Structs

78

You can create arrays of structs just like any other variable
type.

typedef struct my_struct {

int x;

char c;

} my_struct;

…

my_struct array_of_structs[5];

Arrays of Structs

79

To initialize an entry of the array, you must use this special syntax to confirm

the type to C.

typedef struct my_struct {

int x;

char c;

} my_struct;

…

my_struct array_of_structs[5];

array_of_structs[0] = (my_struct){0, 'A'};

Arrays of Structs

80

You can also set each field individually.

typedef struct my_struct {

int x;

char c;

} my_struct;

…

my_struct array_of_structs[5];

array_of_structs[0].x = 2;

array_of_structs[0].c = 'A';

Ternary Operator

The ternary operator is a shorthand for using if/else to evaluate to a
value.

condition ? expressionIfTrue : expressionIfFalse

// equivalent to

int x = argc > 1 ? 50 : 0;

int x;
if(argc > 1){

x = 50;
} else {

x = 0;
}

81

Is there a difference?

size_t get_total_strlen(char *strs[], size_t num) {

…

}

void *skip_spaces(char **p_str) {

…

}

No difference to the compiler—it’s char**!

But it clarifies the intent of a function/a

parameter for the programmer.

82

Intent: strs is
an array of
strings

Intent: p_str is
a pointer to a
string

Pointer arithmetic

Array indexing is “syntactic sugar” for pointer
arithmetic: ptr + i

*(ptr + i)

&ptr[i]

ptr[i]

• This means too-large/negative subscripts will compile

arr[99] arr[-1]

• You can use either syntax on either pointer or array.

Pointer arithmetic does not work in bytes; it works on the type it points to.

On int* addresses scale by sizeof(int), on char* scale by sizeof(char).

83

Translating C into English

If declaration: “pointer”
ex: int * is "pointer to an int”*

If operation: "dereference/the value at address”

ex: *num is "the value at address num"

“address of”&

address<ptr

name>

address
(except sizeof)

<arr

name>

// initializes stack array

// with 4 ints

84

int arr[] = {3, 4, -1, 2};

int *ptr0 = arr;

int *elt0 = *arr;

int elt = *(arr + 3);

int **ptr1=. &ptr;

Translating C into English

If declaration: “pointer”
ex: int * is "pointer to an int”*

If operation: "dereference/the value at address”

ex: *num is "the value at address num"

“address of”&

address<ptr

name>

address
(except sizeof)

<arr

name>

// initializes stack array

// with 4 ints
Address arr

Value at address arr

The value at address 3 ints after address arr

address of ptr

85

int arr[] = {3, 4, -1, 2};

int *ptr0 = arr;

int *elt0 = *arr;

int elt = *(arr + 3);

int **ptr1=. &ptr;

Extra Practice

86

2. char* vs char[] exercises

Suppose we use a
variable str
as follows:

For each of the following initializations:
• Will there be a compile

error/segfault?
• If no errors, what is printed?

// initialize as below
A str = str + 1;
B str[1] = 'u’;
C printf("%s", str)

1. char str[7];
strcpy(str, "Hello1");

2. char *str = "Hello2";

3. char arr[7];
strcpy(arr, "Hello3");
char *str = arr;

4. char *ptr = "Hello4";
char *str = ptr;

87

2. char* vs char[] exercises

Suppose we use a
variable str
as follows:

For each of the following initializations:
• Will there be a compile

error/segfault?
• If no errors, what is printed?

// initialize as below
A str = str + 1;
B str[1] = 'u’;
C printf("%s", str)

1. char str[7];
strcpy(str, "Hello1");

2. char *str = "Hello2";

3. char arr[7];
strcpy(arr, "Hello3");
char *str = arr;

4. char *ptr = "Hello4";
char *str = ptr;

Line A: Compile error
(cannot reassign array)

Line B: Segmentation fault
(string literal)

Prints eulo3
Line B: Segmentation fault
(string literal) 88

3. Bonus: Tricky addresses

void tricky_addresses() {

char buf[] = "Local";

char *ptr1 = buf;

char **double_ptr = &ptr1;

printf("ptr1's value: %p\n", ptr1);

printf("ptr1’s deref : %c\n", *ptr1);

printf(" address: %p\n", &ptr1);

printf("double_ptr value: %p\n", double_ptr);

printf("buf's address: %p\n", &buf);

char *ptr2 = &buf;

printf("ptr2's value: %s\n", ptr2);

}

1

2

3

4

5

6

7

8

9

10

11

12

What is stored in each
variable?

89

3. Bonus: Tricky addresses

void tricky_addresses() {

char buf[] = "Local";

char *ptr1 = buf;

char **double_ptr = &ptr1;

printf("ptr1's value: %p\n", ptr1);

printf("ptr1’s deref : %c\n", *ptr1);

printf(" address: %p\n", &ptr1);

printf("double_ptr value: %p\n", double_ptr);

printf("buf's address: %p\n", &buf);

char *ptr2 = &buf;

printf("ptr2's value: %s\n", ptr2);

}

1

2

3

4

5

6

7

8

9

10

11

12

ptr1

0x10

0x18

double
_ptr

ptr2

0x20

0x28 0x29 0x2a 0x2b 0x2c 0x2d

'L' 'o' 'c' 'a' 'l' '\0'buf

While Line 10 raises a compiler

warning, functionally it will still work—

because pointers are addresses.
90

0xffe808

0xffe800

Pen and paper: A * Wars Story

void binky() {

int a = 10;

int b = 20;

int *p = &a;

int *q = &b;

*p = *q;

p = q;

}

1

2

3

4

5

6

7

8

9

• Lines 2-5: Draw a diagram.

• Line 7: Update your diagram.

• Line 8: Update your diagram.

a

0xffe800

10 p

b

0xffe804

20

0xffe810

0xffe804q

91

Pen and paper: A * Wars Story

void binky() {

int a = 10;

int b = 20;

int *p = &a;

int *q = &b;

*p = *q;

p = q;

}

1

2

3

4

5

6

7

8

9

• Lines 2-5: Draw a diagram.

• Line 7: Update your diagram.

• Line 8: Update your diagram.

0xffe808

0xffe800a

0xffe800

10 p

b

0xffe804

20

0xffe810

0xffe804q

20

92

Pen and paper: A * Wars Story

void binky() {

int a = 10;

int b = 20;

int *p = &a;

int *q = &b;

*p = *q;

p = q;

}

1

2

3

4

5

6

7

8

9

• Lines 2-5: Draw a diagram.

• Line 7: Update your diagram.

• Line 8: Update your diagram.

0xffe808

0xffe800a

0xffe800

20 p

b

0xffe804

20

0xffe810

0xffe804q

0xffe804

93

* Wars: Episode I (of 2)

In variable declaration, * creates a pointer.

char ch = 'r';

char *cptr = &ch;

char **strptr = &cptr;

ch stores a char

cptr stores an address of
a char
(points to a char)

strptr stores an address of
a char *
(points to a char *)

ch

0xf0

'r'

cptr

0xe8

0xf0

strptr

0xe0

0xe8

94

* Wars: Episode II (of 2)

In reading values from/storing values, * dereferences a pointer.

char ch = 'r';
ch = ch + 1;

char *cptr = &ch;

char **strptr = &cptr;

Increment value stored in ch ch

0xf0

'r'

cptr

0xe8

0xf0

strptr

0xe0

0xe8

's'

95

* Wars: Episode II (of 2)

In reading values from/storing values, * dereferences a pointer.

char ch = 'r';
ch = ch + 1;

char *cptr = &ch;
*cptr = *cptr + 1;

Increment value stored in ch

Increment value stored at
memory address in cptr
(increment char pointed to)

ch

0xf0

's'

cptr

0xe8

0xf0

strptr

0xe0

0xe8

char **strptr = &cptr;

't'

96

0xe8

0xf0

* Wars: Episode II (of 2)

In reading values from/storing values, * dereferences a pointer.

char ch = 'r';
ch = ch + 1;

char *cptr = &ch;
*cptr = *cptr + 1;

char **strptr = &cptr;
*strptr = *strptr + 1;

Increment value stored in ch

Increment value stored at
memory address in cptr
(increment char pointed to)

Increment value stored at
memory address in cptr
(increment address pointed to)

cptr

strptr

0xe0

0xe8

ch

0xe8

0xf1

0xf1

?

0xf0

't'

97

	Slide 1: CS107, Lecture 6 More Pointers and Arrays
	Slide 2
	Slide 3
	Slide 4: Lecture Plan
	Slide 5: Where is our data?
	Slide 6: Read-only Strings
	Slide 7: Why Read-Only?
	Slide 8: What About this?
	Slide 9: What About this?
	Slide 10: What About this?
	Slide 11: Exercise 1
	Slide 12: Exercise 1
	Slide 13: Exercise 2
	Slide 14: Exercise 2
	Slide 15: Exercise 3
	Slide 16: Exercise 3
	Slide 17: Common string.h Functions
	Slide 18: Pointers to Strings
	Slide 19: Pointers to Strings
	Slide 20: Pointers to Strings
	Slide 21: Pointers to Strings
	Slide 22: Pointers to Strings
	Slide 23: Pointers to Strings
	Slide 24: Pointers to Strings
	Slide 25: Skip spaces
	Slide 26: Skip spaces
	Slide 27: Beware: Making Copies
	Slide 28: Recap
	Slide 29: How to draw memory diagrams?
	Slide 30: Lecture Plan
	Slide 31: Arrays
	Slide 32: Arrays
	Slide 33: Arrays as Parameters
	Slide 34: Arrays as Parameters
	Slide 35: Arrays as Parameters
	Slide 36
	Slide 37: Arrays vs. Pointers
	Slide 38: Lecture Plan
	Slide 39: Arrays Of Pointers
	Slide 40: Visualizing Args
	Slide 41: Visualizing Args
	Slide 42: Lecture Plan
	Slide 43: Pointer Arithmetic
	Slide 44: Pointer Arithmetic
	Slide 45: Pointer Arithmetic
	Slide 46: Pointer Arithmetic
	Slide 47: Pointer Arithmetic
	Slide 48: Pointer Arithmetic
	Slide 49: Pointer Arithmetic
	Slide 50: Lecture Plan
	Slide 51: Const
	Slide 52: Const
	Slide 53: Const
	Slide 54: Const
	Slide 55: Const
	Slide 56: Const
	Slide 57: Const
	Slide 58: Const
	Slide 59: Const
	Slide 60: Const
	Slide 61: const vs #define
	Slide 62: const
	Slide 63: const
	Slide 64: const
	Slide 65: const
	Slide 66: const
	Slide 67: const
	Slide 68: const
	Slide 69: Structs
	Slide 70: Structs
	Slide 71: Structs
	Slide 72: Structs
	Slide 73: Structs
	Slide 74: Structs
	Slide 75: Stack Safety
	Slide 76: Stack Safety
	Slide 77: Structs
	Slide 78: Arrays of Structs
	Slide 79: Arrays of Structs
	Slide 80: Arrays of Structs
	Slide 81: Ternary Operator
	Slide 82: Is there a difference?
	Slide 83: Pointer arithmetic
	Slide 84: Translating C into English
	Slide 85: Translating C into English
	Slide 86: Extra Practice
	Slide 87: 2. char* vs char[] exercises
	Slide 88: 2. char* vs char[] exercises
	Slide 89: 3. Bonus: Tricky addresses
	Slide 90: 3. Bonus: Tricky addresses
	Slide 91: Pen and paper: A * Wars Story
	Slide 92: Pen and paper: A * Wars Story
	Slide 93: Pen and paper: A * Wars Story
	Slide 94: * Wars: Episode I (of 2)
	Slide 95: * Wars: Episode II (of 2)
	Slide 96: * Wars: Episode II (of 2)
	Slide 97: * Wars: Episode II (of 2)

