CS107, Lecture 9

C Generics — Function Pointers

Reading: K&R 5.11

This document is copyright (C) Stanford Computer Science, Adam Keppler, and Olayinka Adekola, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Nick Troccoli and Chris Gregg

Generics So Far

e void * is avariable type that represents a generic pointer “to something”.

* We cannot perform pointer arithmetic with or dereference (without casting
first) a void *.

* We can use memcpy or memmove to copy data from one memory location to
another.

* To do pointer arithmetic with a void *, we must first cast it to a char *.

e void * and generics are powerful but dangerous because of the lack of type
checking, so we must be extra careful when working with generic memory.

Generic Swap

void swap(void *datalptr, void *data2ptr, size t nbytes) {
char temp[nbytes];
memcpy (temp, datalptr, nbytes);
memmove (datalptr, data2ptr, nbytes);
memcpy (data2ptr, temp, nbytes);

We can use void * to represent a pointer to any
data, and memcpy/memmove to copy arbitrary
bytes.

Generic Array Swap

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, (char *)arr + (nelems - 1) * elem bytes, elem bytes);
}

We can cast to a char * in order to perform
manual byte arithmetic with void * pointers.

memeset is a function that sets a specified amount of bytes at one address to a
certain value.

void *memset(void *s, int ¢, size t n);

It fills n bytes starting at memory location s with the byte c¢. (It also returns s).

int counts[5];
memset(counts, @, 3); // zero out first 3 bytes at counts
memset(counts + 3, Oxff, 4) // set 3rd entry’s bytes to 1s

Bubble Sort

* Let’s write a function to sort a list of integers. We’ll use the bubble sort
algorithm.

4 2 12 | -5 | 56 | 14

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

Bubble Sort

* Let’s write a function to sort a list of integers. We’ll use the bubble sort
algorithm.

!

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

Bubble Sort

* Let’s write a function to sort a list of integers. We’ll use the bubble sort
algorithm.

!

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

Bubble Sort

* Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

Bubble Sort

* Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

10

Bubble Sort

* Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.
2 | 4 [s5epa2] so | 14

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

11

Bubble Sort

* Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

12

Bubble Sort

* Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

13

Bubble Sort

* Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

14

Bubble Sort

* Let’s write a function to sort a list of integers. We’ll use the bubble sort
algorithm.

!

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

15

Bubble Sort

* Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

16

Bubble Sort

* Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

17

Bubble Sort

* Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

18

Bubble Sort

* Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

19

Bubble Sort

* Let’s write a function to sort a list of integers. We’ll use the bubble sort

algorithm.

2 -5 | 4 | 12 | 14 | 56

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

In general, bubble sort requires up to n - 1 passes to sort an array of
length n, though it may end sooner if a pass doesn’t swap anything.

20

Bubble Sort

* Let’s write a function to sort a list of integers. We’ll use the bubble sort
algorithm.

5| 2 | 4 |12 | 14 | 56

* Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

Only two more passes are needed to arrive at the above. The first
exchanges the 2 and the -5, and the second leaves everything as is.

21

Integer Bubble Sort

void bubble sort int(int *arr, size t n) {
while (true) {
bool swapped = false;
for (size t 1 =1; i < n; i++) {
if (arr[i - 1] > arr[i]) {

swapped = true;
int tmp = arr[i - 1];
arr[i - 1] = arr[i];
arr[i] = tmp;

}
}
if (!swapped) {
return; How can we make this function more generic?
}
} To start, this function always sorts in ascending
} order. What about other orders?

22

Integer Bubble Sort

void bubble sort int(int *arr, size_t n, bool ascending) {
while (true) {
bool swapped = false;
for (size t 1 =1; i < n; i++) {
if ((ascending && arr[i - 1] > arr[i]) ||
(lascending && arr[i] > arr[i - 1])) {

swapped = true;
int tmp = arr[i - 1];
arr[i - 1] = arr[i];
arr[i] = tmp;

}
}
if (!swapped) { We can add parameters, but they only help
return; so much. What about other orders we
!) can’t anticipate? (odd-before-even, etc.)

} 23

Integer Bubble Sort

void bubble sort int(int *arr, size_t n, bool ascending) {
while (true) {
bool swapped = false;
for (size t 1 =1; i < n; i++) {
if ((ascending && arr[i - 1] > arr[i]) ||
(lascending && arr[i] > arr[i - 1])) {

swapped = true;
int tmp = arr[i - 1];
arr[i - 1] = arr[i];
arr[i] = tmp;

}
}
if (!swapped) { We can add parameters, but they only help
return; so much. Or even different comparisons
) J (strcmp, etc.) ?

} 24

Integer Bubble Sort

void bubble sort _int(int *arr, size_t n) {
while (true) {
bool swapped = false;
for (size t 1 =1; i < n; i++) {
if (should swap(arr[i - 1], arr[i])) {
swapped = true;
int tmp = arr[i - 1];

}

arr[i - 1]

arr[i];

arr[i] = tmp;

¥

if (!swapped) {

¥

return;

What we really want is this — but we don’t
know how to implement this function...the
person calling this function does, though!

25

Integer Bubble Sort

void bubble sort _int(int *arr, int n) {
while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {
if (arr[i - 1] > arr[i]) {
swapped = true;
swap_int(&arr[i - 1], &arr[i]);

}
}
if (!swapped) {
return;
) } How can we make this function

} generic, to sort an array of any type?

26

Integer Bubble Sort

void bubble sort _int(int *arr, int n) {
while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {
if (arr[i - 1] > arr[i]) {

¥

swapped = true;
swap_int(&arr[i - 1],

if (!swapped) {

¥

return;

Qarr[i]);

Let’s start by making the parameters
and swap generic.

27

Generic Bubble Sort

void bubble sort(void *arr, int n, int elem size bytes) {
while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {
if (arr[i - 1] > arr[i]) {

¥

swapped = true;

swap(&arr[i - 1], &arr[i], elem size bytes);

if (!swapped) {

¥

return;

Let’s start by making the parameters
and swap generic.

28

Key Idea: Locating i-th Elem

A common generics idiom is getting a pointer to the i-th element of a generic array.

Remember from last lecture, how to locate the last element:

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, (char *)arr + (nelems - 1) * elem bytes, elem bytes);
}

How can we generalize this to get the location of the i-th element?

void *ith _elem = (char *)arr + i * elem_bytes;

29

Key Idea: Locating i-th Elem

A common generics idiom is getting a pointer to the i-th element of a generic array.

Remember from last lecture, how to locate the last element:

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, (char *)arr + (nelems - 1) * elem bytes, elem bytes);
}

How can we generalize this to get the location of the i-th element?

30

Key Idea: Locating i-th Elem

A common generics idiom is getting a pointer to the i-th element of a generic array.
Remember from last lecture, how to locate the last element:

void swap_ends(void *arr, size t nelems, size t elem bytes) {
swap(arr, (char *)arr + (nelems - 1) * elem bytes, elem bytes);
}

How can we generalize this to get the location of the i-th element?

void *ith_elem = (char *)arr + i * elem bytes;

31

Generic Bubble Sort

void bubble sort(void *arr, int n, int elem size bytes) {
while (true) {

bool swapped = false;

for (int i = 1; i < n; i++) {
void *p prev_elem = (char *)arr + (1 - 1) * elem _size bytes;
void *p _curr_elem = (char *)arr + i * elem size bytes;
if (*p_prev_elem > *p curr_elem) {

swapped = true;

swap(p_prev_elem, p_curr_elem, elem_size bytes);

}
}
1f (:.Z‘,’c"ﬁﬁﬁfd) { Let’s start by making the parameters
} and swap generic.
}

32

Generic Bubble Sort

void bubble sort(void *arr, int n, int elem size bytes) {
while (true) {

bool swapped = false;

for (int i = 1; i < n; i++) {
void *p prev_elem = (char *)arr + (i - 1) * elem size bytes;
void *p curr_elem = (char *)arr + i * elem size bytes;
if (*p_prev_elem > *p _curr_elem) {

swapped = true;

swap(p_prev_elem, p curr_elem, elem size bytes);

}
}
if (!swapped) { Wait a minute...this doesn’t work! We can’t
return; dereference void *s OR compare any element
} } with >, since they may not be numbers! _

33

A Generics Conundrum

* We've hit a snag — there is no way to generically compare elements. They
could be any type and have complex ways to compare them.

* How can we write code to compare any two elements of the same type?

* That’s not something that bubble sort can ever know how to do. BUT — our
caller should know how to do this, because they’re supplying the data....let’s
ask them!

34

Generic Bubble Sort

void bubble sort(void *arr, int n, int elem size bytes) {
while (true) {

bool swapped = false;

for (int i = 1; i < n; i++) {
void *p prev_elem = (char *)arr + (i - 1) * elem size bytes;
void *p curr_elem = (char *)arr + i * elem size bytes;
if (*p_prev_elem > *p _curr_elem) {

swapped = true;

swap(p_prev_elem, p curr_elem, elem size bytes);

}
}
if (!swapped) { /bubble_sort (inner voice): hey,\
return; you, person who called us. Do
} you know how to compare the
} items at these two addresses?
}

35

Generic Bubble Sort

void bubble sort(void *arr, int n, int elem size bytes) {
while (true) {

bool swapped = false;

for (int i = 1; i < n; i++) {
void *p prev_elem = (char *)arr + (i - 1) * elem size bytes;
void *p curr_elem = (char *)arr + i * elem size bytes;
if (*p_prev_elem > *p _curr_elem) {

swapped = true;

swap(p_prev_elem, p curr_elem, elem size bytes);

}
}
if (!swapped) { fCaIIer: yeah, | know how to compare them. A
return; You don’t know what data type they are, but |
} do. | have a function that can do the
}

) onmparison for you and teIIyouth&sult.J
36

Generic Bubble Sort

void bubble sort(void *arr, int n, int elem size bytes,

function compare_fn) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

void *p prev_elem = (char *)arr + (i - 1) * elem size bytes;
void *p curr_elem = (char *)arr + i * elem size bytes;
if (compare_fn(p_prev_elem, p curr_elem)) {

swapped = true;

swap(p _prev_elem, p curr_elem, elem size bytes);

}
} So, how can we receive this comparison
if (1swapped) { function? The function will be a parameter.
return; And it is job will be to tell us how the two
) h elements compare.

37

Generic Bubble Sort

void bubble sort(void *arr, int n, int elem size bytes,
bool (*compare fn)(void *a, void *b)) {
while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {
void *p prev_elem = (char *)arr + (i - 1) * elem size bytes;
void *p curr_elem = (char *)arr + i * elem size bytes;
if (compare_fn(p_prev_elem, p curr_elem)) {
swapped = true;
swap(p _prev_elem, p curr_elem, elem size bytes);

}
} So the expected return will be a bool, and the
if (!swapped) { function’s expected input will be two void *
return; arguments.
}

38

Function Pointers

A function pointer is the variable type for passing a function as a parameter.
Here is how the parameter’s type is declared.

bool (*compare fn)(void *a, void *b)

39

Function Pointers

A function pointer is the variable type for passing a function as a parameter.
Here is how the parameter’s type is declared.

bool (*compare fn)(void *a, void *b)

|

Return type
(bool)

40

Function Pointers

A function pointer is the variable type for passing a function as a parameter.
Here is how the parameter’s type is declared.

bool (*compare fn)(void *a, void *b)

|

Function pointer name
(compare _fn)

41

Function Pointers

A function pointer is the variable type for passing a function as a parameter.
Here is how the parameter’s type is declared.

bool (*compare fn)(void *a, void *b)

|

Function parameters
(two void *s)

42

Function Pointers

Here’s the general variable type syntax:

[return type] (*[name])([parameters])

Generic Bubble Sort

void bubble sort(void *arr, int n, int elem size bytes,
bool (*compare fn)(void *a, void *b)) {
while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {
void *p prev_elem = (char *)arr + (i - 1) * elem size bytes;
void *p curr_elem = (char *)arr + i * elem size bytes;
if (compare_fn(p _prev_elem, p _curr_elem)) {
swapped = true;
swap(p _prev_elem, p curr_elem, elem size bytes);

}

}

if (!swapped) {
return;

}

44

Function Pointers

bool integer compare(void *ptrl, void *ptr2) {

}

int main(int argc, char *argv[]) {
int nums[] = {4, 2, -5, 1, 12, 56};
int nums _count = sizeof(nums) / sizeof(nums[0@]);
bubble sort(nums, nums_count, sizeof(nums[@]), integer compare);

bubble sort is generic and works for any type.
But the caller knows the specific type of data
being sorted and provides a comparison
function specifically for that data type.

45

Function Pointers

bool string compare(void *ptrl, void *ptr2) {

}

int main(int argc, char *argv[]) {
char *classes[] = {"CS106A", "CS1e6B", "CS1e7", "CS11e"};
int arr_count = sizeof(classes) / sizeof(classes[@]);
bubble sort(classes, arr _count, sizeof(classes[@]), string compare);

bubble sort is generic and works for any type.
But the caller knows the specific type of data
being sorted and provides a comparison
function specifically for that data type.

46

Bubble Sort

void bubble sort(void *arr, int n, int elem size bytes,
bool (*compare fn)(void *a, void *b))

* Bubble Sort is written as a generic library function to be imported into
potentially many programs to be used with many types. It must have a single
function signature but work with any type of data.

* Its comparison function type is part of its function signature — the comparison
function signature must use one set of types but accept any data of any size.
How do we do this?

* The function will instead accept pointers to the data via void * parameters

* This means that the functions must be written to handle parameters which are pointers
to the data to be compared

47

Function Pointers

This means that functions with generic parameters must always take pointers to
the data they care about.

We can use the following pattern:
1) Cast the void *argument(s) and set typed pointers equal to them.
2) Dereference the typed pointer(s) to access the values.

3) Perform the necessary operation.

(steps 1 and 2 can often be combined into a single step)

48

Function Pointers

bool integer compare(void *ptrl, void *ptr2) {
// 1) cast arguments to int *s
int *numlptr = (int *)ptril;
int *num2ptr = (int *)ptr2;

// 2) dereference typed points to access values
int numl = *numlptr;

int num2 = *num2ptr;

This function is created by the caller
specifically to compare integers,
// 3) perform operation knowing their addresses are necessarily
return numl > num2; disguised as void *so that bubble_sort
} can work for any array type.

49

Function Pointers

bool integer compare(void *ptrl, void *ptr2) {
// 1) cast arguments to int *s
int *numlptr = (int *)ptril;
int *num2ptr = (int *)ptr2;

// 2) dereference typed points to access values
int numl = *numlptr; However, the type of the
int num2 = *num2ptr; comparison function that e.g.
: bubble sort accepts must be
{,étiznpﬁ{;;:r? ﬁﬁren;?tlon generic, since we are writing one
1 bubble_ sort function to work
with any data type.

50

Generic Bubble Sort

void bubble sort(void *arr, int n, int elem size bytes,

bool (*compare_fn)(void *a, void *b)) {
while (true) {

bool swapped = false;
for (int i = 1; 1 < n; i++) {
void *p prev_elem = (char *)arr + (i - 1) * elem _size bytes;
void *p curr_elem = (char *)arr + i * elem _size bytes;
if (compare_fn(p_prev_elem, p curr_elem)) {
swapped = true;

swap(p_prev_elem, p_curr_elem, elem size bytes);

F g
J S T - T B T N
if (Iswapped) { RSN S SR IR

return; Caller’s stack fram

}
}

} 2

bubble_sort i arr p_prev_elem p_curr_elem

51

Function Pointers

bool integer compare(void *ptrl, void *ptr2) {
return *(int *)ptrl > *(int *)ptr2;
F L m———

Caller’s stack fram

2

bubble_sort i r p_prev ¥lem p _curr_elem

Cmp fn stack frame ptrl ptr2
52

Comparison Functions

* Function pointers are used often in cases like this to compare two values of the
same type. These are called comparison functions.

* The standard comparison function in many C functions provides even more
information. It should return:

e <Qif first value should come before second value
e >0 if first value should come after second value
e Oif first value and second value are equivalent

* This is the same return value format as strcmp!

int (*compare_fn)(void *a, void *b)

53

Comparison Functions

int integer compare(void *ptrl, void *ptr2) {
return *(int *)ptrl - *(int *)ptr2;
}

54

Generic Bubble Sort

void bubble sort(void *arr, int n, int elem size bytes,
int (*compare_fn)(void *a, void *b)) {
while (true) {
bool swapped = false;
for (int 1 = 1; 1 < n; i++) {
void *p prev_elem = (char *)arr + (i - 1) * elem _size bytes;
void *p_curr_elem = (char *)arr + 1 * elem _size bytes,
if (compare_fn(p_prev_elem, p _curr_elem) > 0) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem size bytes);

}
}
if (!swapped) {
return;
}
} 55

Comparison Functions

* Exercise: how can we write a comparison function for bubble sort to sort
strings in alphabetical order?

* The common prototype provides even more information. It should return:

e <Qif first value should come before second value
e >0 if first value should come after second value
* Oif first value and second value are equivalent

int (*compare_ fn)(void *a, void *b)

56

String Comparison Function

int string compare(void *ptrl, void *ptr2)

{

// cast arguments and dereference

char *strl = *(char **)ptril,;

char *str2 = *(char **)ptr2;
// perform operation

return strcmp(strl, str2);

Caller’s stack fram

2

bubble_sort i r p_prev ¥lem p _curr_elem

Cmp fn stack frame ptrl ptr2
57

Function Pointer Pitfalls

* If a function takes a function pointer as a parameter, it will accept it if it fits the
specified signature.

* This is dangerous! E.g. what happens if you pass in a string comparison
function when sorting an integer array?

58

Function Pointers

* Function pointers can be used in a variety of ways. For instance, you could
have:
e A function to compare two elements of a given type
e A function to print out an element of a given type
* A function to free memory associated with a given type
* And more...

59

The meaning of “callback” functions

Library writer void print_array(void *arr, size t nelems,
 Writes generic algorithmic int elem_size,
. L * Ld L *
functions void(*print_fn)(void *)) {

* Relies on user-provided nelems, }
sizeof(elem), function pointer

User/ca"er void print_string(void *) {
e Knows the data
 Might not know the algorithm }

(hence the use of library function) ~ int main(int argc, char *argv[]) {

* Writes the callback function to pass print_array(str_array, n_elems,
into library function sizeof(str_array[@]), print_string);

} The library uses a user-written (and user-
provided!) callback function to perform
complex operations on generic data. 60

Common Utility Callback Functions

 Comparison function — compares two elements of a given type.

int (*cmp_fn)(void *addrl, void *addr2)

* Printing function — prints out an element of a given type

void (*print_fn)(void *addr)

* There are many more! You can specify any functions you would like passed in
when writing your own generic functions.

61

Function Pointers As Variables

In addition to parameters, you can make normal variables that are functions.

1 int do_something (char *str) {
2 printf("%s\n", str);
3 return strlen(str);

4 }

5 int main(int argc, char *argv[]) {

6 // Do something with variables

7 int (*func var)(char *) = do_something;
8 char *str = "testing";

9 int retval = func_var(str);
10 printf("%d\n", retval);
11 return 0;

12 }

62

Generic C Standard Library Functions

e gsort — | can sort an array of any type! To do that, | need you to provide me a
function that can compare two elements of the kind you are asking me to sort.

* bsearch — | can use binary search to search for a key in an array of any type! To
do that, | need you to provide me a function that can compare two elements
of the kind you are asking me to search.

* Ifind — | can use linear search to search for a key in an array of any type! To do
that, | need you to provide me a function that can compare two elements of
the kind you are asking me to search.

* Isearch - | can use linear search to search for a key in an array of any type! |
will also add the key for you if | can’t find it. In order to do that, | need you to
provide me a function that can compare two elements of the kind you are
asking me to search.

63

Generic C Standard Library Functions

* scandir — | can create a directory listing with any order and contents! Todo
that, | need you to provide me a function that tells me whether you want me
to include a given directory entry in the listing. | also need you to provide me a
function that tells me the correct ordering of two given directory entries.

64

Recap

* We use void * pointers and memory operations like memcpy and memmove
to make data operations generic.

* We use function pointers to make logic/functionality operations generic.

* Function pointers also allow us to pass logic around in our programes.

* Functions handling generic data must use pointers to the data they care about,
since any parameters must have one type and one size.

65

% Common code snippets

e Generic function: Iterate through a generic array.

for (int 1 = 0; i < nelems; i++) {
void *curr p = (char *)base + i1 * elem size bytes;

¥

e User setup: Compute the number of elements in a local array.

int *int array[] = ..; // declared locally
size t nelems = sizeof(int_array) / sizeof(int_array[0]);

66

What would happen here?

Recall print_array:
void print_array(void *arr, size t nelems, int elem _size bytes,
void(*print_fn)(void *)) {
for (int 1 = 0; 1 < nelems; i++) {
void *elem ptr = (char *)arr + i * elem size bytes;
printf("%d: ", 1 + 1);

print_fn(elem_ptr); 1. Fill in the blank so that print_array
printf("\n"); can print an array of strings.
} A. (char *) ptr C. *(char *) ptr

B. *(char **) ptr D. **(char ***) ptr

2. Why would A or D not “work”?

1 void print_string(void *ptr) {
2 char *str = 2?? ;
printf("%s", str); (-

3
4}

What would happen here?

void print_array(void *arr, size t nelems, int elem _size,
void(*print_fn)(void *)) {

void *elem ptr = (char *)arr + i * elem _size bytes;
print_fn(elem_ptr);

} Library What is the actual type
of the parameter passed
void print_string(void *ptr) { Caller |inioprint_string?
char *str = 2?2 —
printf("%s", str); As a caller: Remember what the true
} types of parameters are.

int main(int argc, char *argv[]) {
char *str array[] = {"aardvark”, "beaver", "capybara"};
size t n elems = sizeof(str_array) / sizeof(str_array[0]); |
print_array(str_array, n_elems, sizeof(str_array[@]), print _string); (75“

—

Practice: Count Matches

* Let’s write a generic function count_matches that can count the number of a
certain type of element in a generic array.

* It should take in as parameters information about the generic array, and a
function parameter that can take in a pointer to a single array element and tell
us if it’s a match.

int count_matches(void *base, int nelems,
int elem_size bytes,
bool (*match_fn)(void *));

Practice: Count Matches

int count matches(void *base, int nelems, int
elem size bytes, bool (*match fn)(void *)) {

int match _count = 0;
for (int 1 = 0; 1 < nelems; i++) {
void *curr p = (char *)base + i * elem size bytes;

if (match_fn(curr_p)) {
match count++;
}

¥

return match_count;

70

Code Sample: Generic Printing

	Slide 1: CS107, Lecture 9 C Generics – Function Pointers
	Slide 2: Generics So Far
	Slide 3: Generic Swap
	Slide 4: Generic Array Swap
	Slide 5: memset
	Slide 6: Bubble Sort
	Slide 7: Bubble Sort
	Slide 8: Bubble Sort
	Slide 9: Bubble Sort
	Slide 10: Bubble Sort
	Slide 11: Bubble Sort
	Slide 12: Bubble Sort
	Slide 13: Bubble Sort
	Slide 14: Bubble Sort
	Slide 15: Bubble Sort
	Slide 16: Bubble Sort
	Slide 17: Bubble Sort
	Slide 18: Bubble Sort
	Slide 19: Bubble Sort
	Slide 20: Bubble Sort
	Slide 21: Bubble Sort
	Slide 22: Integer Bubble Sort
	Slide 23: Integer Bubble Sort
	Slide 24: Integer Bubble Sort
	Slide 25: Integer Bubble Sort
	Slide 26: Integer Bubble Sort
	Slide 27: Integer Bubble Sort
	Slide 28: Generic Bubble Sort
	Slide 29: Key Idea: Locating i-th Elem
	Slide 30: Key Idea: Locating i-th Elem
	Slide 31: Key Idea: Locating i-th Elem
	Slide 32: Generic Bubble Sort
	Slide 33: Generic Bubble Sort
	Slide 34: A Generics Conundrum
	Slide 35: Generic Bubble Sort
	Slide 36: Generic Bubble Sort
	Slide 37: Generic Bubble Sort
	Slide 38: Generic Bubble Sort
	Slide 39: Function Pointers
	Slide 40: Function Pointers
	Slide 41: Function Pointers
	Slide 42: Function Pointers
	Slide 43: Function Pointers
	Slide 44: Generic Bubble Sort
	Slide 45: Function Pointers
	Slide 46: Function Pointers
	Slide 47: Bubble Sort
	Slide 48: Function Pointers
	Slide 49: Function Pointers
	Slide 50: Function Pointers
	Slide 51: Generic Bubble Sort
	Slide 52: Function Pointers
	Slide 53: Comparison Functions
	Slide 54: Comparison Functions
	Slide 55: Generic Bubble Sort
	Slide 56: Comparison Functions
	Slide 57: String Comparison Function
	Slide 58: Function Pointer Pitfalls
	Slide 59: Function Pointers
	Slide 60: The meaning of “callback” functions
	Slide 61: Common Utility Callback Functions
	Slide 62: Function Pointers As Variables
	Slide 63: Generic C Standard Library Functions
	Slide 64: Generic C Standard Library Functions
	Slide 65: Recap
	Slide 66: Common code snippets
	Slide 67: What would happen here?
	Slide 68: What would happen here?
	Slide 69: Practice: Count Matches
	Slide 70: Practice: Count Matches
	Slide 71: Code Sample: Generic Printing

