CS107, Lecture 6

More Pointers and Arrays

Reading: K&R (5.2-5.5) or Essential C section 6

This document is copyright (C) Stanford Computer Science, Adam Keppler, and Olayinka Adekola licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Joel Ramirez, Nick Troccoli, Chris Gregg

CS107 Topic 3: How can we
effectively manage all types
of memory In our
programs?

MAN, | S5UCK AT THIS GAME.
CAN YOU GIVE ME.
A FEW POINTERS?

(Ox3A28213A

0Ox6339292C,
Ox 73636382E.

[HATE YOU.

Y

https://xkcd.com/138/

Lecture Plan

* Pointers, Parameters, & Memory

* Arrays in Memory

* Arrays of Pointers

* Pointer Arithmetic

* Other topics: const, struct and ternary

Where is our data?

. | high
It depends] address ” command-line arguments
and environment variables
 Hard codes are in 'initialized | ___stack
data’ 1
* Function locals are on the stack
* Dynamically Allocated Memory -
on the heap S =~ initialized to zero
* More on this later! data(bss) e by exec
initialized LN vead from
data program file by
low text exec
address . N

Read-only Strings

There is another convenient way to create a string if we do not need to modify it
later. We can create a char * and set it directly equal to a string literal.

char *myString = "Hello, world!";

printf("%s", myString); // Hello, world!

Why Read-Only?

high

address

char *myString = "Hello, world!";

printf("%s", myString);

Lives Here

low
address

uninitialized
data(bss)

initialized
data

text

I

e
w2

£

b4

command-line arguments
and environment variables

initialized to zero
by exec

read from
program file by
exec

What About

this?

high

address »

char str[14]; -_—
strcpy(str, "Hello, world!");

printf("%s", myString);

low
address

uninitialized
data(bss)

initialized
data

text

I

e
w2

£

b4

command-line arguments
and environment variables

initialized to zero
by exec

read from
program file by
exec

What About

this?

high

address >
Read/Write

char str[14]; -_—
strcpy(str, "Hello, world!");

Read-Only
printf("%s", myString);
low
address

uninitialized
data(bss)

initialized
data

text

I

e
w2

£

b4

command-line arguments
and environment variables

initialized to zero
by exec

read from
program file by
exec

What About this?

high
address » command-line arguments
Creates Read/Write Slot on the Stack and environment variables

char str[14]; —————22 2%, ——
strcpy(str, "Hello, world!"); [1

Saved in Read-Only Mode

printf("%s", myString);

str stored in read/write, so we are safe /3

heap
uninitialized =~ Initialized to zero
data(bss) - - by exec
initialized PN R
_ program file by
adlc‘i)rv;ss —— 7 SHat

10

We want to write a function that prints out the square of a number. What
should go in each of the blanks?

void printSquare(?) {
int square = ? * P
printf("%d", square);

}

int main(int argc, char *argv[]) {
int num = 3;
printSquare(?); // should print 9

11

We want to write a function that prints out the square of a number. What

should go in each of the blanks?

void printSquare(int x) {
X = X * X;
printf("%d", x);

}

We are performing a calculation with
some input and do not care about any
changes to the input, so we pass the
data type itself.

int main(int argc, char *argv[]) {

int num = 3;

printSquare(num); // should print S

We want to write a function that flips the case of a letter. What should go in
each of the blanks?

void flipCase(?) {

if (isupper(__?_)) {
p = ? :

Y else if (islower(2)) {
> = 3
}

—_— —_—)

¥

int main(int argc, char *argv[]) {
char ch = 'g’;
flipCase(?);
printf("%c", ch); // We want this to print ‘G’

13

We want to write a function that flips the case of a letter. What should go in

each of the blanks?

void flipCase(char *letter) {
if (isupper(*letter)) {
*letter = tolower(*letter);
} else if (islower(*letter)) {
*letter = toupper(*letter);

}

}

int main(int argc, char *argv[]) {
char ch = "g’;
flipCase(&ch);

We are modifying a specific
instance of the letter, so we pass
the location of the letter we would
like to modify.

printf("%c", ch); // want this to print G’

Sometimes, we would like to modify a string’s pointer itself, rather than just the
characters it points to. E.g. we want to write a function skipSpaces that

modifies a string pointer to skip past any initial spaces. What should go in each
of the blanks?

void skipSpaces(1) {

}
int main(int argc, char *argv[]) {
char *str = " hello";
skipSpaces(2);
printf("%s", str); // should print "hello”

} 15

Sometimes, we would like to modify a string’s pointer itself, rather than just the
characters it points to. E.g. we want to write a function skipSpaces that
modifies a string pointer to skip past any initial spaces. What should go in each

of the blanks?

void skipSpaces(char **strPtr) {

}

int main(int argc, char *argv[]) {

char *str = hi";
skipSpaces(&str);

We are modifying a specific
instance of the string pointer, so
we pass the location of the string
pointer we would like to modify.

printf("%s", str); // should print "hi"

16

Common string.h Functions

Function

Description

strlen(str)

returns the # of chars in a C string (before null-terminating character).

strcmp(strl, str2),
strncmp(stri, str2, n)

compares two strings; returns O if identical, <0 if strl comes before
str2 in alphabet, >0 if strl comes after str2 in alphabet. strncmp
stops comparing after at most n characters.

strchr(str, ch)
strrchr(str, ch)

character search: returns a pointer to the first occurrence of ch in str,
or NULL if ch was not found in str. strrchr find the last occurrence.

strstr(haystack, needle)

string search: returns a pointer to the start of the first occurrence of
needle in haystacR, or NULL if needle was not found in haystacR.

strcpy(dst, src),
strncpy(dst, src, n)

copies characters in src to dst, including null-terminating character.
Assumes enough space in dst. Strings must not overlap. strncpy
stops after at most n chars, and does not add null-terminating char.

strcat(dst, src),
strncat(dst, src, n)

concatenate src onto the end of dst. strncat stops concatenating
after at most n characters. Always adds a null-terminating character.

strspn(str, accept),
strcspn(str, reject)

strspn returns the length of the initial part of str which contains only
characters in accept. strcspn returns the length of the initial part of
str which does not contain any characters in reject.

Pointers to Strings

. . Address Value
void skipSpaces(char **strPtr) {

int numSpaces = strspn(*strPtr, " "); B -
*strPtr += numSpaces; STACK| main() myStr 0x105| @xfy
} \
int main(int argc, char *argv[]) { B .
char *myStr = " hi"; N
skipSpaces (&myStr); Ox13 N
printf("%s\n", myStr); // hi ox12| ‘i’
} return ©; DATASEGMENT | ox11| ‘'h'
ox1o| ° °
oxf| " ' W

18

Pointers to Strings

. . Address Value
void skipSpaces(char **strPtr) {

int numSpaces = strspn(*strPtr, " "); B -
*strPtr += numSpaces; STACK| main() myStr 0x105| @xfy
} \
int main(int argc, char *argv[]) { B .
char *myStr = " hi"; N
skipSpaces (&myStr); 0x13 (R
printf("%s\n", myStr); // hi ox12| ‘i’
} return ©; DATASEGMENT | ox11| ‘'h'
ox1o| ° °
oxf| " ' W

19

Pointers to Strings

. . Address Value
void skipSpaces(char **strPtr) {

int numSpaces = strspn(*strPtr, " "); N
} *strPtr += numSpaces; main() myStrexios
int main(int argc, char *argv[]) { STACK T
char *myStr = " hi"; :
skipSpages(&myStr); g skipSpaces() strPtr 0xfo
printf("%s\n", myStr); // hi
return 0; o o -
} "
Ox13| "\0'
ox12| '1°

DATASEGMENT | 5y11| 'h'

ox10| "

oxf| ' ' w

20

Pointers to Strings

Address Value

void skipSpaces(char **strPtr) { -
int numSpaces = strspn(*strPtr, " ");
*strPtr += numSpaces; main() MyStr oxies | exf
}
int main(int argc, char *argv[]) { STACK
char *myStr = " hi"; . strPtr oxfo
skipSpaces (&myStr); skipSpaces() numSpaces 0xes
printf("%s\n", myStr); // hi
return 0; — - -
}
ox13 | '\0@'
Ox12 "i'
DATA SEGMENT ox11| "h°
0x10 P
oxf| ' ' w

21

Pointers to Strings

Address Value

void skipSpaces(char **strPtr) { -
int numSpaces = strspn(*strPtr, " ");
*strPtr += numSpaces; main() myStr 0x165| exl
}
int main(int argc, char *argv[]) { STACK
char *myStr = " hi"; . strPtr oxfo
skipSpaces (&myStr); skipSpaces() numSpaces oxes
printf("%s\n", myStr); // hi
return 0, — _— -
}
Ox13 | "\0'
Ox12 "i'
DATA SEGMENT ox11| "h°
Ox10 '

Oxf ol

22

Pointers to Strings

. . Address Value
void skipSpaces(char **strPtr) {

int numSpaces = strspn(*strPtr, " "); N -
*strPtr += numSpaces; STACK main()| myStroxi1os ox11
} \
int main(int argc, char *argv[]) { B . \
char *myStr = " hi"; '\
skipSpaces (&myStr); Ox13 N
printf("%s\n", myStr); // hi ox12| ‘i’
return 0; DATA SEGMENT ox11| 'h*
}
ox1o| ° °
oxft| ' °

23

Pointers to Strings

. . Address Value
void skipSpaces(char **strPtr) {

int numSpaces = strspn(*strPtr, " "); N -
*strPtr += numSpaces; STACK main() myStrexios ox11
} \
int main(int argc, char *argv[]) { B . \
char *myStr = " hi"; N
skipSpaces (&myStr); Ox13 N
printf("%s\n", myStr); // hi ox12| ‘i’
return 0; DATA SEGMENT ox11| 'h*
}
ox1o| ° °
oxft| ' °

24

Skip spaces

: : -
void skip spaces(char **p str) { A R

1

2 int num = strspn(*p_str, " "); ' 1l

3 *p_str = *p str + num; ctp [:i;;]&\\\
4 }

5

6 1 ' ' '

7 :

3

int main(int argc, char *argv[]){
char *str = " Hil!";
skip spaces(&str);
printf("%s", str); // "Hi!" str

9 return 0; p_str
10 }
What diagram most accurately depicts C. St H A
program state at Line 4 (before |
skip spaces returns to main)? St P_str

Skip spaces

: : -
void skip spaces(char **p str) { A R

1

2 int num = strspn(*p_str, " "); ' 1l

3 *p_str = *p str + num; ctp [:i;;]&\\\
4 }

5

6 1 ' ' '

7 :

3

int main(int argc, char *argv[]){
char *str = " Hil!";
skip spaces(&str);
printf("%s", str); // "Hi!" str

9 return 0; p_str
10 }
What diagram most accurately depicts C. Lt H | e
program state at Line 4 (before |
skip spaces returns to main)? St P_str

26

Beware: Making Copies

. . Address Value
void skipSpaces(char *strPtr) {

int numSpaces = strspn(strPtr, " "); N e
} strPtr += numSpaces; main() myStrexios Oxfy
int main(int argc, char *argv[]) { STACK ”
char *myStr = " hi"; :
skipSpages(myStr); ’ skipSpaces() strPtr 0xfo
printf("%s\n", myStr); // hi
return 0; — — —
}
Ox13
Ox12
This advances skipSpace’s own DATA SEGMENT ox11

copy of the string pointer, not the
iInstance in main.

0x10
oOxf

27

Pointers let us store the
addresses of data and pass
them as parameters. We
can use double pointers if
we want to change the value
of a pointer in another
function.

28

How to draw memory diagrams?

STACK STACK
Address Value Address Value
[B ox1f2| *\@" Address Value
— ' 1 Ox1f1 "i' = AN
Ox105| "\O . X — =~ oxea—— BEE p e a r\0
ox104 [iy main() | str ox1fe 00 T o ol ol <l pho
- - = -
ox103 | 11" oif o odeor— BEEIE AT
main() - s
= orange\0
0x102 p oxfe = oxfegs— W4fl] o rang e
L 0x118—
str—_oxi00l 'a‘ oxfc arge Lo OEsTT T
myFunc () oxfb . == _—EE arp iev
- — oxegt—
B oxte argy 0108
Oxf9 —— / 0xf838 S wia pw o r ds S \0
X ==l 'O OO g it B Nt Tt g B B B
myFunc() | mySstr oxf nystr oxfs 0x100 s B3B8
" -

Choose whatever style is convenient for you,
keeping in mind that (1) memory is contiguous,
and (2) C types are different sizes.

29

Lecture Plan

* Pointers, Parameters, & Memory

* Arrays in Memory

* Arrays of Pointers

* Pointer Arithmetic

* Other topics: const, struct and ternary

30

When you declare an array, contiguous memory is allocated
on the stack to store the contents of the entire array.

char str[6];
strcpy(str, "apple");

The array variable (e.g. str) is not a pointer; it refers to the
entire array contents. In fact, sizeof returns the size of the
entire array!

int arrayBytes = sizeof(str); // 6

STACK

Address Value
~ox105| '\o'
oxle4| '€
oxie3| '1°
ox102| P’
ox101| P’
str— oxlee| 'a’

31

An array variable refers to an entire block of memory. You cannot reassign an
existing array to be equal to a new array.

int nums[] = {1, 2, 3};
int nums2[] = {4, 5, 6, 7};
nums = nums2; // not allowed!

An array’s size cannot be changed once you create it; you must create another
new array instead.

32

Arrays as Parameters

When you pass an array as a parameter, C makes a
copy of the address of the first array element, and
passes it (a pointer) to the function.

main()
void myFunc(char *myStr) {
}
int main(int argc, char *argv[]) {
char str[3]; myFunc ()

strcpy(str, "hi");
myFunc(str);

—

e —

STACK

Address Value

Ox1f2

"\Q"

Ox1f1

lil

strJ Ox1f0

lhl

Oxff
Oxfe
oxfd
OxfcC
Oxfb
Oxfa
Oxf9
mystr oxfs

Arrays as Parameters

STACK

When you pass an array as a parameter, C makes a Address Value
copy of the address of the first array element and - ox1f2 | "\o"
passes it (a pointer) to the function. C
: ox1f1 i
void myFunc(char *myStr) {
3 str—_ 0x1f0
} main() ~arrPtr Oxle8

char str[3];
strcpy(str, "hi");
// equivalent

char *arrPtr = str;
myFunc(arrPtr);

int main(int argc, char *argv[]) { myStr ox1e
myFunc(){:

34

Arrays as Parameters

STACK

This also means we can no longer get the full size of Address Value
the array using sizeof, because now it is just a B ox1£2 | "\@"
pointer. oxifl |l i
main() | strJ_ oxife| ‘'h'
void myFunc(char *myStr) { B
int size = sizeof(myStr); // 8 oxff
} Oxfe
oxfd
int main(int argc, char *argv[]) { ot
char str[3]; myFunc ()
strcpy(str, "hi"); Oxth
int size = sizeof(str); // 3 oxfa
myFunc(str); OxF9
mystr oxfs

sizeof returns:
1) If local to the array, its size in bytes

2) If a pointer, 8 bytes for the pointer.

Therefore, when we pass an array as a
parameter, we can no longer use sizeof

to get its full size.

Arrays vs. Pointers

* When you create an array, you are making space for each element in the array.
* When you create a pointer, you are making space for an 8 byte address.
* Arrays “decay to pointers” when you perform arithmetic or pass as parameter.

* You can set a pointer equal to an array; that pointer will point to the array’s first
element

e &arr does nothing on arrays, but &ptr on pointers gets its address
* sizeof(arr) gets the size of an array in bytes, but sizeof(ptr) is always 8

37

Lecture Plan

* Pointers, Parameters, & Memory

* Arrays in Memory

e Arrays of Pointers

* Pointer Arithmetic

* Other topics: const, struct and ternary

38

Arrays Of Pointers

You can make an array of pointers to e.g. group multiple strings together:

char *stringArray[5]; // space to store 5 char *s

This stores 5 char *s, not all of the characters for 5 strings!

char *str@ = stringArray|[0]; // first char *

39

Visualizing Args

Addressé Value

Oxf8a5— LLAEEE p e a r\O

..

oxiso—— (G P e ac h\0

§ T 0xf887 b a n a n a\O

= I e\O
= / Okl a pp | e
—— (Oxf881

""""""""""""""""" 0xf838 sw a pw o r d s \O
Oxf838
0x100= 40

Visualizing Args

Addressé Value

Question: DU — oxises—— R pea r\0
What's the value =~ " oo
Of argV[O]? 0x120=

= PR 0398 0o rang e\

g T 0xf887 b a n a n a\O

- I e\O
—— (Oxf881

Oxf838

Lecture Plan

* Pointers, Parameters, & Memory

* Arrays in Memory

* Arrays of Pointers

* Pointer Arithmetic

* Other topics: const, struct and ternary

42

Pointer Arithmetic

When you do pointer arithmetic, you are adjusting

the pointer by a certain number of places (e.g. DATA SEGMENT
characters). Address Value
char *str = "apple”; // e.g. Oxffo oxff5| "\o'
char *strl = str + 1; // e.g. oOxffl oxff4| ‘e’
char *str3 = str + 3; // e.g. Oxff3 oxff3| 'l°

oxff2| 'p’
orintf("%s", str); // apple oxftf1| 'p’
orintf("%s", strl); // pple oxffo| 'a’
orintf("%s", str3); // le

43

Pointer Arithmetic

Pointer arithmetic does not work in bytes. Instead,

it works in the size of the type it points to. STACK

Address Value

// nums points to an int array)
int *nums = .. // e.g. Oxffo e

«iooed 16
int *numsl = nums + 1; // e.g. oxff4 s

. oxffcl 34
int *nums3 = nums + 3; // e.g. Oxffc 1

oxerel 12

: oxird 23
orintf("%d", *nums); // 52 4

oxfrel D2

orintf("%d", *numsl); // 23
orintf("%d", *nums3); // 34

44

Pointer Arithmetic

Pointer arithmetic does not work in bytes. Instead,

it works in the size of the type it points to. STACK

Address Value

// nums points to an int array)
int *nums = .. // e.g. Oxffo e

ool 16
int *nums3 = nums + 3; // e.g. Oxffc s

. oxffcl 34
int *nums2 = nums3 - 1; // e.g. Oxff8 1

oxeegl 12

. wos 1 oxeeal 23
orintf("%d", *nums); // 52 4

oxfre] 22

orintf("%d", *nums2); // 12
orintf("%d", *nums3); // 34

45

Pointer Arithmetic

When you use bracket notation with a pointer, you are

: : :) : DATA SEGMENT
actually performing pointer arithmetic and dereferencing:

Address Value

char *str = "apple”; // e.g. Oxffo

oxff5| "\O'
// both of these add two places to str, X :e:
// and then dereference to get the char there. zii: ;
// E.g. get memory at oOxff2. oxiei] 'p
char thirdLetter = str[2]; // 'p’ ool a
char thirdLetter = *(str + 2); // 'p'

46

Pointer Arithmetic

Pointer arithmetic with two pointers does not give the byte

difference. Instead, it gives the number of places they STACK
differ by. Address Value
// nums points to an int array oxtoos] 1
int *nums = .. // e.g. oxffo @xle@@E 16
int *nums3 = nums + 3; // e.g. Oxffc Oxﬁccf 34
int diff = nums3 - nums; // 3 oxF e 12
oxffal 23
oxifat 52

a7

Pointer Arithmetic

How does the code know how many bytes it should look at once it visits an
address? At compile time, C can figure out the sizes of different data types, and
the sizes of what they point to.

int x = 2;
int *xPtr = &X; // e.g. Oxffo

// C knows to print out just the 4 bytes at xPtr
printf("%d", *xPtr); /] 2

48

Pointer Arithmetic

How does the code know how many bytes it should add when performing
pointer arithmetic? At compile time, C can figure out the sizes of different data
types, and the sizes of what they point to.

int nums[] = {1, 2, 3};

// C knows to add 4 bytes here
int *1ntPtr = nums + 1;

char str[6];
strcpy(str, "CS107");

// C knows to add 1 byte here
char *charPtr = str + 1; 49

Lecture Plan

* Pointers, Parameters, & Memory

* Arrays in Memory

* Arrays of Pointers

* Pointer Arithmetic

* Other topics: const, struct and ternary

50

* Use const to declare global constants in your program. This indicates the
variable cannot change after being created.

const double PI = 3.1415;
const int DAYS_IN WEEK = 7;

int main(int argc, char *argv[]) {

if (x == DAYS IN WEEK) {

* Use const with pointers to indicate that the data that is pointed to
cannot change.

char str[6];

strcpy(str, "Hello");
const char *s str;

// Cannot use s to change characters it points to

I o,
J

52

Sometimes we use const with pointer parameters to indicate that the function will not / should
not change what it points to. The actual pointer can be changed, however.

// This function promises to not change str’s characters int
countUppercase(const char *str) {
int count = 9;
for (int 1 = @0; 1 < strlen(str); i++) { if
(isupper(str[i])) {
count++;
}
}

return count;

53

By definition, C gets upset when you set a non-const pointer equal to a const
pointer. You need to be consistent with const to reflect what you cannot
modify.

// This function promises to not change str’s characters
int countUppercase(const char *str) {

// compiler warning and error

char *strToModify = str;

strToModify[@] = ..

54

By definition, C gets upset when you set a non-const pointer equal to a const
pointer. You need to be consistent with const to reflect what you cannot
modify. Think of const as part of the variable type.

// This function promises to not change str’s characters
int countUppercase(const char *str) {
const char *strToModify = str;

}

55

const can be confusing to interpret in some variable types.

// cannot modify this char
const char ¢ = 'h';

// cannot modify chars pointed to by str
const char *str = ..

// cannot modify chars pointed to by *strPtr
const char **strPtr = ..

56

// const LEFT of * -» VALUE immutable (can't change the chars in the string)

const char *p;

const char **p

p » inner ptr » "Hello"
(can modify) (can modify) (cannot modify)

// const RIGHT of * » POINTER immutable (can't change where p points)
char * const p;

const char ** const p

p » inner_ptr » "Hello"
(cannot modify) (can modify) (cannot modify)

57

// Create an array
char arr[14];
strcpy(arr, "Hello");

// Constant Data

// Pointer to constant data (modifiable pointer, non-modifiable data)
const char * strl = arr;

// *strl = 'h'; // This is not allowed

// Constant Pointer

// Constant pointer to data (non-modifiable pointer, modifiable data).
char * const str2 = arr;

// str2 = "New String"; // This is not allowed

str2[0] = 'h'; // This is allowed

// Constant Pointer to Constant Data

// Constant pointer to constant data (non-modifiable pointer, non-modifiable data).
const char * const str3 = arr;

// *str3 = 'h'; // This is not allowed

// str3 = "New String"; // This is not allowed

58

// pointer to a pointer to a char

char **pil;

// pointer to a pointer to a const char (can change pointer not char)
const char **p2;

// const pointer to pointer to char (can’t change top level pointer)

char ** const p3;

// const pointer to pointer to const char (can’t change top level pointer or char)
const char ** const p4;

// pointer to const pointer to char (top level can change, but intermediary pointer cannot)

char * const *p5;

// pointer to const pointer to const char (top level can change, but intermediary pointer and char cannot)
const char * const *p6;

// const pointer to const pointer to char (char is the only thing that can change)
char * const * const p7;

// const pointer to const pointer to const char (nothing can change)

const char * const * const p8;

59

char **pl;

const char **p2;

char ** const p3;

const char ** const p4;
char * const *p5;

const char * const *p6;
char * const * const p7;

const char * const * const

//
//
//
//
//
//
//

p8; //

pointer
v pl,

v p2,

X

< X N N X

pointer

v

v

Vv

< <X X X X

*pl,
*p2
*p3,
*pa
X5
*p6
*p7

chars

Vv

X

> N X N X AN

**pl
**pz
**p3
**p4
**pS
**p6
**p7

60

const vs #define

#define THIRD BIT 1 << 3

// cannot modify this char
const char c = 'h';

// cannot modify chars
pointed to by str
const char *str = .

// cannot modify chars
pointed to by *strPtr
const char **strPtr = ..

#define is a hard-coded substitution that
gcc will make when compiling your code.

Const signals that this variable (in this
scope) should not be modified.

* In CS107, you often won’t have to
declare const variables, but you will be
provided parameters or use functions
that have it

e Const directly modifies the adjacent keyword

61

char buf[6];
strcpy(buf, "Hello");

const char *str = buf;
str[@] = 'M';
str = "Mello";
buf[@] = 'M';

OO Ul A WDN PR

Which lines (if any) above will cause an error due to violating const?
Remember that const char * means that the characters at the location it stores
cannot be changed.

62

char buf[6];
strcpy(buf, "Hello");

buf;

const char *str

Line 1 makes a typical
modifiable character
array of 6 characters.

str[@] = 'M';
"Mello";
buf[@] = 'M';

OO Ul A WDN PR

Which lines (if any) above will cause an error due to violating const?

Remember that const char * means that the characters at the location it stores
cannot be changed.

char buf[6]; Line 2 copies characters
j> strcpy(buf, "Hello"); into this modifiable
character array.

const char *str = buf;
str[@] = 'M';
str = "Mello";
buf[@] = 'M';

OO Ul A WDN PR

Which lines (if any) above will cause an error due to violating const?
Remember that const char * means that the characters at the location it stores
cannot be changed.

64

OO Ul A WDN PR

char buf[6];
strcpy(buf, "Hello");

const char *str = buf;
str[@] = 'M';

str = "Mello";

buf[@] = 'M';

Line 3 makes a const
pointer that points to
the first element of buf.
We cannot use str to
change the characters
it points to because it is
const.

Which lines (if any) above will cause an error due to violating const?
Remember that const char * means that the characters at the location it stores
cannot be changed.

65

XSS

OO Ul A WDN PR

char buf[6];

strcpy(buf, "Hello");

const char *str buf;
str[@] = 'M';
str = "Mello";

buf[@] = 'M';

Line 4 is not allowed —

it attempts to use a
const pointer to
characters to modify
those characters.

Which lines (if any) above will cause an error due to violating const?
Remember that const char * means that the characters at the location it stores
cannot be changed.

char buf[6];
strcpy(buf, "Hello");

= buf;

SXS8S
OO Ul A WDN PR

v

const char *str
str[@] = 'M';
str = "Mello";
buf[@] = 'M';

Line 5 is ok — str's type means
that while you cannot change
the characters at which it
points, you can change str itself
to point somewhere else. stris
not const — its characters are.

Which lines (if any) above will cause an error due to violating const?

Remember that const char * means that the characters at the location it stores

cannot be changed.

67

=)

OO Ul A WDN PR

char buf[6];
strcpy(buf, "Hello");

const char *str = buf;
str[@] = 'M';

str = "Mello";

buf[@] = 'M';

Line 6 is ok — buf is a modifiable
char array, and we can use it to
change its characters.

Declaring str as const doesn't
mean that place in memory is not
modifiable at all — it just means that
you cannot modify it using str.

Which lines (if any) above will cause an error due to violating const?
Remember that const char * means that the characters at the location it stores
cannot be changed.

68

A struct is a way to define a new variable type that is a group of other
variables.

struct date { // declaring a struct type
int month;
: ’ // members of each date structure
int day;
}s
struct date today; // construct structure instances

today.month = 1;
today.day = 28;

struct date new _years eve {12, 31}; // shorter initializer syntax

69

Wrap the struct definition in a typedef to avoid having to include the word

struct every time you make a new variable of that type.

typedef struct date {
int month;

int day;
} date;

date today;
today.month = 1;
today.day = 28;

date new_years eve = {12,

31};

70

If you pass a struct as a parameter, like for other parameters, C passes a copy
of the entire struct.

void advance day(date d) {
d.day++;

¥

int main(int argc, char *argv[]) {
date my date = {1, 28};
advance day(my date);
printf("%d", my date.day); // 28
return 9;

71

If you pass a struct as a parameter, like for other parameters, C passes a copy
of the entire struct. Use a pointer to modify a specific instance.

void advance day(date *d) {
(*d).day++;
}

int main(int argc, char *argv[]) {
date my date = {1, 28};
advance day(&my_ date);
printf("%d", my date.day); // 29
return 9;

72

The arrow operator lets you access the field of a struct pointed to by a
pointer.

void advance day(date *d) {
d->day++; // equivalent to (*d).day++;
}

int main(int argc, char *argv[]) {
date my date = {1, 28};
advance_day(&my_ date);

printf("%d", my date.day); // 29
return 0;

73

C allows you to return structs from functions as well.
whatever is contained within the struct.

date create _new years date() {

date d = {1, 1};

return d; // or return (date){1, 1};
}

int main(int argc, char *argv[]) {
date my date = create_new_years date();

printf("%d", my date.day); // 1
return 9;

It returns

74

Stack Safety

date create_new_years date() {

date d = {1, 1};

return d; // or return (date){1, 1};
}

int main(int argc, char *argv[]) {

date * my date = &create new years date(); // <- Error unsafe (compiler error)!
printf("%d", my date->day);
return 0;

¥

// More on this in the next lecture!

75

Stack Safety

char * sample arr() {
char arr[2048];
strcpy(arr, "Hi");

return arr; // <- Error unsafe! Can’t return stack array/memory

¥

int main(int argc, char *argv[]) {
char * ptr = sample _arr(); // <- Error unsafe (runtime error)!
printf("%s", ptr);
return 0;

¥

// Most modern compilers will at least warn
// More on this in the next lecture!

76

sizeof gives you the entire size of a struct, which is the sum of the sizes of all
its contents.

typedef struct date {
int month;

int day;
} date;

int main(int argc, char *argv[]) {
int size = sizeof(date); // 8
return 9;

77

Arrays of Structs

You can create arrays of structs just like any other variable
type.

typedef struct my struct {
int Xx;
char c;

} my struct;

my struct array_of structs[5];

78

Arrays of Structs

To initialize an entry of the array, you must use this special syntax to confirm
the type to C.

typedef struct my struct {
int Xx;
char c;

} my struct;

my struct array_ of structs[5];
array of structs[0] = (my_struct){e, 'A'};

79

Arrays of Structs

You can also set each field individually.

typedef struct my struct {
int Xx;
char c;

} my struct;

my struct array_of structs[5];
array_of structs[0].x = 2;
array of structs[0].c = 'A’;

80

Ternary Operator

The ternary operator is a shorthand for using if/else to evaluate to a
value.

condition ? expressionIfTrue : expressionIfFalse

int X;

if(argc > 1){
X = 50;

} else {
X = 0;

¥

// equivalent to
int x = argc > 1 ? 50 : O; 81

Is there a difference?

size t get total strlen(char *strs[], size t num) {

Intent: strs is
} an array of
strings

void *skip spaces(char **p str) {
Intent: p_str is

¥ a pointer to a
string

No difference to the compiler—it's char**!
But it clarifies the intent of a function/a
parameter for the programmer.

82

Pointer arithmetic

Array indexing is “syntactic sugar” for pointer
arithmetic: ptr + 1 &ptr[i]

*(ptr + 1) ptr[i]

! Pointer arithmetic does not work in bytes; it works on the type it points to.
On int* addresses scale by sizeof(int), on char* scale by sizeof(char).

* This means too-large/negative subscripts will compile

arr[99] arr[-1]

* You can use either syntax on either pointer or array. 83

Translating C into English

If declaration: “pointer” & “address of’
* ex: int * is "pointerto anint”
If operation: "dereference/the value at address” 1d
: <ptr <arr dddress
ex: *num is "the value at address num" P address]
name> name> (except sizeof)

int arr[] = {3, 4, -1, 2}; // initializes stack array

// with 4 ints

int *ptre = |arr;
int *elto = *arr;
int elt = [|*(arr + 3);
int **ptrl=. |&ptr;

84

Translating C into English

If declaration: “pointer”

& “address of”

* ex: int * is "pointerto anint”

If operation: "dereference/the value at address” "

ex: *num is "the value at address num" PTr address <arr a0dress

name> name> (except sizeof)
int arr[] = {3, 4, -1, 2};// initializes stack array
// with 4 ints
int *ptr‘@ = arr; Address arr
int *elt@ = *3prr: Value at address arr
)

int elt = *(arr + 3); The value at address 3 ints after address arr

int **ptrl=.

&ptr;

address of ptr

85

Extra Practice

2. char* vs cha

Suppose we use a // initialize as below
variable str A str = str + 1;
as follows: B str[l] = "u’;

C printf("%s", str)

1. char str[7]; 2.
strcpy(str, "Hellol");

3. char arr[7]; 4.

strcpy(arr, "Hello3");
char *str = arr;

r[] exercises

e Will there be a compile
error/segfault?
* |If no errors, what is printed?

For each of the following initializations:

char *str = "Hello2";

char *ptr = "Hello4";
char *str = ptr;

)

87

2. char* vs char[] exercises

Suppose we use a // initialize as below For each of the following initializations:
variable str A str = str + 1; e Will there be a compile
as follows: B str[l] = "u’;

error/segfault?

C printf("%s", str ' i
P () * If no errors, what is printed?

1. char str[7]; 2. char *str = "Hello2";
strcpy(str, "Hellol");
Line A: Compile error Line B: Segmentation fault
(cannot reassign array) (string literal)
3. char arr[7]; 4. char *ptr = "Hello4d";
strcpy(arr, "Hello3"); char *str = ptr;

char *str = arr;
Line B: Segmentation fault

Prints eulo3 (string literal)

88

3. Bonus: Tricky addresses

1 void tricky_addresses() {

2 char buf[] = "Local"; What is stored in each
3 char *ptrl = buf; variable?

4 char **double ptr = &ptril;

5 printf("ptrl's value: %p\n", ptrl);

6 printf("ptrl’s deref : »c\n", *ptrl);

7 printf(" address: %p\n", &ptrl);

8 printf("double ptr value: %p\n", double ptr);

9 printf("buf's address: %p\n", &buf);

10 char *ptr2 = &buf;
11 printf("ptr2's value: %s\n", ptr2);
12 }

3. Bonus: Tricky addresses

1 void tricky_addresses() {

2 char buf[] = "Local"; bufl L'] o' | 'c' | a | 1] \o
3 char *ptrl = buf;

4 char **double ptr = &ptril;

5 printf("ptrl's value: %p\n", ptrl);

6 printf("ptrl’s deref : %c\n", *ptrl);

7 printf(" address: %p\n", &ptrl);

8 printf("double ptr value: %p\n", double ptr); ptril
9 printf("buf's address: %p\n", &buf);
10 char *ptr2 = &buf; double
11 printf("ptr2's value: %s\n", ptr2); _ptr
12 }

While Line 10 raises a compiler ptr2

warning, functionally it will still work—
because pointers are addresses.

90

Pen and paper: A * Wars Story

1 void binky() {

, int a = 10; * Lines 2-5: Draw a diagram.

3 int b = 20; * Line 7: Update your diagram.

4 int *p = 8a: * Line 8: Update your diagram.
ﬁ>5 int *g = &b;

6 a 10 m oxFffe800

7 *p = *qg; -

8 p = q; m

9 3} b 20 | q | oxffe804

)

91

Pen and paper: A * Wars Story

1 void binky() {
, int a = 10; * Lines 2-5: Draw a diagram.
3 int b = 20; * Line 7: Update your diagram.
4 int *p = 8a: * Line 8: Update your diagram.
5 int *g = &b;
6 a 20 m oxFFe800

7 *p = *q;
8 p = q; m
9 3} b 20 | q | oxffe804

92

"

Pen and paper: A * Wars Story

1 void binky() {

2 int a = 10;
3 int b = 20;
4 int *p = &a;
5 int *g = &b;
6

7 *p = *q;

8 P =4,

9 }

* Lines 2-5: Draw a diagram.
* Line 7: Update your diagram.
* Line 8: Update your diagram.

20

20

p Oxffe804

g oxffes04

93

* Wars: Episode I (of 2)

In variable declaration, * creates a pointer.

char ch = 'r';

char *cptr = &ch;

char **strptr = &cptr;

ch stores a char ch

a char
(points to a char)

strptr stores an address of
a char *

(points to a char *) strptr

cptr stores an address of ERY
cptr Lr oxfo

94

* Wars: Episode 1I (of 2)

In reading values from/storing values, * dereferences a pointer.

char ch = 'r'; Increment value stored in ch ch I 's' |
ch = ch + 1;

95

* Wars: Episode 1I (of 2)

In reading values from/storing values, * dereferences a pointer.

char *cptr = &ch;
*cptr = *cptr + 1;

Increment value stored at
memory address in cptr
(increment char pointed to)

ch

cptr

\ oxfo

96

* Wars: Episode 1I (of 2)

In reading values from/storing values, * dereferences a pointer.

char **strptr = &cptr; Increment value stored at \

*strptr = *strptr + 1; memory address in cptr
(increment address pointed to)

strptr \ oxe8

97

	Slide 1: CS107, Lecture 6 More Pointers and Arrays
	Slide 2
	Slide 3
	Slide 4: Lecture Plan
	Slide 5: Where is our data?
	Slide 6: Read-only Strings
	Slide 7: Why Read-Only?
	Slide 8: What About this?
	Slide 9: What About this?
	Slide 10: What About this?
	Slide 11: Exercise 1
	Slide 12: Exercise 1
	Slide 13: Exercise 2
	Slide 14: Exercise 2
	Slide 15: Exercise 3
	Slide 16: Exercise 3
	Slide 17: Common string.h Functions
	Slide 18: Pointers to Strings
	Slide 19: Pointers to Strings
	Slide 20: Pointers to Strings
	Slide 21: Pointers to Strings
	Slide 22: Pointers to Strings
	Slide 23: Pointers to Strings
	Slide 24: Pointers to Strings
	Slide 25: Skip spaces
	Slide 26: Skip spaces
	Slide 27: Beware: Making Copies
	Slide 28: Recap
	Slide 29: How to draw memory diagrams?
	Slide 30: Lecture Plan
	Slide 31: Arrays
	Slide 32: Arrays
	Slide 33: Arrays as Parameters
	Slide 34: Arrays as Parameters
	Slide 35: Arrays as Parameters
	Slide 36
	Slide 37: Arrays vs. Pointers
	Slide 38: Lecture Plan
	Slide 39: Arrays Of Pointers
	Slide 40: Visualizing Args
	Slide 41: Visualizing Args
	Slide 42: Lecture Plan
	Slide 43: Pointer Arithmetic
	Slide 44: Pointer Arithmetic
	Slide 45: Pointer Arithmetic
	Slide 46: Pointer Arithmetic
	Slide 47: Pointer Arithmetic
	Slide 48: Pointer Arithmetic
	Slide 49: Pointer Arithmetic
	Slide 50: Lecture Plan
	Slide 51: Const
	Slide 52: Const
	Slide 53: Const
	Slide 54: Const
	Slide 55: Const
	Slide 56: Const
	Slide 57: Const
	Slide 58: Const
	Slide 59: Const
	Slide 60: Const
	Slide 61: const vs #define
	Slide 62: const
	Slide 63: const
	Slide 64: const
	Slide 65: const
	Slide 66: const
	Slide 67: const
	Slide 68: const
	Slide 69: Structs
	Slide 70: Structs
	Slide 71: Structs
	Slide 72: Structs
	Slide 73: Structs
	Slide 74: Structs
	Slide 75: Stack Safety
	Slide 76: Stack Safety
	Slide 77: Structs
	Slide 78: Arrays of Structs
	Slide 79: Arrays of Structs
	Slide 80: Arrays of Structs
	Slide 81: Ternary Operator
	Slide 82: Is there a difference?
	Slide 83: Pointer arithmetic
	Slide 84: Translating C into English
	Slide 85: Translating C into English
	Slide 86: Extra Practice
	Slide 87: 2. char* vs char[] exercises
	Slide 88: 2. char* vs char[] exercises
	Slide 89: 3. Bonus: Tricky addresses
	Slide 90: 3. Bonus: Tricky addresses
	Slide 91: Pen and paper: A * Wars Story
	Slide 92: Pen and paper: A * Wars Story
	Slide 93: Pen and paper: A * Wars Story
	Slide 94: * Wars: Episode I (of 2)
	Slide 95: * Wars: Episode II (of 2)
	Slide 96: * Wars: Episode II (of 2)
	Slide 97: * Wars: Episode II (of 2)

