CS107, Lecture 8

C Generics — Void *

OKAY, HUMAN.

HUH? 3
BEFORE You
Y HIT (OMPILE,
LISTEN Up.

YOU KNOW WHEN YOURE
FALLING ASLEER AND
YOU IMAGINE YOURSELF
WALKING OR
M SOVMETHING,

E

AND SUCDENLY YOU
NISSTER, STUMBLE,
AND JOLT AWAKE?
YEAH!
M p

.

WELL, THATS WHAT A
SEGFAULT FEELS LIKE.

D
DOUBLE - CHECK YOUR
DAMN POINTERS, OKAY?

\

3

This document is copyright (C) Stanford Computer Science, Adam Keppler and Olayinka Adekola, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Nick Troccoli and Chris Gregg.

How can we use our
knowledge of memory and
data representation to
write code that works with
any data type?

Learning Goals

* Learn how to write C code that works with any data type.
e Learn about using void * and avoiding potential pitfalls.
* Before we dive in, remember void * is just like any other type
* This means it is just a way of saying:
* This variable stores the address of an unspecified type of data

* Information still lives in memory

 Whatever information is there still has whatever structure it started with

* We always strive to write code that is as general-purpose as possible.

* Generic code reduces code duplication and means you can make
improvements and fix bugs in one place rather than many.

e Generics are used throughout C for common functions like:

* Sorting

e Searching “ a
* Free-ing arbitrary memory ‘

* And more. .’

* How can we write generic code in C?

Let's imagine we need to
implement some swapping for our
team or a client

Lecture Plan

* Generic Swap

e Generics Pitfalls
* Generic Swap Ends
e Generic Stack

* Array Rotation

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a *b;
*b = temp;

¥

int main(int argc, char *argv[]) {
int x = 2;

int y = 5;

swap_int(&x, &y);

// want x =5, y = 2

printf("x = %d, y = %d\n", X, y);
return 0;

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
// want x = 5, y = 2
printf("x = %d, y = %d\n", X, y);
return 0;

Address

Value

. X Oxffl4
main() y Oxff1o

Stack
Address Value

You’re asked to write a function that swaps two numbers.

void swap int(int *a, int *b) { -
int temp = *a;] X ©Oxffl4 2
*a = *b; main() y ©Oxffle
*b = temp;

} b 0oxf18

int main(int argc, char *argv[]) { swap_int() a oxfiloe
int x = 2;
int y = 5;

swap_int(&x, &y);

// want x = 5, y = 2

printf("x = %d, y = %d\n", x, y);
return 0;

You’re asked to write a function that swaps two numbers.

int

void swap_int(int *a, int *b) { »
int temp = *a;] X ©Oxffl4 2
*a = *b; main() y ©Oxffle
*b = temp;

B b 0xf18

main(int argc, char *argv[]) { swap_int() a oxfile
It x=2; temp oxfoc
int y = 5; —

Stack
Address Value

swap_int(&x, &y);

// want x = 5, y = 2

printf("x = %d, y = %d\n", x, y);
return 0;

10

You’re asked to write a function that swaps two numbers.

int

void swap_int(int *a, int *b) { »
int temp = *a;] X ©Oxffl4 5
*a = *b; 'naln() y ©Oxffle
*b = temp;

B b 0xf18

main(int argc, char *argv[]) { swap_int() a oxfile
It x=2; temp oxfoc
int y = 5; -

Stack
Address Value

swap_int(&x, &y);

// want x = 5, y = 2

printf("x = %d, y = %d\n", x, y);
return 0;

11

You’re asked to write a function that swaps two numbers.

int

void swap_int(int *a, int *b) { »
int temp = *a;] X ©Oxffl4 5
*a = *b; main() y ©Oxffle
*b = temp;
B b oxfi18
main(int argc, char *argv[]) { swap_int() a oxfile
It x =2 temp oxfoc

Stack
Address Value

int y = 5; o
swap_int(&x, &y);

// want x = 5, y = 2

printf("x = %d, y = %d\n", x, y);

return 0;

12

Stack
Address Value

You’re asked to write a function that swaps two numbers.

void swap_int(int *a, int *b) {
int temp = *a;] X ©Oxffl4
*a = *b; main() y Oxffio | 2
*b = temp;

}

int main(int argc, char *argv[]) {
int x = 2;
int y = 5;
swap_int(&x, &y);
// want x = 5, y = 2
printf("x = %d, y = %d\n", x, y);
return 0;

13

“Oh, when I said 'numbers’
I meant shorts, not ints.”

void swap short(short *a, short *b) {
short temp = *a;

*a = *b;
*h = .
b = temp; main() {:
}
int main(int argc, char *argv[]) { B
short x = 2; swap_short()
short y = 5;

swap_short(&x, &y);

// want x = 5, y = 2

printf("x = %d, y = %d\n", X, y);
return 0;

—

Stack

Address Value

X ©Oxffl2 2
y Oxff1lo

b
a
temp

5

Oxf+18
Oxf10
Oxfoe

15

“You know what, I goofed.
We're going to use strings.
Could you write something
to swap those?”

JaYa)
o/

i

void swap string(char **a, char **b) {
char *temp = *a;

*b = temp;

main() {

DATA SEGMENT

int main(int argc, char *argv[]) {
char *x =
char *y =
swap_string(&x, &y);
// want X
printf("x
return 0;

5, ¥y =2
%S, Yy = %s\n", X, y);

Address Value
X Oxff1l8 oxc
y Oxff1l oxe

[oxf "\0'
Oxe 'g!
oxd "\0'
OXC '2!

void swap_string(char **a, char **b) {
char *temp = *a;

Value

Address

*b = temp;

main() {

swap_string() {:

int main(int argc, char *argv[]) {
char *x =
char *y =
swap _string(&x, &y);
// want X
printf("x

5, ¥y =2
%S, Yy = %s\n", X, y);

X
y

DATA SEGMENT

return 0;

Oxff18

void swap string(char **a, char **b) {

Address Value
char *temp = *a;
*a = *b; X Oxffl8 Oxc
Xh = . i
b = temp; main() y oxffiofl oxe
}
Nt in(int H ” 1) { b oxf1
int main(int argc, char *argv ,
Char *x = "2" swap_string() a oxfl
char *y = "5"; temp oxfos
swap_string(&x, &y); — oxf .\é.
// want x = 5, y = 2 o
. ") o n . xe 'G5’
printf("x = %s, y = %s\n", X, y); DATA SEGMENT '5'
return 0; oxd \9
} Oxc W' 2

19

void swap string(char **a, char **b) {

Address Value
char *temp = *a;
*a = *b; X Oxffl8 oxe
* — . .
b = temp; main() y exffiofy oxe
}
Nt in(int H ” 1) { b oxf1
int main(int argc, char *argv ,
char *x = "2"; swap_string() a oxfile
char *y = "5"; temp oxfes
swap_string(&x, &y); — oxf ,\é,
// want x = 5, y = 2 o
. " 0 0 n . xXe 'G5’
printf("x = %s, y = %s\n", X, y); DATA SEGMENT >
return 0; oxd \O
} oxc| 2"

20

void swap string(char **a, char **b) {

Add Val
char *temp = *a; ress alue
27 *b; . X ©Oxffl8 Oxe
*b = temp; main() y OxFfio

})

b 0oxfi18

int main(int argc, char *argv[]) { tring() exfle
char *x = "2"; swap_string a X

char *y = "5"; temp oxfes

swap _string(&x, &y);

// want x =5, y = 2

printf("x = %s, y = %s\n", X, y);
return 0;

DATA SEGMENT

e —

Oxf

Oxe

oxd
%) (e

21

void swap string(char **a, char **b) {
char *temp = *a;

*b = temp;

main() {

DATA SEGMENT

int main(int argc, char *argv[]) {
char *x =
char *y =
swap _string(&x, &y);
// want X
printf("x
return 0;

5, ¥y =2
%S, Yy = %s\n", X, y);

Address Value
X Oxff1l8 Oxe
y Oxff1l OXC

oxf "\0'
Oxe 'g!
oxd "\0'
OXC '2!

“"Awesome! Thanks.”

(i

“"Awesome! Thanks. We

also have 20 custom struct

types. Could you write
swap for those too?”

00
&S$!'#%

What if we could write one function to swap two values of any single type?

void swap_int(int *a, int *b) { .. }

void swap float(float *a, float *b) { .. }
void swap size t(size t *a, size t *b) { .. }
void swap double(double *a, double *b) { .. }
void swap_string(char **a, char **b) { .. }

void swap mystruct(mystruct *a, mystruct *b) { .. }

25

Generic Swap

void swap_int(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

void swap_short(short *a, short *b) {
short temp = *a;
*a = *b;
*b = temp;

}

void swap_string(char **a, char **b) {
char *temp = *a;
*a = *b;
*b = temp;

26

Generic Swap

void swap_int(int *a, int
int temp = *a;

*b) {

void swap string(char **a, char **b) {
char *temp = *a;
*a *b;
*b = temp;

All 3:

 Take pointers to values to
swap

 Create temporary storage to
store one of the values

e Move data at b into where a
points

* Move data in temporary
storage into where b points

Generic Swap

void swap(pointer to datal, pointer to data2) {
store a copy of datal in temporary storage
copy data2 to location of datal
copy data in temporary storage to location of data2

28

Generic Swap

void swap(pointer to datal, pointer to data2) {
store a copy of datal in temporary storage
copy data2 to location of datal

copy data in temporary storage to location of data2

int temp = *datalptr;

short temp = *datalptr;

char *temp = *datalptr;

Problem: each type may need a different size temp!

4 bytes

2 bytes

8 bytes

29

Generic Swap

void swap(pointer to datal, pointer to data2) {
store a copy of datal in temporary storage
copy data2 to location of datal
copy data in temporary storage to location of data2

*datalPtr

*data2ptr; 4 bytes

*datalPtr = *data2ptr; 2 bytes

*datalPtr

*data2ptr; 8 bytes

Problem: each type needs to copy a different amount of data!

30

Generic Swap

void swap(pointer to datal, pointer to data2) {
store a copy of datal in temporary storage
copy data2 to location of datal
copy data in temporary storage to location of data2

}
*data2ptr = temp; 4 bytes
*data2ptr = temp; 2 bytes
*dataz2ptr = temp; 8 bytes

Problem: each type needs to copy a different amount of data!

31

C knows the size of temp,
and knows how many bytes
to copy, because of the

variable types.

Is there a way to make a
version that doesn’'t care
about the variable types?

Generic Swap

void swap(pointer to datal, pointer to data2)({
store a copy of datal in temporary storage

copy data2 to location of datal
copy data in temporary storage to location of data2

34

Generic Swap

void swap(void *datalptr, void *data2ptr) {
store a copy of datal in temporary storage

copy data2 to location of datal
copy data in temporary storage to location of data2

35

Generic Swap

void swap(void *datalptr, void *dataz2ptr) {
// store a copy of datal in temporary storage
// copy data2 to location of datal
// copy data 1n temporary storage to location of data2

36

Generic Swap

void swap(void *datalptr, void *dataz2ptr) {
// store a copy of datal in temporary storage
// copy data2 to location of datal
// copy data 1n temporary storage to location of data2

If we don’t know the data type, we don’t know
how many bytes it is. Let’s take that as another
parameter.

37

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
// store a copy of datal in temporary storage
// copy data2 to location of datal
// copy data 1n temporary storage to location of data2

If we don’t know the data type, we don’t know
how many bytes it is. Let’s take that as another
parameter.

38

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
// store a copy of datal in temporary storage
// copy data2 to location of datal
// copy data 1n temporary storage to location of data2

Let’s start by making space to store the temporary
value. How can we make nbytes of temp space?

39

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
void temp; ???
// store a copy of datal in temporary storage
// copy data2 to location of datal

// copy data in temporary storage to location of data2

Let’s start by making space to store the temporary
value. How can we make nbytes of temp space?

40

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes){
char temp[nbytes];
// store a copy of datal in temporary storage
// copy data2 to location of datal
// copy data in temporary storage to location of data2

temp is nbytes of memory,
since each char is 1 byte!

41

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes){
char temp[nbytes];
// store a copy of datal in temporary storage
// copy data2 to location of datal
// copy data in temporary storage to location of data2

Now, how can we copy in what
datalptr points to into temp?

42

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes){
char temp[nbytes];
// store a copy of datal in temporary storage
temp = *datalptr; ???
// copy data2 to location of datal
// copy data 1n temporary storage to location of data2

Now, how can we copy in what
datalptr points to into temp?

43

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes){
char temp[nbytes];
// store a copy of datal in temporary storage
temp = *datalptr; ???
// copy data2 to location of datal
// copy data in temporary storage to location of data2

We can’t dereference a void * (or set an array
equal to something). C doesn’t know what it
points to! Therefore, it doesn’t know how many
bytes there it should be looking at.

44

memcpy is a function that copies a specified amount of bytes at one address to
another address.

void *memcpy(void *dest, const void *src, size t n);

It copies the next n bytes that src points to to the location contained in dest. (It
also returns dest). It does not support regions of memory that overlap.

memcpy must take pointers to the bytes to work with to

int x = 5; know where they live and where they should be copied to.

int y = 4;
memcpy (&, &y, sizeof(x)); // like x =y

45

memmove is the same as memcpy, but supports overlapping regions of

Il(

memory. (Unlike its name implies, it still “copies”).
void *memmove(void *dest, const void *src, size t n);

It copies the next n bytes that src points to to the location contained in dest. (It
also returns dest).

46

When might memmove be useful?

1 2 3 4 5 6 7

47

4 Copies - Which To Choose?

strcpy (string copy):
- Used for copying null-terminated strings
- Copies from source to destination until it encounters a null terminator
- Does not check buffer sizes, which can lead to buffer overflows if not used carefully

strncpy (string numbered copy):
- Similar to strcpy, but requires specifying a maximum number of characters to copy
- If the source string is shorter than the specified length, it pads the destination with null characters
- Does not guarantee null-termination if the source string is longer than the specified length

memcpy (memory copy):
- Used for copying a specified number of bytes from one memory location to another
- Can be used for any type of data, not just strings
- Does not check for overlap between source and destination memory regions

memmove (memory move):
- Similar to memcpy, but designed to handle overlapping memory regions safely
- Copies data to a temporary buffer first if source and destination overlap
- Generally slower than memcpy but safer when dealing with overlapping memory

49

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes){
char temp[nbytes];
// store a copy of datal in temporary storage
temp = *datalptr; ???
// copy data2 to location of datal
// copy data 1n temporary storage to location of data2

We can’t dereference a void *. C doesn’t know
what it points to! Therefore, it doesn’t know how

many bytes there it should be looking at.

50

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes){
char temp[nbytes];
// store a copy of datal in temporary storage
temp = *datalptr; ???
// copy data2 to location of datal
// copy data in temporary storage to location of data2

How can memcpy or memmove help us here?

void *memcpy(void *dest, const void *src, size t n);

void *memmove(void *dest, const void *src, size t n);

51

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes){
char temp[nbytes];
// store a copy of datal in temporary storage

memcpy(temp, datalptr, nbytes);
// copy data2 to location of datal
// copy data 1n temporary storage to location of data2

52

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes){
char temp[nbytes];
// store a copy of datal in temporary storage

memcpy(temp, datalptr, nbytes);
// copy data2 to location of datal
// copy data 1n temporary storage to location of data2

We can copy the bytes ourselves into temp! This
is equivalent to temp = *datalptr in non-generic
versions, but this works for any type of any size.

53

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes){
char temp[nbytes];
// store a copy of datal in temporary storage

memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal
// copy data 1n temporary storage to location of data2

How can we copy data2 to the location of datal?

54

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes){
char temp[nbytes];
// store a copy of datal in temporary storage
memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal
*datalptr = *data2ptr; ???
// copy data in temporary storage to location of data2

How can we copy data2 to the location of datal?

55

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes){
char temp[nbytes];
// store a copy of datal in temporary storage
memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal

memcpy(datalptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

How can we copy data2 to the location of datal?
memcpy!

56

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes){
char temp[nbytes];
// store a copy of datal in temporary storage
memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal

memcpy(datalptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

How can we copy temp’s data to the location of
data2?

57

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes){
char temp[nbytes];
// store a copy of datal in temporary storage
memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal

memcpy(datalptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

memcpy (data2ptr, temp, nbytes);

How can we copy temp’s data to the location of
data2? memcpy!

58

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes){
char temp[nbytes];
// store a copy of datal in temporary storage
memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal

memcpy(datalptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

memcpy (data2ptr, temp, nbytes);

int x = 2;
int y = 5;
swap(&x, &y, sizeof(x));

59

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes){
char temp[nbytes];
// store a copy of datal in temporary storage
memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal

memcpy(datalptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

memcpy (data2ptr, temp, nbytes);

short x = 2;
short y = 5;
swap(&x, &y, sizeof(x));

60

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes){
char temp[nbytes];
// store a copy of datal in temporary storage
memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal

memcpy(datalptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

memcpy (data2ptr, temp, nbytes);

char *x = "2";
char *y = "5%;
swap(&x, &y, sizeof(x));

61

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes){
char temp[nbytes];
// store a copy of datal in temporary storage
memcpy (temp, datalptr, nbytes);
// copy data2 to location of datal

memcpy(datalptr, data2ptr, nbytes);
// copy data in temporary storage to location of data2

memcpy (data2ptr, temp, nbytes);

mystruct x = {..};
mystruct y = {..};
swap (&x, &y, sizeof(x));

62

void ¥, memcpy, memmove

* We can use void * and memcpy to handle memory as generic bytes.

* If we are given where the data of importance is, and how big it is, we can
handle it!

// even more robust (handles overlapping swap pointers)
void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
memcpy (temp, datalptr, nbytes);
memmove (datalptr, data2ptr, nbytes);
memcpy(data2ptr, temp, nbytes);

63

Lecture Plan

* Generic Swap

e Generics Pitfalls
* Generic Swap Ends
e Generic Stack

* Array Rotation

64

Void * Pitfalls

* void *s are powerful, but dangerous - C cannot do as much checking!

 E.g. with int, C would never let you swap half of an int. With void *s, this can
happen! (How? Let’s find out!)

65

Void *Pitfalls

* Void * has more room for error because it manipulates arbitrary bytes without
knowing what they represent. This can result in some strange memory
Frankensteins!

http://i.ytimg.com/vi/10gPoYja3EA/hadefault.jpg 66

http://i.ytimg.com/vi/10gPoYjq3EA/hqdefault.jpg

Lecture Plan

* Generic Swap

e Generics Pitfalls
e Generic Swap Ends
e Generic Stack

* Array Rotation

67

You're asked to write a function that swaps the first and last elements in an

array of numbers.

void swap_ends_int(int *arr, size_t nelems) {
int tmp = arr[0];

arr[@] = arr[nelems - 1];
arr[nelems - 1] = tmp;

¥

Wait — we just wrote a generic
swap function. Let’s use that!

int main(int argc, char *argv[]) {

int nums[] = {5, 2, 3, 4, 1};
sizeof(nums) / sizeof(nums[@]);
swap_ends_int(nums, nelems);

size t nelems =

// want nums[@]
printf("nums[0]
return 0;

1, nums[4] = 5
%d, nums[4] = %d\n", nums[@], nums[4]);

68

You're asked to write a function that swaps the first and last elements in an

array of numbers.

void swap_ends_int(int *arr, size_t nelems) {
swap(arr, arr + nelems - 1, sizeof(*arr));
}

int main(int argc, char *argv[]) {
int nums[] = {5, 2, 3, 4, 1};

Wait — we just wrote a generic
swap function. Let’s use that!

size t nelems = sizeof(nums) / sizeof(nums[@]);

swap_ends_int(nums, nelems);
// want nums[©@] = 1, nums[4] = 5

printf("nums[@] = %d, nums[4] = %d\n", nums[@], nums[4]);

return 9;

69

Let’s write out what some other versions would look like (just in case).

void swap_ends_int(int *arr, size_t nelems) {
swap(arr, arr + nelems - 1, sizeof(*arr));
}

void swap_ends_short(short *arr, size t nelems) {
swap(arr, arr + nelems - 1, sizeof(*arr));
}

void swap_ends_string(char **arr, size t nelems) {
swap(arr, arr + nelems - 1, sizeof(*arr));
}

void swap_ends float(float *arr, size t nelems) {

The code seems to be the
same regardless of the type!

swap(arr, arr + nelems - 1, sizeof(*arr));
¥

70

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size t nelems) {
swap(arr, arr + nelems - 1, sizeof(*arr));
}

Is this generic? Does this work?

71

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size t nelems) {

¥

swap(arr, arr + nelems - 1, sizeof(*arr));

Is this generic? Does this work?

Unfortunately not. First, we no longer know the
element size. Second, pointer arithmetic depends
on the type of data being pointed to. With a void *,
we lose that information!

72

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size t nelems) {
swap(arr, arr + nelems - 1, sizeof(*arr));
}

We need to know the element size, so
let’s add a parameter.

73

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size t nelems, size t elem_bytes) {
swap(arr, arr + nelems - 1, elem_bytes);
}

We need to know the element size, so
let’s add a parameter.

74

Pointer Arithmetic

arr + nelems - 1

Let’s say nelems = 4. How many bytes into/beyond arr is this?

If it’s an array of...

Int?

75

Pointer Arithmetic

arr + nelems - 1

Let’s say nelems = 4. How many bytes beyond arr is this?

If it’s an array of...

Int: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes

76

Pointer Arithmetic

arr + nelems - 1

Let’s say nelems = 4. How many bytes into/beyond arr is this?
If it’s an array of...

Int: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes
Short?

77

Pointer Arithmetic

arr + nelems - 1

Let’s say nelems = 4. How many bytes into/beyond arr is this?
If it’s an array of...

Int: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes
Short: adds 3 places to arr, and 3 * sizeof(short) = 6 bytes

78

Pointer Arithmetic

arr + nelems - 1

Let’s say nelems = 4. How many bytes into/beyond arr is this?

If it’s an array of...

Int: adds 3 places to arr, and 3 * sizeof(int) = 12 bytes

Short: adds 3 places to arr, and 3 * sizeof(short) = 6 bytes
Char *: adds 3 places to arr, and 3 * sizeof(char *) = 24 bytes

In each case, we need to know the element size to do the arithmetic.

79

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, arr + nelems - 1, elem bytes);
}

How many bytes past arr should we go to
get to the last element?

(nelems — 1) * elem_bytes

80

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, arr + (nelems - 1) * elem bytes, elem bytes);
}

How many bytes past arr should we go to
get to the last element?

(nelems — 1) * elem_bytes

81

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size t nelems, size t elem bytes) {

¥

swap(arr, arr + (nelems - 1) * elem bytes, elem bytes);

But C still can’t do arithmetic with a
void*. We need to tell it to not worry
about it, and just add bytes. How can we

do this?

82

Let’s write a version of swap_ends that works for any type of array.

void swap_ends(void *arr, size t nelems, size t elem bytes) {

¥

swap(arr, (char *)arr + (nelems - 1) * elem bytes, elem bytes);

But C still can’t do arithmetic with a
void*. We need to tell it to not worry
about it, and just add bytes. How can we
do this?

char * pointers already add bytes!

83

Well, now it can swap_ends for an array of anything!

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, (char *)arr + (nelems - 1) * elem bytes, elem bytes);
}

We can do pointer arithmetic with a void * pointer by casting it.

84

Lets see some examples!

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, (char *)arr + (nelems - 1) * elem bytes, elem bytes);
}

int nums[] = {5, 2, 3, 4, 1};
size _t nelems = sizeof(nums) / sizeof(nums[@]);
swap_ends(nums, nelems, sizeof(nums[@]));

85

Lets see some examples!

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, (char *)arr + (nelems - 1) * elem bytes, elem bytes);
}

short nums[] = {5, 2, 3, 4, 1};
size _t nelems = sizeof(nums) / sizeof(nums[@]);
swap_ends(nums, nelems, sizeof(nums[@]));

86

Lets see some examples!

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, (char *)arr + (nelems - 1) * elem bytes, elem bytes);
}

Char\ *Str\S[] — {IIHi", IIHelloll, IIHOWdle};
size_t nelems = sizeof(strs) / sizeof(strs[0@]);
swap_ends(strs, nelems, sizeof(strs[@]));

87

Lets see some examples!

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, (char *)arr + (nelems - 1) * elem bytes, elem bytes);
}

mystruct structs[] = ..;
size t nelems = ..;
swap_ends(structs, nelems, sizeof(structs[@]));

88

Lecture Plan

* Generic Swap

e Generics Pitfalls
* Generic Swap Ends
 Generic Stack

* Array Rotation

89

e C generics are particularly powerful in helping us create generic data structures.

* Let’s see how we might go about making a Stack in C.

90

Refresher: Stacks

* A Stack is a data structure representing a
stack of things.

* Objects can be pushed on top of or
popped from the top of the stack. oush pop, peek

* Only the top of the stack can be accessed; \ /
no other objects in the stack are visible.

31
2

* Main operations:

* push(value): add an element to the top of
the stack 10

* pop(): remove and return the top element in stack
the stack

» peek(): return (but do not remove) the top
element in the stack

91

Refresher: Stacks

A stack is often implemented using a linked list internally.
e "bottom" = tail of linked list
 "top" = head of linked list

Stack<int> s;
s.push(42); 17 —| -3 | 42
s.push(-3);
s.push(17);

Problem: Cis not object-oriented! We can’t call methods on variables.

92

What modifications are
necessary to make a
generic stack?

typedef struct int node {
struct int node *next;
int data;

} int _node;

How might we modify the Stack data
representation itself to be generic?

typedef struct int stack {

int nelems;
int node *top;
} int stack;

94

typedef struct int node {
struct int node *next;
int data;

} int _node;

typedef struct int stack {
int nelems;
int node *top;

} int stack;

Problem: each node can no longer store the
data itself, because it could be any size!

95

Generic Stack Structs

typedef struct int node {
struct int node *next;
void *data;

} int _node;

typedef struct stack {
int nelems;
node *top;

} stack;

Solution: each node stores a pointer, which is
always 8 bytes, to the data somewhere else. We

must also store the data size, where should that
go?

96

Generic Stack Structs

typedef struct int node {
struct int node *next;
void *data;

} int _node;

typedef struct stack {
int nelems;
int elem size bytes;
node *top;

} stack;

Solution: each node stores a pointer, which is
always 8 bytes, to the data somewhere else. We
must also store the data size in the Stack struct.

97

* int_stack create(): creates a new stack on the heap and returns a
pointer to it

 int_stack push(int_stack *s, int data): pushes data onto the
stack

 int_stack pop(int_stack *s):popsand returns topmost stack element

98

Int_stack create

int_stack *int stack create() {

int_stack *s = malloc(sizeof(int_stack));

s->nelems = 0;
s->top = NULL;
return s;

From previous slide:

typedef struct stack {
int nelems;
int elem size bytes;
node *top;

} stack;

How might we modify this function to be
generic?

99

Generic stack create

stack *stack create(int elem size bytes) {
stack *s = malloc(sizeof(stack));
s->nelems = 0;
s->top = NULL;
s->elem _size bytes = elem _size bytes;
return s;

From previous slide:

typedef struct stack {
int nelems;
int elem size bytes;
node *top;

} stack;

100

void int stack push(int stack *s, int data) {
int _node *new node = malloc(sizeof(int _node));

new_node->data = data;

new_node->next = s->top;
s->top = new node;

s->nelems++;

How might we modify this function to be
generic?

From previous slide:

typedef struct stack {
int nelems;
int elem _size bytes;
node *top;

} stack;

typedef struct node {
struct node *next;
void *data;

} node;

101

Generic stack_push

void int stack push(int stack *s, int data) {
int _node *new node = malloc(sizeof(int _node));
new_node->data = data;

new_node->next = s->top;
s->top = new node;
S->nelems++;

Problem 1: we can no longer pass the data itself
as a parameter, because it could be any size!

102

Generic stack_push

void int stack push(int stack *s, const void *data) {
int _node *new node = malloc(sizeof(int _node));
new_node->data = data;

new_node->next = s->top;
s->top = new_node;
s->nelems++;

Solution 1: pass a pointer to the
data as a parameter instead.

103

Generic stack_push

void int stack push(int stack *s, const void *data) {
int _node *new node = malloc(sizeof(int _node));
new_node->data = data;

new_node->next = s->top;
s->top = new node;
s->nelems++;

Problem 2: we cannot copy the existing data
pointer into new_node. The data structure must
manage its own copy that exists for its entire
lifetime. The provided copy may go away!

104

Generic stack_push

int main() {
stack *int stack = stack create(sizeof(int));
add_one(int _stack);
// now stack stores pointer to invalid memory for 7!

¥

void add one(stack *s) {
int num = 7;
stack push(s, &num);

105

Generic stack_push

void stack push(stack *s, const void *data) {
node *new node = malloc(sizeof(node));
new_node->data = malloc(s->elem_size bytes);
memcpy(new_node->data, data, s->elem size bytes);

new_node->next = s->top;
s->top = new node;
s->nelems++;

Solution 2: make a heap-allocated copy
of the data that the node points to.

106

int_stack_pop

int int stack pop(int stack *s) {

if (s->nelems == 0) {

error(1l, 0, "Cannot pop from empty stack");

}
int _node *n = s->top;
int value = n->data;

s->top = n->next;

How might we modify this function to be
generic?

free(n);
s->nelems--;

return value;

From previous slide: |

typedef struct stack { typedef struct node {
int nelems; struct node *next;
int elem size bytes; void *data;
node *top; } node;

} stack;

107

Generic stack_pop

int int stack pop(int stack *s) {
if (s->nelems == 0) {
error(1l, 0, "Cannot pop from empty stack");
}

int_node *n = s->top;
int value = n->data;

s->top = n->next;

free(n);
s->nelems--;

Problem: we can no longer return the
. ; .
return value; data itself, because it could be any size!

} 108

Generic stack_pop

void *int stack pop(int_stack *s) {
if (s->nelems == 0) {
error(1l, 0, "Cannot pop from empty stack");
}

int _node *n = s->top;
void *value = n->data;

s->Top = n->next; While it’s possible to return the heap
free(n); a(?ldress of the element,.thls means .the.
s->nelems--; client would be responsible for freeing it.

Ideally, the data structure should manage
return value; its own memory here.

} 109

Generic stack_pop

void stack pop(stack *s, void *addr) {
if (s->nelems == 0) {
error(1l, 0, "Cannot pop from empty stack");
}

node *n = s->top;
memcpy(addr, n->data, s->elem_size_bytes);
s->top = n->next;

free(n->data);

free(n); o 5 - ”
s->nelems--; Solution: have the caller pass a memory

} location as a parameter and copy the data
to that location.

110

Using Generic Stack

int_stack *intstack = int_stack_create();

for (int i = @; 1 < TEST_STACK SIZE; i++) {
int_stack push(intstack, 1i);

¥

We must now pass the address of an element to push
onto the stack, rather than the element itself.

111

Using Generic Stack

stack *intstack = stack create(sizeof(int));

for (int i = @; 1 < TEST_STACK SIZE; i++) {
stack push(intstack, &i);

}

We must now pass the address of an element to push
onto the stack, rather than the element itself.

112

Using Generic Stack

int_stack *intstack = int_stack create();
int_stack push(intstack, 7);

We must now pass the address of an element to push
onto the stack, rather than the element itself.

113

Using Generic Stack

stack *intstack = stack create(sizeof(int));
int num = 7;
stack push(intstack, &num);

We must now pass the address of an element to push
onto the stack, rather than the element itself.

114

Using Generic Stack

// Pop off all elements

while (intstack->nelems > 0) {
printf("%d\n", int_stack pop(intstack));

}

We must now pass the address of where we would
like to store the popped element, rather than getting
it directly as a return value.

115

Using Generic Stack

// Pop off all elements

int popped int;

while (intstack->nelems > 0) {
stack pop(intstack, &popped int);
printf("%d\n", popped_int);

We must now pass the address of where we would
like to store the popped element, rather than getting
it directly as a return value.

116

Recap

e void * isavariable type that represents a generic pointer “to something”.
* We cannot perform pointer arithmetic with or dereference a void *.

* We can use memcpy or memmove to copy data from one memory location to
another.

* To do pointer arithmetic with a void *, we must first cast it toa char *.

* void * and generics are powerful but dangerous because of the lack of type
checking, so we must be extra careful when working with generic memory.

117

Lecture Plan

* Generic Swap

e Generics Pitfalls
* Generic Swap Ends
e Generic Stack

* Array Rotation

118

Bonus Exercise: Array Rotation

Exercise: You're asked to provide an implementation for a function called
rotate with the following prototype:

void rotate(void *front, void *separator, void *end);

The expectation is that £ront is the base address of an array, end is the past-

the-end address of the array, and separator is the address of some element

in between. rotate moves all elements in between £front and separator
to the end of the array, and all elements between separator and end move

to the front.

119

Bonus Exercise: Array Rotation

int array[7] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
rotate(array, array + 3, array + 10);

front separator end
| |
Before: 3 | 4 / 10
After: 6 / 10 3

The inner workings of rotate

front separator end
Before 1 1 l
rotate: 1| 2|34 |5 6|7] 8| 9|10
temp| 1 2 3
front separator end
Before l 1 l

last step: 4 | 5|6 |7 8|9 10, 8| 9 |10

121

Bonus Exercise: Array Rotation

Exercise: A properly implemented rotate will prompt the following program to
generate the provided output.

And here’s that properly implemented function!

void rotate(void *front, void *separator, void *end) {
int width = (char *)end - (char *)front;

int prefix_width = (char *)separator - (char *)front;

int suffix width = width - prefix width;

char temp[prefix width];

memcpy (temp, front, prefix width);

memmove (front, separator, suffix width);

memcpy((char *)end - prefix width, temp, prefix width);

122

Bonus Exercise: Array Rotation

Exercise: Implement rotate to generate the provided output.

int main(int argc, char *argv[]) {
int array[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
print_int_array(array, 10); // intuit implementation ©
rotate(array, array + 5, array + 10);
print_int_array(array, 10);
rotate(array, array + 1, array + 10);
print_int array(array, 10);
rotate(array + 4, array + 5, array + 6);

print_int_array(array, 10); Output:
. myth52:~/lect8$./rotate
return 9; Array: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
} Array: 6, 7, 8, 9, 10, 1, 2, 3, 4, 5
Array: 7, 8, 9, 10, 1, 2, 3, 4, 5, 6
Array: 7, 8, 9, 10, 2, 1, 3, 4, 5, 6
myth52:~/lect8$

123

cp -r /afs/ir/class/csl1l07/lecture-code/lect8 .

Code Sample: Array Rotation

=)

rotate.c

cp -r /afs/ir/class/csl1l07/lecture-code/lect8 .

Code Sample:
Void *s Gone Wrong

swap.c

cp -r /afs/ir/class/csl1l07/lecture-code/lect8 .

Code Sample: Int Stack

int_stack.c

126

cp -r /afs/ir/class/csl1l07/lecture-code/lect8 .

Code Sample: Generic Stack

generic_stack.c

127

	Slide 1: CS107, Lecture 8 C Generics – Void *
	Slide 2
	Slide 3: Learning Goals
	Slide 4: Generics
	Slide 5: Imagine
	Slide 6
	Slide 7: Swap
	Slide 8: Swap
	Slide 9: Swap
	Slide 10: Swap
	Slide 11: Swap
	Slide 12: Swap
	Slide 13: Swap
	Slide 14: “Oh, when I said ’numbers’ I meant shorts, not ints.”
	Slide 15: Swap
	Slide 16
	Slide 17: Swap
	Slide 18: Swap
	Slide 19: Swap
	Slide 20: Swap
	Slide 21: Swap
	Slide 22: Swap
	Slide 23: “Awesome! Thanks.”
	Slide 24
	Slide 25: Generic Swap
	Slide 26: Generic Swap
	Slide 27: Generic Swap
	Slide 28: Generic Swap
	Slide 29: Generic Swap
	Slide 30: Generic Swap
	Slide 31: Generic Swap
	Slide 32
	Slide 33: Is there a way to make a version that doesn’t care about the variable types?
	Slide 34: Generic Swap
	Slide 35: Generic Swap
	Slide 36: Generic Swap
	Slide 37: Generic Swap
	Slide 38: Generic Swap
	Slide 39: Generic Swap
	Slide 40: Generic Swap
	Slide 41: Generic Swap
	Slide 42: Generic Swap
	Slide 43: Generic Swap
	Slide 44: Generic Swap
	Slide 45: memcpy
	Slide 46: memmove
	Slide 47: memmove
	Slide 49: 4 Copies - Which To Choose?
	Slide 50: Generic Swap
	Slide 51: Generic Swap
	Slide 52: Generic Swap
	Slide 53: Generic Swap
	Slide 54: Generic Swap
	Slide 55: Generic Swap
	Slide 56: Generic Swap
	Slide 57: Generic Swap
	Slide 58: Generic Swap
	Slide 59: Generic Swap
	Slide 60: Generic Swap
	Slide 61: Generic Swap
	Slide 62: Generic Swap
	Slide 63: void *, memcpy, memmove
	Slide 64
	Slide 65: Void * Pitfalls
	Slide 66: Void *Pitfalls
	Slide 67
	Slide 68: Swap Ends
	Slide 69: Swap Ends
	Slide 70: Swap Ends
	Slide 71: Swap Ends
	Slide 72: Swap Ends
	Slide 73: Swap Ends
	Slide 74: Swap Ends
	Slide 75: Pointer Arithmetic
	Slide 76: Pointer Arithmetic
	Slide 77: Pointer Arithmetic
	Slide 78: Pointer Arithmetic
	Slide 79: Pointer Arithmetic
	Slide 80: Swap Ends
	Slide 81: Swap Ends
	Slide 82: Swap Ends
	Slide 83: Swap Ends
	Slide 84: Swap Ends
	Slide 85: Swap Ends
	Slide 86: Swap Ends
	Slide 87: Swap Ends
	Slide 88: Swap Ends
	Slide 89
	Slide 90: Stacks
	Slide 91: Refresher: Stacks
	Slide 92: Refresher: Stacks
	Slide 93: What modifications are necessary to make a generic stack?
	Slide 94: Stack Structs
	Slide 95: Stack Structs
	Slide 96: Generic Stack Structs
	Slide 97: Generic Stack Structs
	Slide 98: Stack Functions
	Slide 99: int_stack_create
	Slide 100: Generic stack_create
	Slide 101: int_stack_push
	Slide 102: Generic stack_push
	Slide 103: Generic stack_push
	Slide 104: Generic stack_push
	Slide 105: Generic stack_push
	Slide 106: Generic stack_push
	Slide 107: int_stack_pop
	Slide 108: Generic stack_pop
	Slide 109: Generic stack_pop
	Slide 110: Generic stack_pop
	Slide 111: Using Generic Stack
	Slide 112: Using Generic Stack
	Slide 113: Using Generic Stack
	Slide 114: Using Generic Stack
	Slide 115: Using Generic Stack
	Slide 116: Using Generic Stack
	Slide 117: Recap
	Slide 118
	Slide 119
	Slide 120
	Slide 121: The inner workings of rotate
	Slide 122
	Slide 123
	Slide 124: Code Sample: Array Rotation
	Slide 125: Code Sample: Void *s Gone Wrong
	Slide 126: Code Sample: Int Stack
	Slide 127: Code Sample: Generic Stack

