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CS107, Lecture 9
C Generics – Function Pointers

Reading: K&R 5.11
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Generics So Far

• void * is a variable type that represents a generic pointer “to something”.

• We cannot perform pointer arithmetic with or dereference (without casting 
first) a void *.

• We can use memcpy or memmove to copy data from one memory location to 
another.

• To do pointer arithmetic with a void *, we must first cast it to a char *.

• void * and generics are powerful but dangerous because of the lack of type 
checking, so we must be extra careful when working with generic memory.
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Generic Swap

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
    char temp[nbytes];
    memcpy(temp, data1ptr, nbytes);
    memmove(data1ptr, data2ptr, nbytes);
    memcpy(data2ptr, temp, nbytes);
}

We can use void * to represent a pointer to any 
data, and memcpy/memmove to copy arbitrary 
bytes.
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Generic Array Swap

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
    swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);
}

We can cast to a char * in order to perform 
manual byte arithmetic with void * pointers.



memset
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memset is a function that sets a specified amount of bytes at one address to a 
certain value.

void *memset(void *s, int c, size_t n);

It fills n bytes starting at memory location s with the byte c. (It also returns s).

int counts[5]; 
memset(counts, 0, 3); // zero out first 3 bytes at counts
memset(counts + 3, 0xff, 4) // set 3rd entry’s bytes to 1s



Bubble Sort
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• Let’s write a function to sort a list of integers. We’ll use the bubble sort 
algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements 
that are out of order. When there are no more swaps needed, the array is 
sorted!

4 2 12 -5 56 14
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Bubble Sort

• Let’s write a function to sort a list of integers. We’ll use the bubble sort 
algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements 
that are out of order. When there are no more swaps needed, the array is
sorted!

2 -5 4 12 14 56

In general, bubble sort requires up to n - 1 passes to sort an array of 
length n, though it may end sooner if a pass doesn’t swap anything.
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Bubble Sort

• Let’s write a function to sort a list of integers. We’ll use the bubble sort 
algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements 
that are out of order. When there are no more swaps needed, the array is
sorted!

-5 2 4 12 14 56

Only two more passes are needed to arrive at the above. The first 
exchanges the 2 and the -5, and the second leaves everything as is.

21
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Integer Bubble Sort

void bubble_sort_int(int *arr, size_t n) {
    while (true) {
        bool swapped = false;
        for (size_t i = 1; i < n; i++) {
            if (arr[i - 1] > arr[i]) {
                swapped = true;
                int tmp = arr[i - 1];
                arr[i - 1] = arr[i];
                arr[i] = tmp;
            }
        }
        if (!swapped) {
            return;
        }
    }
}

How can we make this function more generic?  
To start, this function always sorts in ascending 
order.  What about other orders?
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Integer Bubble Sort

void bubble_sort_int(int *arr, size_t n, bool ascending) {
    while (true) {
        bool swapped = false;
        for (size_t i = 1; i < n; i++) {
            if ((ascending && arr[i - 1] > arr[i]) ||
   (!ascending && arr[i] > arr[i – 1])) {
                swapped = true;
                int tmp = arr[i - 1];
                arr[i - 1] = arr[i];
                arr[i] = tmp;
            }
        }
        if (!swapped) {
            return;
        }
    }
}

We can add parameters, but they only help 
so much.  What about other orders we 
can’t anticipate? (odd-before-even, etc.)
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Integer Bubble Sort

void bubble_sort_int(int *arr, size_t n, bool ascending) {
    while (true) {
        bool swapped = false;
        for (size_t i = 1; i < n; i++) {
            if ((ascending && arr[i - 1] > arr[i]) ||
   (!ascending && arr[i] > arr[i – 1])) {
                swapped = true;
                int tmp = arr[i - 1];
                arr[i - 1] = arr[i];
                arr[i] = tmp;
            }
        }
        if (!swapped) {
            return;
        }
    }
}

We can add parameters, but they only help 
so much.  Or even different comparisons 
(strcmp, etc.) ?
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Integer Bubble Sort

void bubble_sort_int(int *arr, size_t n) {
    while (true) {
        bool swapped = false;
        for (size_t i = 1; i < n; i++) {
            if (should_swap(arr[i – 1], arr[i])) {
                swapped = true;
                int tmp = arr[i - 1];
                arr[i - 1] = arr[i];
                arr[i] = tmp;
            }
        }
        if (!swapped) {
            return;
        }
    }
}

What we really want is this – but we don’t 
know how to implement this function…the 
person calling this function does, though!



Integer Bubble Sort

void bubble_sort_int(int *arr, int n) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

if (arr[i - 1] > arr[i]) { 
swapped = true;
swap_int(&arr[i - 1], &arr[i]);

}
}

if (!swapped) {
return;

}
}

}

How can we make this function 
generic, to sort an array of any type?
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Integer Bubble Sort

void bubble_sort_int(int *arr, int n) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

if (arr[i - 1] > arr[i]) { 
swapped = true;
swap_int(&arr[i - 1], &arr[i]);

}
}

if (!swapped) {
return;

}
}

}

Let’s start by making the parameters 
and swap generic.
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Generic Bubble Sort

void bubble_sort(void *arr, int n, int elem_size_bytes) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

if (arr[i - 1] > arr[i]) { 
swapped = true;
swap(&arr[i - 1], &arr[i], elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

Let’s start by making the parameters 
and swap generic.

28



Key Idea: Locating i-th Elem
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A common generics idiom is getting a pointer to the i-th element of a generic array.

Remember from last lecture, how to locate the last element:

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) { 
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

How can we generalize this to get the location of the i-th element?

void *ith_elem = (char *)arr + i * elem_bytes;
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Generic Bubble Sort

void bubble_sort(void *arr, int n, int elem_size_bytes) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes; 
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (*p_prev_elem > *p_curr_elem) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}

Let’s start by making the parameters 
and swap generic.

}
}
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Generic Bubble Sort

void bubble_sort(void *arr, int n, int elem_size_bytes) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (*p_prev_elem > *p_curr_elem) { 

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

Wait a minute…this doesn’t work! We can’t 
dereference void *s OR compare any element
with >, since they may not be numbers!}

}
}
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A Generics Conundrum

• We’ve hit a snag – there is no way to generically compare elements. They 
could be any type and have complex ways to compare them.

• How can we write code to compare any two elements of the same type?

• That’s not something that bubble sort can ever know how to do. BUT – our 
caller should know how to do this, because they’re supplying the data….let’s 
ask them!

34



Generic Bubble Sort

void bubble_sort(void *arr, int n, int elem_size_bytes) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (*p_prev_elem > *p_curr_elem) { 

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

bubble_sort (inner voice): hey, 

you, person who called us. Do 

you know how to compare the 

items at these two addresses?
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Generic Bubble Sort

void bubble_sort(void *arr, int n, int elem_size_bytes) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (*p_prev_elem > *p_curr_elem) { 

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

Caller: yeah, I know how to compare them. 

You don’t know what data type they are, but I 

do. I have a function that can do the 

comparison for you and tell you the result.
36



Generic Bubble Sort

void bubble_sort(void *arr, int n, int elem_size_bytes,
function compare_fn) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (compare_fn(p_prev_elem, p_curr_elem)) { 

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

So, how can we receive this comparison 
function? The function will be a parameter. 
And it is job will be to tell us how the two
elements compare.
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Generic Bubble Sort

void bubble_sort(void *arr, int n, int elem_size_bytes,
bool (*compare_fn)(void *a, void *b)) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (compare_fn(p_prev_elem, p_curr_elem)) { 

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

So the expected return will be a bool, and the 
function’s expected input will be two void * 
arguments. 

38



Function Pointers
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A function pointer is the variable type for passing a function as a parameter. 
Here is how the parameter’s type is declared.

bool (*compare_fn)(void *a, void *b)
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Function Pointers

A function pointer is the variable type for passing a function as a parameter. 
Here is how the parameter’s type is declared.

bool (*compare_fn)(void *a, void *b)

Function pointer name 

(compare_fn)
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Function Pointers

A function pointer is the variable type for passing a function as a parameter. 
Here is how the parameter’s type is declared.

bool (*compare_fn)(void *a, void *b)

Function parameters 

(two void *s)

42



Function Pointers
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Here’s the general variable type syntax:

[return type] (*[name])([parameters])



Generic Bubble Sort

void bubble_sort(void *arr, int n, int elem_size_bytes,
bool (*compare_fn)(void *a, void *b)) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (compare_fn(p_prev_elem, p_curr_elem)) { 

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
} 44



bubble_sort is generic and works for any type. 
But the caller knows the specific type of data 
being sorted and provides a comparison 
function specifically for that data type.

Function Pointers

bool integer_compare(void *ptr1, void *ptr2) {
...

}

int main(int argc, char *argv[]) {
int nums[] = {4, 2, -5, 1, 12, 56};
int nums_count = sizeof(nums) / sizeof(nums[0]); 
bubble_sort(nums, nums_count, sizeof(nums[0]), integer_compare);
...

}
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Function Pointers

bool string_compare(void *ptr1, void *ptr2) {
...

}

int main(int argc, char *argv[]) {
char *classes[] = {"CS106A", "CS106B", "CS107", "CS110"};
int arr_count = sizeof(classes) / sizeof(classes[0]); 
bubble_sort(classes, arr_count, sizeof(classes[0]), string_compare);
...

}

bubble_sort is generic and works for any type. 
But the caller knows the specific type of data 
being sorted and provides a comparison 
function specifically for that data type.

46



Bubble Sort
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void bubble_sort(void *arr, int n, int elem_size_bytes,
bool (*compare_fn)(void *a, void *b))

• Bubble Sort is written as a generic library function to be imported into 
potentially many programs to be used with many types. It must have a single 
function signature but work with any type of data.

• Its comparison function type is part of its function signature – the comparison 
function signature must use one set of types but accept any data of any size. 
How do we do this?

• The function will instead accept pointers to the data via void * parameters

• This means that the functions must be written to handle parameters which are pointers 
to the data to be compared



Function Pointers
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This means that functions with generic parameters must always take pointers to 
the data they care about.

We can use the following pattern:

1) Cast the void *argument(s) and set typed pointers equal to them.

2) Dereference the typed pointer(s) to access the values.

3) Perform the necessary operation.

(steps 1 and 2 can often be combined into a single step)



Function Pointers

bool integer_compare(void *ptr1, void *ptr2) {
// 1) cast arguments to int *s
int *num1ptr = (int *)ptr1;
int *num2ptr = (int *)ptr2;

// 2) dereference typed points to access values
int num1 = *num1ptr;
int num2 = *num2ptr;

// 3) perform operation 
return num1 > num2;

}

This function is created by the caller 
specifically to compare integers, 
knowing their addresses are necessarily 
disguised as void *so that bubble_sort 
can work for any array type.
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Function Pointers

bool integer_compare(void *ptr1, void *ptr2) {
// 1) cast arguments to int *s
int *num1ptr = (int *)ptr1;
int *num2ptr = (int *)ptr2;

// 2) dereference typed points to access values
int num1 = *num1ptr; 
int num2 = *num2ptr;

// 3) perform operation 
return num1 > num2;

}

However, the type of the 
comparison function that e.g. 
bubble_sort accepts must be 
generic, since we are writing one 
bubble_sort function to work 
with any data type.
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Generic Bubble Sort

if (!swapped) {
return;

}
}

}

void bubble_sort(void *arr, int n, int elem_size_bytes,
bool (*compare_fn)(void *a, void *b)) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (compare_fn(p_prev_elem, p_curr_elem)) { 

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

. . .

Caller’s stack frame

? ? ? ?

. . .

bubble_sort i arr p_prev_elem p_curr_elem

2
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Function Pointers

bool integer_compare(void *ptr1, void *ptr2) { 
return *(int *)ptr1 > *(int *)ptr2;

}

. . .

Caller’s stack frame

? ? ? ?

. . .

bubble_sort i arr p_prev_elem p_curr_elem

2

. . .

Cmp fn stack frame ptr1 ptr2

52



Comparison Functions
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• Function pointers are used often in cases like this to compare two values of the 
same type. These are called comparison functions.

• The standard comparison function in many C functions provides even more 
information. It should return:
• < 0 if first value should come before second value
• > 0 if first value should come after second value

• 0 if first value and second value are equivalent

• This is the same return value format as strcmp!

int (*compare_fn)(void *a, void *b)



Comparison Functions
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int integer_compare(void *ptr1, void *ptr2) {
return *(int *)ptr1 – *(int *)ptr2;

}



Generic Bubble Sort
void bubble_sort(void *arr, int n, int elem_size_bytes,

int (*compare_fn)(void *a, void *b)) { 
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes; 
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (compare_fn(p_prev_elem, p_curr_elem) > 0) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) { 
return;

}
}

} 55



Comparison Functions

• Exercise: how can we write a comparison function for bubble sort to sort 
strings in alphabetical order?

• The common prototype provides even more information. It should return:
• < 0 if first value should come before second value

• > 0 if first value should come after second value

• 0 if first value and second value are equivalent

int (*compare_fn)(void *a, void *b)

56



String Comparison Function

// perform operation
return strcmp(str1, str2);

}

int string_compare(void *ptr1, void *ptr2)
{

// cast arguments and dereference 
char *str1 = *(char **)ptr1;
char *str2 = *(char **)ptr2;

. . .
Caller’s stack frame

? ? ? ?

. . .

bubble_sort i arr p_prev_elem p_curr_elem

2

. . .

Cmp fn stack frame ptr1 ptr2

57



Function Pointer Pitfalls

• If a function takes a function pointer as a parameter, it will accept it if it fits the 
specified signature.

• This is dangerous! E.g. what happens if you pass in a string comparison 
function when sorting an integer array?
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Function Pointers
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• Function pointers can be used in a variety of ways. For instance, you could 
have:
• A function to compare two elements of a given type

• A function to print out an element of a given type

• A function to free memory associated with a given type

• And more…



The meaning of “callback” functions

Library writer
• Writes generic algorithmic 

functions
• Relies on user-provided nelems, 

sizeof(elem), function pointer

User/caller
• Knows the data
• Might not know the algorithm 

(hence the use of library function)
• Writes the callback function to pass 

into library function

void print_array(void *arr, size_t nelems,

int elem_size, 
void(*print_fn)(void *)) {

…
}

void print_string(void *ptr) {
…

}

int main(int argc, char *argv[]) {
…
print_array(str_array, n_elems, 

sizeof(str_array[0]), print_string);
…

} The library uses a user-written (and user-
provided!) callback function to perform 
complex operations on generic data. 60
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• Comparison function – compares two elements of a given type.

int (*cmp_fn)(void *addr1, void *addr2)

• Printing function – prints out an element of a given type

void (*print_fn)(void *addr)

• There are many more! You can specify any functions you would like passed in 
when writing your own generic functions.



Function Pointers As Variables
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In addition to parameters, you can make normal variables that are functions.

int do_something (char *str) { 
printf("%s\n", str);
return strlen(str);

}

int main(int argc, char *argv[]) {
// Do something with variables

int (*func_var)(char *) = do_something; 
char *str = "testing";
int retval = func_var(str);

printf("%d\n", retval); 
return 0;

}

1
2
3
4

5
6
7
8
9
10
11
12



Generic C Standard Library Functions
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• qsort – I can sort an array of any type! To do that, I need you to provide me a 
function that can compare two elements of the kind you are asking me to sort.

• bsearch – I can use binary search to search for a key in an array of any type! To 
do that, I need you to provide me a function that can compare two elements
of the kind you are asking me to search.

• lfind – I can use linear search to search for a key in an array of any type! To do 
that, I need you to provide me a function that can compare two elements of 
the kind you are asking me to search.

• lsearch - I can use linear search to search for a key in an array of any type! I 
will also add the key for you if I can’t find it. In order to do that, I need you to 
provide me a function that can compare two elements of the kind you are 
asking me to search.



Generic C Standard Library Functions
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• scandir – I can create a directory listing with any order and contents! To do 
that, I need you to provide me a function that tells me whether you want me
to include a given directory entry in the listing. I also need you to provide me a 
function that tells me the correct ordering of two given directory entries.



Recap
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• We use void * pointers and memory operations like memcpy and memmove
to make data operations generic.

• We use function pointers to make logic/functionality operations generic.

• Function pointers also allow us to pass logic around in our programs.

• Functions handling generic data must use pointers to the data they care about, 
since any parameters must have one type and one size.



Common code snippets
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• Generic function: Iterate through a generic array.

for (int i = 0; i < nelems; i++) {
void *curr_p = (char *)base + i * elem_size_bytes;
…

}

• User setup: Compute the number of elements in a local array.

int *int_array[] = …; // declared locally
size_t nelems = sizeof(int_array) / sizeof(int_array[0]);



Recall print_array:
void print_array(void *arr, size_t nelems, int elem_size_bytes, 

void(*print_fn)(void *)) {
for (int i = 0; i < nelems; i++) {

void *elem_ptr = (char *)arr + i * elem_size_bytes;
printf("%d: ", i + 1); 
print_fn(elem_ptr); 
printf("\n");

}

}

What would happen here?

1
2
3

void print_string(void *ptr) { 
char *str = ??? ; 
printf("%s", str);

1. Fill in the blank so that print_array
can print an array of strings.

2. Why would A or D not “work”?

A. (char *) ptr C. *(char *) ptr
B. *(char **) ptr D. **(char ***) ptr

4 }
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What would happen here?
void print_array(void *arr, size_t nelems, int elem_size, 

void(*print_fn)(void *)) {
…

void *elem_ptr = (char *)arr + i * elem_size_bytes; 
print_fn(elem_ptr);
…

}

void print_string(void *ptr) { 
char *str = ??? ; 
printf("%s", str);

}

int main(int argc, char *argv[]) {
char *str_array[] = {"aardvark", "beaver", "capybara"}; 
size_t n_elems = sizeof(str_array) / sizeof(str_array[0]);
print_array(str_array, n_elems, sizeof(str_array[0]), print_string);
…

}

What is the actual type 
of the parameter passed 
into print_string?

As a caller: Remember what the true 
types of parameters are.

Caller

Library
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Practice: Count Matches

• Let’s write a generic function count_matches that can count the number of a 
certain type of element in a generic array.

• It should take in as parameters information about the generic array, and a 
function parameter that can take in a pointer to a single array element and tell 
us if it’s a match.

int count_matches(void *base, int nelems,
int elem_size_bytes,
bool (*match_fn)(void *));
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Practice: Count Matches
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int count_matches(void *base, int nelems, int
elem_size_bytes, bool (*match_fn)(void *)) {

int match_count = 0;

for (int i = 0; i < nelems; i++) {
void *curr_p = (char *)base + i * elem_size_bytes; 
if (match_fn(curr_p)) {

match_count++;
}

}

return match_count;
}



Code Sample: Generic Printing

print_array.c
71
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