
This document is copyright (C) Stanford Computer Science, Adam Keppler and Olayinka Adekola, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Nick Troccoli and Chris Gregg.
1

CS107, Lecture 8
C Generics – Void *

How can we use our
knowledge of memory and

data representation to
write code that works with

any data type?

2

Learning Goals

3

• Learn how to write C code that works with any data type.

• Learn about using void * and avoiding potential pitfalls.

• Before we dive in, remember void * is just like any other type

• This means it is just a way of saying:

• This variable stores the address of an unspecified type of data

• Information still lives in memory

• Whatever information is there still has whatever structure it started with

Generics

4

• We always strive to write code that is as general-purpose as possible.

• Generic code reduces code duplication and means you can make
improvements and fix bugs in one place rather than many.

• Generics are used throughout C for common functions like:

• Sorting

• Searching

• Free-ing arbitrary memory

• And more.

• How can we write generic code in C?

Imagine

Let's imagine we need to
implement some swapping for our

team or a client

5

Lecture Plan

• Generic Swap

• Generics Pitfalls

• Generic Swap Ends

• Generic Stack

• Array Rotation

6

7

Swap

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
 int temp = *a;
 *a = *b;
 *b = temp;
}

int main(int argc, char *argv[]) {
 int x = 2;
 int y = 5;
 swap_int(&x, &y);
 // want x = 5, y = 2
 printf("x = %d, y = %d\n", x, y);
 return 0;
}

Swap

Stack

ValueAddress
…

0xff14

0xff10

2

5
…

x

y
main()

8

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
 int temp = *a;
 *a = *b;
 *b = temp;
}

int main(int argc, char *argv[]) {
 int x = 2;
 int y = 5;
 swap_int(&x, &y);
 // want x = 5, y = 2
 printf("x = %d, y = %d\n", x, y);
 return 0;
}

Swap

Stack

ValueAddress
…

20xff14

0xff10 5
…

0xff10

0xff14
…

x

y

b 0xf18

a 0xf10

main()

swap_int()

9

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
 int temp = *a;
 *a = *b;
 *b = temp;
}

int main(int argc, char *argv[]) {
 int x = 2;
 int y = 5;
 swap_int(&x, &y);
 // want x = 5, y = 2
 printf("x = %d, y = %d\n", x, y);
 return 0;
}

Swap

Stack

ValueAddress
…

20xff14

0xff10 5
…

0xff10

0xff14

2
…

x

y

b 0xf18

a 0xf10

temp 0xf0c

main()

swap_int()

10

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
 int temp = *a;
 *a = *b;
 *b = temp;
}

int main(int argc, char *argv[]) {
 int x = 2;
 int y = 5;
 swap_int(&x, &y);
 // want x = 5, y = 2
 printf("x = %d, y = %d\n", x, y);
 return 0;
}

Swap

Stack

ValueAddress
…

50xff14

0xff10 5
…

0xff10

0xff14

2
…

x

y

b 0xf18

a 0xf10

temp 0xf0c

main()

swap_int()

11

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
 int temp = *a;
 *a = *b;
 *b = temp;
}

int main(int argc, char *argv[]) {
 int x = 2;
 int y = 5;
 swap_int(&x, &y);
 // want x = 5, y = 2
 printf("x = %d, y = %d\n", x, y);
 return 0;
}

Swap

Stack

ValueAddress
…

50xff14

0xff10 2
…

0xff10

0xff14

2
…

x

y

b 0xf18

a 0xf10

temp 0xf0c

main()

swap_int()

12

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
 int temp = *a;
 *a = *b;
 *b = temp;
}

int main(int argc, char *argv[]) {
 int x = 2;
 int y = 5;
 swap_int(&x, &y);
 // want x = 5, y = 2
 printf("x = %d, y = %d\n", x, y);
 return 0;
}

Swap

Stack

ValueAddress
…

0xff14

0xff10

5

2
…

x

y
main()

13

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
 int temp = *a;
 *a = *b;
 *b = temp;
}

int main(int argc, char *argv[]) {
 int x = 2;
 int y = 5;
 swap_int(&x, &y);
 // want x = 5, y = 2
 printf("x = %d, y = %d\n", x, y);
 return 0;
}

“Oh, when I said ’numbers’
I meant shorts, not ints.”

14

Swap

Stack

ValueAddress
…

20xff12

0xff10 5
…

0xff10

0xff12

2
…

x

y

b 0xf18

a 0xf10

temp 0xf0e

main()

swap_short()

15

void swap_short(short *a, short *b) {
 short temp = *a;
 *a = *b;
 *b = temp;
}

int main(int argc, char *argv[]) {
 short x = 2;
 short y = 5;
 swap_short(&x, &y);
 // want x = 5, y = 2
 printf("x = %d, y = %d\n", x, y);
 return 0;
}

“You know what, I goofed.
We’re going to use strings.
Could you write something

to swap those?”

16

Swap

Address Value
…

0xc0xff18

0xff10 0xe
…

'5'

'\0'

0xf '\0'

0xe

0xd

0xc '2'
…

main()
x

y

17

DATA SEGMENT

void swap_string(char **a, char **b) {
 char *temp = *a;
 *a = *b;
 *b = temp;
}

int main(int argc, char *argv[]) {
 char *x = "2";
 char *y = "5";
 swap_string(&x, &y);
 // want x = 5, y = 2
 printf("x = %s, y = %s\n", x, y);
 return 0;
}

Swap

Address Value
…

0xc0xff18

0xff10 0xe
…

0xff10

0xff18
…

'5'

'\0'

0xf '\0'

0xe

0xd

0xc '2'
…

main()

swap_string()

x

y

b 0xf18

a 0xf10

DATA SEGMENT

18

void swap_string(char **a, char **b) {
 char *temp = *a;
 *a = *b;
 *b = temp;
}

int main(int argc, char *argv[]) {
 char *x = "2";
 char *y = "5";
 swap_string(&x, &y);
 // want x = 5, y = 2
 printf("x = %s, y = %s\n", x, y);
 return 0;
}

Swap

Address Value
…

0xc0xff18

0xff10 0xe
…

0xff10

0xff18

0xc
…

'5'

0xf '\0'

0xe

0xd '\0'

main()

swap_string()

x

y

b 0xf18

a 0xf10

temp 0xf08

DATA SEGMENT

0xc '2'
… 19

void swap_string(char **a, char **b) {
 char *temp = *a;
 *a = *b;
 *b = temp;
}

int main(int argc, char *argv[]) {
 char *x = "2";
 char *y = "5";
 swap_string(&x, &y);
 // want x = 5, y = 2
 printf("x = %s, y = %s\n", x, y);
 return 0;
}

Swap

Address Value
…

0xe0xff18

0xff10 0xe
…

0xff10

0xff18

0xc
…

'5'

0xf '\0'

0xe

0xd '\0'

main()

swap_string()

x

y

b 0xf18

a 0xf10

temp 0xf08

DATA SEGMENT

0xc '2'
… 20

void swap_string(char **a, char **b) {
 char *temp = *a;
 *a = *b;
 *b = temp;
}

int main(int argc, char *argv[]) {
 char *x = "2";
 char *y = "5";
 swap_string(&x, &y);
 // want x = 5, y = 2
 printf("x = %s, y = %s\n", x, y);
 return 0;
}

Swap

Address Value
…

0xe0xff18

0xff10 0xc
…

0xff10

0xff18

0xc
…

0xf '\0'

0xe '5'

main()

swap_string()

x

y

b 0xf18

a 0xf10

temp 0xf08

DATA SEGMENT
0xd

0xc

'\0'

'2'
… 21

void swap_string(char **a, char **b) {
 char *temp = *a;
 *a = *b;
 *b = temp;
}

int main(int argc, char *argv[]) {
 char *x = "2";
 char *y = "5";
 swap_string(&x, &y);
 // want x = 5, y = 2
 printf("x = %s, y = %s\n", x, y);
 return 0;
}

Swap

Address Value
…

0xe0xff18

0xff10 0xc
…

'5'

'\0'

0xf '\0'

0xe

0xd

0xc '2'
…

main()
x

y

22

DATA SEGMENT

void swap_string(char **a, char **b) {
 char *temp = *a;
 *a = *b;
 *b = temp;
}

int main(int argc, char *argv[]) {
 char *x = "2";
 char *y = "5";
 swap_string(&x, &y);
 // want x = 5, y = 2
 printf("x = %s, y = %s\n", x, y);
 return 0;
}

“Awesome! Thanks.”

23

“Awesome! Thanks. We
also have 20 custom struct

types. Could you write
swap for those too?”

24

Generic Swap

25

What if we could write one function to swap two values of any single type?

void swap_int(int *a, int *b) { … }

void swap_float(float *a, float *b) { … }

void swap_size_t(size_t *a, size_t *b) { … }

void swap_double(double *a, double *b) { … }

void swap_string(char **a, char **b) { … }

void swap_mystruct(mystruct *a, mystruct *b) { … }

…

26

Generic Swap

void swap_int(int *a, int *b) {
 int temp = *a;
 *a = *b;
 *b = temp;
}

void swap_short(short *a, short *b) {
 short temp = *a;
 *a = *b;
 *b = temp;
}

void swap_string(char **a, char **b) {
 char *temp = *a;
 *a = *b;
 *b = temp;
}

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

void swap_short(short *a, short *b)
{

short temp = *a;
*a = *b;
*b = temp;

}

Generic Swap

All 3:

void swap_string(char **a, char **b) {
char *temp = *a;
*a
*b

=
=

*b;
temp;

27}

• Take pointers to values to
swap

• Create temporary storage to
store one of the values

• Move data at b into where a
points

• Move data in temporary
storage into where b points

28

Generic Swap

void swap(pointer to data1, pointer to data2) {
 store a copy of data1 in temporary storage
 copy data2 to location of data1
 copy data in temporary storage to location of data2
}

4 bytes

2 bytes

8 bytes

Problem: each type may need a different size temp!

Generic Swap

int temp = *data1ptr;

short temp = *data1ptr;

char *temp = *data1ptr;

29

void swap(pointer to data1, pointer to data2) {
 store a copy of data1 in temporary storage
 copy data2 to location of data1
 copy data in temporary storage to location of data2
}

4 bytes

2 bytes

8 bytes

Generic Swap

*data1Ptr = *data2ptr;

*data1Ptr = *data2ptr;

*data1Ptr = *data2ptr;

Problem: each type needs to copy a different amount of data!
30

void swap(pointer to data1, pointer to data2) {
 store a copy of data1 in temporary storage
 copy data2 to location of data1
 copy data in temporary storage to location of data2
}

4 bytes

2 bytes

8 bytes

Generic Swap

*data2ptr = temp;

*data2ptr = temp;

*data2ptr = temp;

Problem: each type needs to copy a different amount of data!
31

void swap(pointer to data1, pointer to data2) {
 store a copy of data1 in temporary storage
 copy data2 to location of data1
 copy data in temporary storage to location of data2
}

C knows the size of temp,
and knows how many bytes

to copy, because of the
variable types.

32

Is there a way to make a
version that doesn’t care
about the variable types?

33

void swap(pointer to data1, pointer to data2){
 store a copy of data1 in temporary storage
 copy data2 to location of data1

copy data in temporary storage to location of data2
}

34

Generic Swap

void swap(void *data1ptr, void *data2ptr) {
store a copy of data1 in temporary storage
copy data2 to location of data1
copy data in temporary storage to location of data2

}

35

Generic Swap

void swap(void *data1ptr, void *data2ptr) {
// store a copy of data1 in temporary storage
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

36

Generic Swap

void swap(void *data1ptr, void *data2ptr) {
// store a copy of data1 in temporary storage
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

If we don’t know the data type, we don’t know
how many bytes it is. Let’s take that as another
parameter.

37

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
// store a copy of data1 in temporary storage
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

If we don’t know the data type, we don’t know
how many bytes it is. Let’s take that as another
parameter.

38

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
// store a copy of data1 in temporary storage
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

Let’s start by making space to store the temporary
value. How can we make nbytes of temp space?

39

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
void temp; ???
// store a copy of data1 in temporary storage
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

Let’s start by making space to store the temporary
value. How can we make nbytes of temp space?

40

void swap(void *data1ptr, void *data2ptr, size_t nbytes){
char temp[nbytes];
// store a copy of data1 in temporary storage
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

temp is nbytes of memory,
since each char is 1 byte!

41

void swap(void *data1ptr, void *data2ptr, size_t nbytes){
char temp[nbytes];
// store a copy of data1 in temporary storage
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

Now, how can we copy in what
data1ptr points to into temp?

42

void swap(void *data1ptr, void *data2ptr, size_t nbytes){
char temp[nbytes];
// store a copy of data1 in temporary storage
temp = *data1ptr; ???
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

Now, how can we copy in what
data1ptr points to into temp?

43

void swap(void *data1ptr, void *data2ptr, size_t nbytes){
char temp[nbytes];
// store a copy of data1 in temporary storage
temp = *data1ptr; ???
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

We can’t dereference a void * (or set an array
equal to something). C doesn’t know what it
points to! Therefore, it doesn’t know how many
bytes there it should be looking at.

44

memcpy

memcpy is a function that copies a specified amount of bytes at one address to
another address.

void *memcpy(void *dest, const void *src, size_t n);

It copies the next n bytes that src points to to the location contained in dest. (It
also returns dest). It does not support regions of memory that overlap.

int x = 5;
int y = 4;
memcpy(&x, &y, sizeof(x)); // like x = y

memcpy must take pointers to the bytes to work with to
know where they live and where they should be copied to.

45

memmove

46

memmove is the same as memcpy, but supports overlapping regions of
memory. (Unlike its name implies, it still “copies”).

void *memmove(void *dest, const void *src, size_t n);

It copies the next n bytes that src points to to the location contained in dest. (It
also returns dest).

memmove

When might memmove be useful?

1 2 3 4 5 6 7

4 5 6 7 5 6 7

47

4 Copies - Which To Choose?

49

strcpy (string copy):
 - Used for copying null-terminated strings
 - Copies from source to destination until it encounters a null terminator
 - Does not check buffer sizes, which can lead to buffer overflows if not used carefully

strncpy (string numbered copy):
 - Similar to strcpy, but requires specifying a maximum number of characters to copy
 - If the source string is shorter than the specified length, it pads the destination with null characters
 - Does not guarantee null-termination if the source string is longer than the specified length

memcpy (memory copy):
 - Used for copying a specified number of bytes from one memory location to another
 - Can be used for any type of data, not just strings
 - Does not check for overlap between source and destination memory regions

memmove (memory move):
 - Similar to memcpy, but designed to handle overlapping memory regions safely
 - Copies data to a temporary buffer first if source and destination overlap
 - Generally slower than memcpy but safer when dealing with overlapping memory

void swap(void *data1ptr, void *data2ptr, size_t nbytes){
char temp[nbytes];
// store a copy of data1 in temporary storage
temp = *data1ptr; ???
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

We can’t dereference a void *. C doesn’t know
what it points to! Therefore, it doesn’t know how
many bytes there it should be looking at.

50

Generic Swap

void swap(void *data1ptr, void *data2ptr, size_t nbytes){
char temp[nbytes];
// store a copy of data1 in temporary storage
temp = *data1ptr; ???
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

How can memcpy or memmove help us here?

void *memcpy(void *dest, const void *src, size_t n);

void *memmove(void *dest, const void *src, size_t n);

51

void swap(void *data1ptr, void *data2ptr, size_t nbytes){
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

52

Generic Swap

void swap(void *data1ptr, void *data2ptr, size_t nbytes){
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

We can copy the bytes ourselves into temp! This
is equivalent to temp = *data1ptr in non-generic
versions, but this works for any type of any size.

53

void swap(void *data1ptr, void *data2ptr, size_t nbytes){
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
// copy data in temporary storage to location of data2

}

Generic Swap

How can we copy data2 to the location of data1?

54

void swap(void *data1ptr, void *data2ptr, size_t nbytes){
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
*data1ptr = *data2ptr; ???
// copy data in temporary storage to location of data2

}

Generic Swap

How can we copy data2 to the location of data1?

55

void swap(void *data1ptr, void *data2ptr, size_t nbytes){
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
memcpy(data1ptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

}

Generic Swap

How can we copy data2 to the location of data1?
memcpy!

56

void swap(void *data1ptr, void *data2ptr, size_t nbytes){
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
memcpy(data1ptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

}

Generic Swap

How can we copy temp’s data to the location of
data2?

57

void swap(void *data1ptr, void *data2ptr, size_t nbytes){
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
memcpy(data1ptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2
memcpy(data2ptr, temp, nbytes);

}

Generic Swap

How can we copy temp’s data to the location of
data2? memcpy!

58

void swap(void *data1ptr, void *data2ptr, size_t nbytes){
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
memcpy(data1ptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2
memcpy(data2ptr, temp, nbytes);

}

Generic Swap

int x = 2;
int y = 5;

59

swap(&x, &y, sizeof(x));

void swap(void *data1ptr, void *data2ptr, size_t nbytes){
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
memcpy(data1ptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2
memcpy(data2ptr, temp, nbytes);

}

Generic Swap

short x = 2;
short y = 5;

60

swap(&x, &y, sizeof(x));

void swap(void *data1ptr, void *data2ptr, size_t nbytes){
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
memcpy(data1ptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2
memcpy(data2ptr, temp, nbytes);

}

Generic Swap

char *x = "2";
char *y = "5";

61

swap(&x, &y, sizeof(x));

void swap(void *data1ptr, void *data2ptr, size_t nbytes){
char temp[nbytes];
// store a copy of data1 in temporary storage
memcpy(temp, data1ptr, nbytes);
// copy data2 to location of data1
memcpy(data1ptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2
memcpy(data2ptr, temp, nbytes);

}

Generic Swap

mystruct x = {…};
mystruct y = {…};
swap(&x, &y, sizeof(x));

62

void *, memcpy, memmove

63

• We can use void * and memcpy to handle memory as generic bytes.

• If we are given where the data of importance is, and how big it is, we can
handle it!

// even more robust (handles overlapping swap pointers)
void swap(void *data1ptr, void *data2ptr, size_t nbytes) {

char temp[nbytes];
memcpy(temp, data1ptr, nbytes);
memmove(data1ptr, data2ptr, nbytes);
memcpy(data2ptr, temp, nbytes);

}

Lecture Plan

• Generic Swap

• Generics Pitfalls

• Generic Swap Ends

• Generic Stack

• Array Rotation

64

Void * Pitfalls

65

• void *s are powerful, but dangerous - C cannot do as much checking!

• E.g. with int, C would never let you swap half of an int. With void *s, this can
happen! (How? Let’s find out!)

Void *Pitfalls

• Void * has more room for error because it manipulates arbitrary bytes without
knowing what they represent. This can result in some strange memory
Frankensteins!

http://i.ytimg.com/vi/10gPoYjq3EA/hqdefault.jpg 66

http://i.ytimg.com/vi/10gPoYjq3EA/hqdefault.jpg

Lecture Plan

• Generic Swap

• Generics Pitfalls

• Generic Swap Ends

• Generic Stack

• Array Rotation

67

Swap Ends

You’re asked to write a function that swaps the first and last elements in an
array of numbers.

void swap_ends_int(int *arr, size_t nelems) {
int tmp = arr[0];
arr[0] = arr[nelems – 1];
arr[nelems – 1] = tmp;

}

int main(int argc, char *argv[]) {
int nums[] = {5, 2, 3, 4, 1};
size_t nelems = sizeof(nums) / sizeof(nums[0]);
swap_ends_int(nums, nelems);
// want nums[0] = 1, nums[4] = 5
printf("nums[0] = %d, nums[4] = %d\n", nums[0], nums[4]);
return 0;

}

Wait – we just wrote a generic
swap function. Let’s use that!

68

Swap Ends

You’re asked to write a function that swaps the first and last elements in an
array of numbers.

void swap_ends_int(int *arr, size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(*arr));

}

int main(int argc, char *argv[]) {
int nums[] = {5, 2, 3, 4, 1};
size_t nelems = sizeof(nums) / sizeof(nums[0]);
swap_ends_int(nums, nelems);
// want nums[0] = 1, nums[4] = 5
printf("nums[0] = %d, nums[4] = %d\n", nums[0], nums[4]);
return 0;

}

Wait – we just wrote a generic
swap function. Let’s use that!

69

Swap Ends

Let’s write out what some other versions would look like (just in case).

void swap_ends_int(int *arr, size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(*arr));

}

void swap_ends_short(short *arr, size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(*arr));

}

void swap_ends_string(char **arr, size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(*arr));

}

void swap_ends_float(float *arr, size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(*arr));

}

The code seems to be the
same regardless of the type!

70

Swap Ends

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(*arr));

}

Is this generic? Does this work?

71

Swap Ends

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(*arr));

}

Is this generic? Does this work?

Unfortunately not. First, we no longer know the
element size. Second, pointer arithmetic depends
on the type of data being pointed to. With a void *,
we lose that information!

72

Swap Ends

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems) {
swap(arr, arr + nelems – 1, sizeof(*arr));

}

We need to know the element size, so
let’s add a parameter.

73

Swap Ends

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, arr + nelems – 1, elem_bytes);

}

We need to know the element size, so
let’s add a parameter.

74

Pointer Arithmetic

75

arr + nelems – 1

Let’s say nelems = 4. How many bytes into/beyond arr is this?

If it’s an array of…

Int?

Pointer Arithmetic

76

arr + nelems – 1

Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of…

Int: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes

Pointer Arithmetic

77

arr + nelems – 1

Let’s say nelems = 4. How many bytes into/beyond arr is this?

If it’s an array of…

Int: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes

Short?

Pointer Arithmetic

78

arr + nelems – 1

Let’s say nelems = 4. How many bytes into/beyond arr is this?

If it’s an array of…

Int: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes

Short: adds 3 places to arr, and 3 * sizeof(short) = 6 bytes

Pointer Arithmetic

79

arr + nelems – 1

Let’s say nelems = 4. How many bytes into/beyond arr is this?

If it’s an array of…

Int: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes

Short: adds 3 places to arr, and 3 * sizeof(short) = 6 bytes

Char *: adds 3 places to arr, and 3 * sizeof(char *) = 24 bytes

In each case, we need to know the element size to do the arithmetic.

Swap Ends

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, arr + nelems – 1, elem_bytes);

}

How many bytes past arr should we go to
get to the last element?

(nelems – 1) * elem_bytes

80

Swap Ends

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, arr + (nelems – 1) * elem_bytes, elem_bytes);

}

How many bytes past arr should we go to
get to the last element?

(nelems – 1) * elem_bytes

81

Swap Ends

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, arr + (nelems – 1) * elem_bytes, elem_bytes);

}

But C still can’t do arithmetic with a
void*. We need to tell it to not worry
about it, and just add bytes. How can we
do this?

82

Swap Ends

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

But C still can’t do arithmetic with a
void*. We need to tell it to not worry
about it, and just add bytes. How can we
do this?

char * pointers already add bytes!

83

Well, now it can swap_ends for an array of anything!

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

We can do pointer arithmetic with a void * pointer by casting it.

Swap Ends

84

Swap Ends

Lets see some examples!

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

int nums[] = {5, 2, 3, 4, 1};
size_t nelems = sizeof(nums) / sizeof(nums[0]);
swap_ends(nums, nelems, sizeof(nums[0]));

85

Swap Ends

Lets see some examples!

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

short nums[] = {5, 2, 3, 4, 1};
size_t nelems = sizeof(nums) / sizeof(nums[0]);
swap_ends(nums, nelems, sizeof(nums[0]));

86

Swap Ends

Lets see some examples!

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

char *strs[] = {"Hi", "Hello", "Howdy"};
size_t nelems = sizeof(strs) / sizeof(strs[0]);
swap_ends(strs, nelems, sizeof(strs[0]));

87

Swap Ends

Lets see some examples!

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

mystruct structs[] = …;
size_t nelems = …;
swap_ends(structs, nelems, sizeof(structs[0]));

88

Lecture Plan

• Generic Swap

• Generics Pitfalls

• Generic Swap Ends

• Generic Stack

• Array Rotation

89

Stacks

90

• C generics are particularly powerful in helping us create generic data structures.

• Let’s see how we might go about making a Stack in C.

Refresher: Stacks

• A Stack is a data structure representing a
stack of things.

• Objects can be pushed on top of or
popped from the top of the stack.

• Only the top of the stack can be accessed;
no other objects in the stack are visible.

• Main operations:
• push(value): add an element to the top of

the stack

• pop(): remove and return the top element in
the stack

• peek(): return (but do not remove) the top
element in the stack

stack

31

2

10

top

bottom

pop, peekpush

91

A stack is often implemented using a linked list internally.
• "bottom"

• "top"

= tail of linked list

= head of linked list

Stack<int> s;
s.push(42);
s.push(-3);
s.push(17);

Problem: C is not object-oriented! We can’t call methods on variables.

17 -3 42

92

front

Refresher: Stacks

bottom

What modifications are
necessary to make a

generic stack?

93

Stack Structs

typedef struct int_node {
struct int_node *next;
int data;

} int_node;

typedef struct int_stack {
int nelems;
int_node *top;

} int_stack;

How might we modify the Stack data
representation itself to be generic?

94

Stack Structs

typedef struct int_node {
struct int_node *next;
int data;

} int_node;

typedef struct int_stack {
int nelems;
int_node *top;

} int_stack;

Problem: each node can no longer store the
data itself, because it could be any size!

95

Generic Stack Structs

typedef struct int_node {
struct int_node *next;
void *data;

} int_node;

typedef struct stack {
int nelems;
node *top;

} stack;
Solution: each node stores a pointer, which is
always 8 bytes, to the data somewhere else. We
must also store the data size, where should that
go? 96

Generic Stack Structs

typedef struct int_node {
struct int_node *next;
void *data;

} int_node;

typedef struct stack {
int nelems;
int elem_size_bytes;
node *top;

} stack;
Solution: each node stores a pointer, which is
always 8 bytes, to the data somewhere else. We
must also store the data size in the Stack struct.

97

Stack Functions

98

• int_stack_create(): creates a new stack on the heap and returns a
pointer to it

• int_stack_push(int_stack *s, int data): pushes data onto the
stack

• int_stack_pop(int_stack *s): pops and returns topmost stack element

int_stack_create

int_stack *int_stack_create() {
int_stack *s = malloc(sizeof(int_stack));
s->nelems = 0;
s->top = NULL;
return s;

}
How might we modify this function to be
generic?

99

From previous slide:
typedef struct stack {

int nelems;

int elem_size_bytes;
node *top;

} stack;

Generic stack_create

100

stack *stack_create(int elem_size_bytes) {
stack *s = malloc(sizeof(stack));
s->nelems = 0;
s->top = NULL;
s->elem_size_bytes = elem_size_bytes;
return s;

}

From previous slide:
typedef struct stack {

int nelems;

int elem_size_bytes;
node *top;

} stack;

int_stack_push

void int_stack_push(int_stack *s, int data) {
int_node *new_node = malloc(sizeof(int_node));
new_node->data = data;

new_node->next = s->top;
s->top = new_node;
s->nelems++;

}

How might we modify this function to be
generic?

From previous slide:
typedef struct stack {

int nelems;

int elem_size_bytes;
node *top;

} stack;

typedef struct node {
struct node *next;
void *data;

} node;

101

Generic stack_push

void int_stack_push(int_stack *s, int data) {
int_node *new_node = malloc(sizeof(int_node));
new_node->data = data;

new_node->next = s->top;
s->top = new_node;
s->nelems++;

}

Problem 1: we can no longer pass the data itself
as a parameter, because it could be any size!

102

Generic stack_push

void int_stack_push(int_stack *s, const void *data) {
int_node *new_node = malloc(sizeof(int_node));
new_node->data = data;

new_node->next = s->top;
s->top = new_node;
s->nelems++;

}

Solution 1: pass a pointer to the
data as a parameter instead.

103

Generic stack_push

void int_stack_push(int_stack *s, const void *data) {
int_node *new_node = malloc(sizeof(int_node));
new_node->data = data;

new_node->next = s->top;
s->top = new_node;
s->nelems++;

}

Problem 2: we cannot copy the existing data
pointer into new_node. The data structure must
manage its own copy that exists for its entire
lifetime. The provided copy may go away!

104

Generic stack_push

105

int main() {
stack *int_stack = stack_create(sizeof(int));
add_one(int_stack);
// now stack stores pointer to invalid memory for 7!

}

void add_one(stack *s) {
int num = 7;
stack_push(s, &num);

}

Generic stack_push

void stack_push(stack *s, const void *data) {
node *new_node = malloc(sizeof(node));
new_node->data = malloc(s->elem_size_bytes);
memcpy(new_node->data, data, s->elem_size_bytes);

new_node->next = s->top;
s->top = new_node;
s->nelems++;

}

Solution 2: make a heap-allocated copy
of the data that the node points to.

106

int_stack_pop

int int_stack_pop(int_stack *s) {
if (s->nelems == 0) {

error(1, 0, "Cannot pop from empty stack");
}
int_node *n = s->top;
int value = n->data;

s->top = n->next;

free(n);
s->nelems--;

return value;
}

How might we modify this function to be
generic?

From previous slide:
typedef struct stack {

int nelems;

int elem_size_bytes;
node *top;

} stack;

typedef struct node {
struct node *next;
void *data;

} node;

107

Generic stack_pop

int int_stack_pop(int_stack *s) {
if (s->nelems == 0) {

error(1, 0, "Cannot pop from empty stack");
}
int_node *n = s->top;
int value = n->data;

s->top = n->next;

free(n);
s->nelems--;

return value;

Problem: we can no longer return the
data itself, because it could be any size!

}
108

Generic stack_pop

void *int_stack_pop(int_stack *s) {
if (s->nelems == 0) {

error(1, 0, "Cannot pop from empty stack");
}
int_node *n = s->top;
void *value = n->data;

s->top = n->next;

free(n);
s->nelems--;

return value;

While it’s possible to return the heap
address of the element, this means the
client would be responsible for freeing it.
Ideally, the data structure should manage
its own memory here.

}
109

Generic stack_pop

void stack_pop(stack *s, void *addr) {
if (s->nelems == 0) {

error(1, 0, "Cannot pop from empty stack");
}
node *n = s->top;
memcpy(addr, n->data, s->elem_size_bytes);
s->top = n->next;

free(n->data);
free(n);
s->nelems--;

}

Solution: have the caller pass a memory
location as a parameter and copy the data
to that location.

110

Using Generic Stack

int_stack *intstack = int_stack_create();
for (int i = 0; i < TEST_STACK_SIZE; i++) {

int_stack_push(intstack, i);
}

We must now pass the address of an element to push
onto the stack, rather than the element itself.

111

Using Generic Stack

stack *intstack = stack_create(sizeof(int));
for (int i = 0; i < TEST_STACK_SIZE; i++) {

stack_push(intstack, &i);
}

We must now pass the address of an element to push
onto the stack, rather than the element itself.

112

Using Generic Stack

int_stack *intstack = int_stack_create();
int_stack_push(intstack, 7);

We must now pass the address of an element to push
onto the stack, rather than the element itself.

113

Using Generic Stack

stack *intstack = stack_create(sizeof(int));
int num = 7;
stack_push(intstack, &num);

We must now pass the address of an element to push
onto the stack, rather than the element itself.

114

Using Generic Stack

// Pop off all elements
while (intstack->nelems > 0) {

printf("%d\n", int_stack_pop(intstack));
}

We must now pass the address of where we would
like to store the popped element, rather than getting
it directly as a return value.

115

Using Generic Stack

// Pop off all elements
int popped_int;
while (intstack->nelems > 0) {

stack_pop(intstack, &popped_int);
printf("%d\n", popped_int);

}

We must now pass the address of where we would
like to store the popped element, rather than getting
it directly as a return value.

116

Recap

117

• void * is a variable type that represents a generic pointer “to something”.

• We cannot perform pointer arithmetic with or dereference a void *.

• We can use memcpy or memmove to copy data from one memory location to
another.

• To do pointer arithmetic with a void *, we must first cast it to a char *.

• void * and generics are powerful but dangerous because of the lack of type
checking, so we must be extra careful when working with generic memory.

Lecture Plan

• Generic Swap

• Generics Pitfalls

• Generic Swap Ends

• Generic Stack

• Array Rotation

118

Exercise: You’re asked to provide an implementation for a function called
rotate with the following prototype:

void rotate(void *front, void *separator, void *end);

The expectation is that front is the base address of an array, end is the past-
the-end address of the array, and separator is the address of some element
in between. rotate moves all elements in between front and separator
to the end of the array, and all elements between separator and end move
to the front.

119

Bonus Exercise: Array Rotation

1 2 3 4 5 6 7 8 9 10

4 5 6 7 8 9 10 1 2 3

front separator end

int array[7] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
rotate(array, array + 3, array + 10);

Before:

After:

120

Bonus Exercise: Array Rotation

1 2 3 4 5 6 7 8 9 10

front separator end

4 5 6 7 8 9 10 8 9 10

front separator end

Before
rotate:

Before
last step:

1 2 3temp

The inner workings of rotate

121

Exercise: A properly implemented rotate will prompt the following program to
generate the provided output.

And here’s that properly implemented function!

void rotate(void *front, void *separator, void *end) {
int width = (char *)end - (char *)front;
int prefix_width = (char *)separator - (char *)front;
int suffix_width = width - prefix_width;

char temp[prefix_width];
memcpy(temp, front, prefix_width);
memmove(front, separator, suffix_width);
memcpy((char *)end - prefix_width, temp, prefix_width);

}

122

Bonus Exercise: Array Rotation

Output:
myth52:~/lect8$

Array: 1, 2, 3,

./rotate

4, 5, 6, 7, 8, 9, 10

Array:

Array:

6,

7,

7,

8,

8,

9,

9, 10,

10, 1,

1,

2,

2,

3,

3,

4,

4,

5,

5

6

Array: 7, 8, 9, 10, 2, 1, 3, 4, 5, 6

myth52:~/lect8$

Exercise: Implement rotate to generate the provided output.

int main(int argc, char *argv[]) {
 int array[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
 print_int_array(array, 10); // intuit implementation ☺
 rotate(array, array + 5, array + 10);
 print_int_array(array, 10);
 rotate(array, array + 1, array + 10);
 print_int_array(array, 10);
 rotate(array + 4, array + 5, array + 6);
 print_int_array(array, 10);
 return 0;
}

123

Bonus Exercise: Array Rotation

Code Sample: Array Rotation

rotate.c
124

cp -r /afs/ir/class/cs107/lecture-code/lect8 .

Code Sample:
Void *s Gone Wrong

swap.c
125

cp -r /afs/ir/class/cs107/lecture-code/lect8 .

Code Sample: Int Stack

int_stack.c
126

cp -r /afs/ir/class/cs107/lecture-code/lect8 .

Code Sample: Generic Stack

generic_stack.c
127

cp -r /afs/ir/class/cs107/lecture-code/lect8 .

	Slide 1: CS107, Lecture 8 C Generics – Void *
	Slide 2
	Slide 3: Learning Goals
	Slide 4: Generics
	Slide 5: Imagine
	Slide 6
	Slide 7: Swap
	Slide 8: Swap
	Slide 9: Swap
	Slide 10: Swap
	Slide 11: Swap
	Slide 12: Swap
	Slide 13: Swap
	Slide 14: “Oh, when I said ’numbers’ I meant shorts, not ints.”
	Slide 15: Swap
	Slide 16
	Slide 17: Swap
	Slide 18: Swap
	Slide 19: Swap
	Slide 20: Swap
	Slide 21: Swap
	Slide 22: Swap
	Slide 23: “Awesome! Thanks.”
	Slide 24
	Slide 25: Generic Swap
	Slide 26: Generic Swap
	Slide 27: Generic Swap
	Slide 28: Generic Swap
	Slide 29: Generic Swap
	Slide 30: Generic Swap
	Slide 31: Generic Swap
	Slide 32
	Slide 33: Is there a way to make a version that doesn’t care about the variable types?
	Slide 34: Generic Swap
	Slide 35: Generic Swap
	Slide 36: Generic Swap
	Slide 37: Generic Swap
	Slide 38: Generic Swap
	Slide 39: Generic Swap
	Slide 40: Generic Swap
	Slide 41: Generic Swap
	Slide 42: Generic Swap
	Slide 43: Generic Swap
	Slide 44: Generic Swap
	Slide 45: memcpy
	Slide 46: memmove
	Slide 47: memmove
	Slide 49: 4 Copies - Which To Choose?
	Slide 50: Generic Swap
	Slide 51: Generic Swap
	Slide 52: Generic Swap
	Slide 53: Generic Swap
	Slide 54: Generic Swap
	Slide 55: Generic Swap
	Slide 56: Generic Swap
	Slide 57: Generic Swap
	Slide 58: Generic Swap
	Slide 59: Generic Swap
	Slide 60: Generic Swap
	Slide 61: Generic Swap
	Slide 62: Generic Swap
	Slide 63: void *, memcpy, memmove
	Slide 64
	Slide 65: Void * Pitfalls
	Slide 66: Void *Pitfalls
	Slide 67
	Slide 68: Swap Ends
	Slide 69: Swap Ends
	Slide 70: Swap Ends
	Slide 71: Swap Ends
	Slide 72: Swap Ends
	Slide 73: Swap Ends
	Slide 74: Swap Ends
	Slide 75: Pointer Arithmetic
	Slide 76: Pointer Arithmetic
	Slide 77: Pointer Arithmetic
	Slide 78: Pointer Arithmetic
	Slide 79: Pointer Arithmetic
	Slide 80: Swap Ends
	Slide 81: Swap Ends
	Slide 82: Swap Ends
	Slide 83: Swap Ends
	Slide 84: Swap Ends
	Slide 85: Swap Ends
	Slide 86: Swap Ends
	Slide 87: Swap Ends
	Slide 88: Swap Ends
	Slide 89
	Slide 90: Stacks
	Slide 91: Refresher: Stacks
	Slide 92: Refresher: Stacks
	Slide 93: What modifications are necessary to make a generic stack?
	Slide 94: Stack Structs
	Slide 95: Stack Structs
	Slide 96: Generic Stack Structs
	Slide 97: Generic Stack Structs
	Slide 98: Stack Functions
	Slide 99: int_stack_create
	Slide 100: Generic stack_create
	Slide 101: int_stack_push
	Slide 102: Generic stack_push
	Slide 103: Generic stack_push
	Slide 104: Generic stack_push
	Slide 105: Generic stack_push
	Slide 106: Generic stack_push
	Slide 107: int_stack_pop
	Slide 108: Generic stack_pop
	Slide 109: Generic stack_pop
	Slide 110: Generic stack_pop
	Slide 111: Using Generic Stack
	Slide 112: Using Generic Stack
	Slide 113: Using Generic Stack
	Slide 114: Using Generic Stack
	Slide 115: Using Generic Stack
	Slide 116: Using Generic Stack
	Slide 117: Recap
	Slide 118
	Slide 119
	Slide 120
	Slide 121: The inner workings of rotate
	Slide 122
	Slide 123
	Slide 124: Code Sample: Array Rotation
	Slide 125: Code Sample: Void *s Gone Wrong
	Slide 126: Code Sample: Int Stack
	Slide 127: Code Sample: Generic Stack

