
This document is copyright (C) Stanford Computer Science, Adam Keppler, and Olayinka Adekola, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Nick Troccoli and Chris Gregg

1

CS107, Lecture 9
C Generics – Function Pointers

Reading: K&R 5.11

2

Generics So Far

• void * is a variable type that represents a generic pointer “to something”.

• We cannot perform pointer arithmetic with or dereference (without casting
first) a void *.

• We can use memcpy or memmove to copy data from one memory location to
another.

• To do pointer arithmetic with a void *, we must first cast it to a char *.

• void * and generics are powerful but dangerous because of the lack of type
checking, so we must be extra careful when working with generic memory.

3

Generic Swap

void swap(void *data1ptr, void *data2ptr, size_t nbytes) {
 char temp[nbytes];
 memcpy(temp, data1ptr, nbytes);
 memmove(data1ptr, data2ptr, nbytes);
 memcpy(data2ptr, temp, nbytes);
}

We can use void * to represent a pointer to any
data, and memcpy/memmove to copy arbitrary
bytes.

4

Generic Array Swap

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
 swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);
}

We can cast to a char * in order to perform
manual byte arithmetic with void * pointers.

memset

5

memset is a function that sets a specified amount of bytes at one address to a
certain value.

void *memset(void *s, int c, size_t n);

It fills n bytes starting at memory location s with the byte c. (It also returns s).

int counts[5];
memset(counts, 0, 3); // zero out first 3 bytes at counts
memset(counts + 3, 0xff, 4) // set 3rd entry’s bytes to 1s

Bubble Sort

6

• Let’s write a function to sort a list of integers. We’ll use the bubble sort
algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

4 2 12 -5 56 14

Bubble Sort

• Let’s write a function to sort a list of integers. We’ll use the bubble sort
algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

4 2 12 -5 56 14

7

Bubble Sort

• Let’s write a function to sort a list of integers. We’ll use the bubble sort
algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 12 -5 56 14

8

Bubble Sort

• Let’s write a function to sort a list of integers. We’ll use the bubble sort
algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 12 -5 56 14

9

Bubble Sort

• Let’s write a function to sort a list of integers. We’ll use the bubble sort
algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 12 -5 56 14

10

Bubble Sort

• Let’s write a function to sort a list of integers. We’ll use the bubble sort
algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 -5 12 56 14

11

Bubble Sort

• Let’s write a function to sort a list of integers. We’ll use the bubble sort
algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 -5 12 56 14

12

Bubble Sort

• Let’s write a function to sort a list of integers. We’ll use the bubble sort
algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 -5 12 56 14

13

Bubble Sort

• Let’s write a function to sort a list of integers. We’ll use the bubble sort
algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 -5 12 14 56

14

Bubble Sort

• Let’s write a function to sort a list of integers. We’ll use the bubble sort
algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 -5 12 14 56

15

Bubble Sort

• Let’s write a function to sort a list of integers. We’ll use the bubble sort
algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 4 -5 12 14 56

16

Bubble Sort

• Let’s write a function to sort a list of integers. We’ll use the bubble sort
algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 -5 4 12 14 56

17

Bubble Sort

• Let’s write a function to sort a list of integers. We’ll use the bubble sort
algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 -5 4 12 14 56

18

Bubble Sort

• Let’s write a function to sort a list of integers. We’ll use the bubble sort
algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 -5 4 12 14 56

19

Bubble Sort

• Let’s write a function to sort a list of integers. We’ll use the bubble sort
algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

2 -5 4 12 14 56

In general, bubble sort requires up to n - 1 passes to sort an array of
length n, though it may end sooner if a pass doesn’t swap anything.

20

Bubble Sort

• Let’s write a function to sort a list of integers. We’ll use the bubble sort
algorithm.

• Bubble sort repeatedly goes through the array, swapping any pairs of elements
that are out of order. When there are no more swaps needed, the array is
sorted!

-5 2 4 12 14 56

Only two more passes are needed to arrive at the above. The first
exchanges the 2 and the -5, and the second leaves everything as is.

21

22

Integer Bubble Sort

void bubble_sort_int(int *arr, size_t n) {
 while (true) {
 bool swapped = false;
 for (size_t i = 1; i < n; i++) {
 if (arr[i - 1] > arr[i]) {
 swapped = true;
 int tmp = arr[i - 1];
 arr[i - 1] = arr[i];
 arr[i] = tmp;
 }
 }
 if (!swapped) {
 return;
 }
 }
}

How can we make this function more generic?
To start, this function always sorts in ascending
order. What about other orders?

23

Integer Bubble Sort

void bubble_sort_int(int *arr, size_t n, bool ascending) {
 while (true) {
 bool swapped = false;
 for (size_t i = 1; i < n; i++) {
 if ((ascending && arr[i - 1] > arr[i]) ||
 (!ascending && arr[i] > arr[i – 1])) {
 swapped = true;
 int tmp = arr[i - 1];
 arr[i - 1] = arr[i];
 arr[i] = tmp;
 }
 }
 if (!swapped) {
 return;
 }
 }
}

We can add parameters, but they only help
so much. What about other orders we
can’t anticipate? (odd-before-even, etc.)

24

Integer Bubble Sort

void bubble_sort_int(int *arr, size_t n, bool ascending) {
 while (true) {
 bool swapped = false;
 for (size_t i = 1; i < n; i++) {
 if ((ascending && arr[i - 1] > arr[i]) ||
 (!ascending && arr[i] > arr[i – 1])) {
 swapped = true;
 int tmp = arr[i - 1];
 arr[i - 1] = arr[i];
 arr[i] = tmp;
 }
 }
 if (!swapped) {
 return;
 }
 }
}

We can add parameters, but they only help
so much. Or even different comparisons
(strcmp, etc.) ?

25

Integer Bubble Sort

void bubble_sort_int(int *arr, size_t n) {
 while (true) {
 bool swapped = false;
 for (size_t i = 1; i < n; i++) {
 if (should_swap(arr[i – 1], arr[i])) {
 swapped = true;
 int tmp = arr[i - 1];
 arr[i - 1] = arr[i];
 arr[i] = tmp;
 }
 }
 if (!swapped) {
 return;
 }
 }
}

What we really want is this – but we don’t
know how to implement this function…the
person calling this function does, though!

Integer Bubble Sort

void bubble_sort_int(int *arr, int n) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

if (arr[i - 1] > arr[i]) {
swapped = true;
swap_int(&arr[i - 1], &arr[i]);

}
}

if (!swapped) {
return;

}
}

}

How can we make this function
generic, to sort an array of any type?

26

Integer Bubble Sort

void bubble_sort_int(int *arr, int n) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

if (arr[i - 1] > arr[i]) {
swapped = true;
swap_int(&arr[i - 1], &arr[i]);

}
}

if (!swapped) {
return;

}
}

}

Let’s start by making the parameters
and swap generic.

27

Generic Bubble Sort

void bubble_sort(void *arr, int n, int elem_size_bytes) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

if (arr[i - 1] > arr[i]) {
swapped = true;
swap(&arr[i - 1], &arr[i], elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

Let’s start by making the parameters
and swap generic.

28

Key Idea: Locating i-th Elem

29

A common generics idiom is getting a pointer to the i-th element of a generic array.

Remember from last lecture, how to locate the last element:

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

How can we generalize this to get the location of the i-th element?

void *ith_elem = (char *)arr + i * elem_bytes;

Key Idea: Locating i-th Elem

30

A common generics idiom is getting a pointer to the i-th element of a generic array.

Remember from last lecture, how to locate the last element:

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

How can we generalize this to get the location of the i-th element?

Key Idea: Locating i-th Elem

31

A common generics idiom is getting a pointer to the i-th element of a generic array.

Remember from last lecture, how to locate the last element:

void swap_ends(void *arr, size_t nelems, size_t elem_bytes) {
swap(arr, (char *)arr + (nelems – 1) * elem_bytes, elem_bytes);

}

How can we generalize this to get the location of the i-th element?

void *ith_elem = (char *)arr + i * elem_bytes;

Generic Bubble Sort

void bubble_sort(void *arr, int n, int elem_size_bytes) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (*p_prev_elem > *p_curr_elem) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}

Let’s start by making the parameters
and swap generic.

}
}

32

Generic Bubble Sort

void bubble_sort(void *arr, int n, int elem_size_bytes) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (*p_prev_elem > *p_curr_elem) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

Wait a minute…this doesn’t work! We can’t
dereference void *s OR compare any element
with >, since they may not be numbers!}

}
}

33

A Generics Conundrum

• We’ve hit a snag – there is no way to generically compare elements. They
could be any type and have complex ways to compare them.

• How can we write code to compare any two elements of the same type?

• That’s not something that bubble sort can ever know how to do. BUT – our
caller should know how to do this, because they’re supplying the data….let’s
ask them!

34

Generic Bubble Sort

void bubble_sort(void *arr, int n, int elem_size_bytes) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (*p_prev_elem > *p_curr_elem) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

bubble_sort (inner voice): hey,

you, person who called us. Do

you know how to compare the

items at these two addresses?

35

Generic Bubble Sort

void bubble_sort(void *arr, int n, int elem_size_bytes) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (*p_prev_elem > *p_curr_elem) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

}

Caller: yeah, I know how to compare them.

You don’t know what data type they are, but I

do. I have a function that can do the

comparison for you and tell you the result.
36

Generic Bubble Sort

void bubble_sort(void *arr, int n, int elem_size_bytes,
function compare_fn) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (compare_fn(p_prev_elem, p_curr_elem)) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

So, how can we receive this comparison
function? The function will be a parameter.
And it is job will be to tell us how the two
elements compare.

37

Generic Bubble Sort

void bubble_sort(void *arr, int n, int elem_size_bytes,
bool (*compare_fn)(void *a, void *b)) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (compare_fn(p_prev_elem, p_curr_elem)) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

So the expected return will be a bool, and the
function’s expected input will be two void *
arguments.

38

Function Pointers

39

A function pointer is the variable type for passing a function as a parameter.
Here is how the parameter’s type is declared.

bool (*compare_fn)(void *a, void *b)

Function Pointers

A function pointer is the variable type for passing a function as a parameter.
Here is how the parameter’s type is declared.

bool (*compare_fn)(void *a, void *b)

Return type

(bool)

40

Function Pointers

A function pointer is the variable type for passing a function as a parameter.
Here is how the parameter’s type is declared.

bool (*compare_fn)(void *a, void *b)

Function pointer name

(compare_fn)

41

Function Pointers

A function pointer is the variable type for passing a function as a parameter.
Here is how the parameter’s type is declared.

bool (*compare_fn)(void *a, void *b)

Function parameters

(two void *s)

42

Function Pointers

43

Here’s the general variable type syntax:

[return type] (*[name])([parameters])

Generic Bubble Sort

void bubble_sort(void *arr, int n, int elem_size_bytes,
bool (*compare_fn)(void *a, void *b)) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (compare_fn(p_prev_elem, p_curr_elem)) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
} 44

bubble_sort is generic and works for any type.
But the caller knows the specific type of data
being sorted and provides a comparison
function specifically for that data type.

Function Pointers

bool integer_compare(void *ptr1, void *ptr2) {
...

}

int main(int argc, char *argv[]) {
int nums[] = {4, 2, -5, 1, 12, 56};
int nums_count = sizeof(nums) / sizeof(nums[0]);
bubble_sort(nums, nums_count, sizeof(nums[0]), integer_compare);
...

}

45

Function Pointers

bool string_compare(void *ptr1, void *ptr2) {
...

}

int main(int argc, char *argv[]) {
char *classes[] = {"CS106A", "CS106B", "CS107", "CS110"};
int arr_count = sizeof(classes) / sizeof(classes[0]);
bubble_sort(classes, arr_count, sizeof(classes[0]), string_compare);
...

}

bubble_sort is generic and works for any type.
But the caller knows the specific type of data
being sorted and provides a comparison
function specifically for that data type.

46

Bubble Sort

47

void bubble_sort(void *arr, int n, int elem_size_bytes,
bool (*compare_fn)(void *a, void *b))

• Bubble Sort is written as a generic library function to be imported into
potentially many programs to be used with many types. It must have a single
function signature but work with any type of data.

• Its comparison function type is part of its function signature – the comparison
function signature must use one set of types but accept any data of any size.
How do we do this?

• The function will instead accept pointers to the data via void * parameters

• This means that the functions must be written to handle parameters which are pointers
to the data to be compared

Function Pointers

48

This means that functions with generic parameters must always take pointers to
the data they care about.

We can use the following pattern:

1) Cast the void *argument(s) and set typed pointers equal to them.

2) Dereference the typed pointer(s) to access the values.

3) Perform the necessary operation.

(steps 1 and 2 can often be combined into a single step)

Function Pointers

bool integer_compare(void *ptr1, void *ptr2) {
// 1) cast arguments to int *s
int *num1ptr = (int *)ptr1;
int *num2ptr = (int *)ptr2;

// 2) dereference typed points to access values
int num1 = *num1ptr;
int num2 = *num2ptr;

// 3) perform operation
return num1 > num2;

}

This function is created by the caller
specifically to compare integers,
knowing their addresses are necessarily
disguised as void *so that bubble_sort
can work for any array type.

49

Function Pointers

bool integer_compare(void *ptr1, void *ptr2) {
// 1) cast arguments to int *s
int *num1ptr = (int *)ptr1;
int *num2ptr = (int *)ptr2;

// 2) dereference typed points to access values
int num1 = *num1ptr;
int num2 = *num2ptr;

// 3) perform operation
return num1 > num2;

}

However, the type of the
comparison function that e.g.
bubble_sort accepts must be
generic, since we are writing one
bubble_sort function to work
with any data type.

50

Generic Bubble Sort

if (!swapped) {
return;

}
}

}

void bubble_sort(void *arr, int n, int elem_size_bytes,
bool (*compare_fn)(void *a, void *b)) {

while (true) {
bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (compare_fn(p_prev_elem, p_curr_elem)) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

. . .

Caller’s stack frame

? ? ? ?

. . .

bubble_sort i arr p_prev_elem p_curr_elem

2

51

Function Pointers

bool integer_compare(void *ptr1, void *ptr2) {
return *(int *)ptr1 > *(int *)ptr2;

}

. . .

Caller’s stack frame

? ? ? ?

. . .

bubble_sort i arr p_prev_elem p_curr_elem

2

. . .

Cmp fn stack frame ptr1 ptr2

52

Comparison Functions

53

• Function pointers are used often in cases like this to compare two values of the
same type. These are called comparison functions.

• The standard comparison function in many C functions provides even more
information. It should return:
• < 0 if first value should come before second value
• > 0 if first value should come after second value

• 0 if first value and second value are equivalent

• This is the same return value format as strcmp!

int (*compare_fn)(void *a, void *b)

Comparison Functions

54

int integer_compare(void *ptr1, void *ptr2) {
return *(int *)ptr1 – *(int *)ptr2;

}

Generic Bubble Sort
void bubble_sort(void *arr, int n, int elem_size_bytes,

int (*compare_fn)(void *a, void *b)) {
while (true) {

bool swapped = false;
for (int i = 1; i < n; i++) {

void *p_prev_elem = (char *)arr + (i - 1) * elem_size_bytes;
void *p_curr_elem = (char *)arr + i * elem_size_bytes;
if (compare_fn(p_prev_elem, p_curr_elem) > 0) {

swapped = true;
swap(p_prev_elem, p_curr_elem, elem_size_bytes);

}
}

if (!swapped) {
return;

}
}

} 55

Comparison Functions

• Exercise: how can we write a comparison function for bubble sort to sort
strings in alphabetical order?

• The common prototype provides even more information. It should return:
• < 0 if first value should come before second value

• > 0 if first value should come after second value

• 0 if first value and second value are equivalent

int (*compare_fn)(void *a, void *b)

56

String Comparison Function

// perform operation
return strcmp(str1, str2);

}

int string_compare(void *ptr1, void *ptr2)
{

// cast arguments and dereference
char *str1 = *(char **)ptr1;
char *str2 = *(char **)ptr2;

. . .
Caller’s stack frame

? ? ? ?

. . .

bubble_sort i arr p_prev_elem p_curr_elem

2

. . .

Cmp fn stack frame ptr1 ptr2

57

Function Pointer Pitfalls

• If a function takes a function pointer as a parameter, it will accept it if it fits the
specified signature.

• This is dangerous! E.g. what happens if you pass in a string comparison
function when sorting an integer array?

58

Function Pointers

59

• Function pointers can be used in a variety of ways. For instance, you could
have:
• A function to compare two elements of a given type

• A function to print out an element of a given type

• A function to free memory associated with a given type

• And more…

The meaning of “callback” functions

Library writer
• Writes generic algorithmic

functions
• Relies on user-provided nelems,

sizeof(elem), function pointer

User/caller
• Knows the data
• Might not know the algorithm

(hence the use of library function)
• Writes the callback function to pass

into library function

void print_array(void *arr, size_t nelems,

int elem_size,
void(*print_fn)(void *)) {

…
}

void print_string(void *ptr) {
…

}

int main(int argc, char *argv[]) {
…
print_array(str_array, n_elems,

sizeof(str_array[0]), print_string);
…

} The library uses a user-written (and user-
provided!) callback function to perform
complex operations on generic data. 60

Common Utility Callback Functions

61

• Comparison function – compares two elements of a given type.

int (*cmp_fn)(void *addr1, void *addr2)

• Printing function – prints out an element of a given type

void (*print_fn)(void *addr)

• There are many more! You can specify any functions you would like passed in
when writing your own generic functions.

Function Pointers As Variables

62

In addition to parameters, you can make normal variables that are functions.

int do_something (char *str) {
printf("%s\n", str);
return strlen(str);

}

int main(int argc, char *argv[]) {
// Do something with variables

int (*func_var)(char *) = do_something;
char *str = "testing";
int retval = func_var(str);

printf("%d\n", retval);
return 0;

}

1
2
3
4

5
6
7
8
9
10
11
12

Generic C Standard Library Functions

63

• qsort – I can sort an array of any type! To do that, I need you to provide me a
function that can compare two elements of the kind you are asking me to sort.

• bsearch – I can use binary search to search for a key in an array of any type! To
do that, I need you to provide me a function that can compare two elements
of the kind you are asking me to search.

• lfind – I can use linear search to search for a key in an array of any type! To do
that, I need you to provide me a function that can compare two elements of
the kind you are asking me to search.

• lsearch - I can use linear search to search for a key in an array of any type! I
will also add the key for you if I can’t find it. In order to do that, I need you to
provide me a function that can compare two elements of the kind you are
asking me to search.

Generic C Standard Library Functions

64

• scandir – I can create a directory listing with any order and contents! To do
that, I need you to provide me a function that tells me whether you want me
to include a given directory entry in the listing. I also need you to provide me a
function that tells me the correct ordering of two given directory entries.

Recap

65

• We use void * pointers and memory operations like memcpy and memmove
to make data operations generic.

• We use function pointers to make logic/functionality operations generic.

• Function pointers also allow us to pass logic around in our programs.

• Functions handling generic data must use pointers to the data they care about,
since any parameters must have one type and one size.

Common code snippets

66

• Generic function: Iterate through a generic array.

for (int i = 0; i < nelems; i++) {
void *curr_p = (char *)base + i * elem_size_bytes;
…

}

• User setup: Compute the number of elements in a local array.

int *int_array[] = …; // declared locally
size_t nelems = sizeof(int_array) / sizeof(int_array[0]);

Recall print_array:
void print_array(void *arr, size_t nelems, int elem_size_bytes,

void(*print_fn)(void *)) {
for (int i = 0; i < nelems; i++) {

void *elem_ptr = (char *)arr + i * elem_size_bytes;
printf("%d: ", i + 1);
print_fn(elem_ptr);
printf("\n");

}

}

What would happen here?

1
2
3

void print_string(void *ptr) {
char *str = ??? ;
printf("%s", str);

1. Fill in the blank so that print_array
can print an array of strings.

2. Why would A or D not “work”?

A. (char *) ptr C. *(char *) ptr
B. *(char **) ptr D. **(char ***) ptr

4 }

67

What would happen here?
void print_array(void *arr, size_t nelems, int elem_size,

void(*print_fn)(void *)) {
…

void *elem_ptr = (char *)arr + i * elem_size_bytes;
print_fn(elem_ptr);
…

}

void print_string(void *ptr) {
char *str = ??? ;
printf("%s", str);

}

int main(int argc, char *argv[]) {
char *str_array[] = {"aardvark", "beaver", "capybara"};
size_t n_elems = sizeof(str_array) / sizeof(str_array[0]);
print_array(str_array, n_elems, sizeof(str_array[0]), print_string);
…

}

What is the actual type
of the parameter passed
into print_string?

As a caller: Remember what the true
types of parameters are.

Caller

Library

68

Practice: Count Matches

• Let’s write a generic function count_matches that can count the number of a
certain type of element in a generic array.

• It should take in as parameters information about the generic array, and a
function parameter that can take in a pointer to a single array element and tell
us if it’s a match.

int count_matches(void *base, int nelems,
int elem_size_bytes,
bool (*match_fn)(void *));

69

Practice: Count Matches

70

int count_matches(void *base, int nelems, int
elem_size_bytes, bool (*match_fn)(void *)) {

int match_count = 0;

for (int i = 0; i < nelems; i++) {
void *curr_p = (char *)base + i * elem_size_bytes;
if (match_fn(curr_p)) {

match_count++;
}

}

return match_count;
}

Code Sample: Generic Printing

print_array.c
71

	Slide 1: CS107, Lecture 9 C Generics – Function Pointers
	Slide 2: Generics So Far
	Slide 3: Generic Swap
	Slide 4: Generic Array Swap
	Slide 5: memset
	Slide 6: Bubble Sort
	Slide 7: Bubble Sort
	Slide 8: Bubble Sort
	Slide 9: Bubble Sort
	Slide 10: Bubble Sort
	Slide 11: Bubble Sort
	Slide 12: Bubble Sort
	Slide 13: Bubble Sort
	Slide 14: Bubble Sort
	Slide 15: Bubble Sort
	Slide 16: Bubble Sort
	Slide 17: Bubble Sort
	Slide 18: Bubble Sort
	Slide 19: Bubble Sort
	Slide 20: Bubble Sort
	Slide 21: Bubble Sort
	Slide 22: Integer Bubble Sort
	Slide 23: Integer Bubble Sort
	Slide 24: Integer Bubble Sort
	Slide 25: Integer Bubble Sort
	Slide 26: Integer Bubble Sort
	Slide 27: Integer Bubble Sort
	Slide 28: Generic Bubble Sort
	Slide 29: Key Idea: Locating i-th Elem
	Slide 30: Key Idea: Locating i-th Elem
	Slide 31: Key Idea: Locating i-th Elem
	Slide 32: Generic Bubble Sort
	Slide 33: Generic Bubble Sort
	Slide 34: A Generics Conundrum
	Slide 35: Generic Bubble Sort
	Slide 36: Generic Bubble Sort
	Slide 37: Generic Bubble Sort
	Slide 38: Generic Bubble Sort
	Slide 39: Function Pointers
	Slide 40: Function Pointers
	Slide 41: Function Pointers
	Slide 42: Function Pointers
	Slide 43: Function Pointers
	Slide 44: Generic Bubble Sort
	Slide 45: Function Pointers
	Slide 46: Function Pointers
	Slide 47: Bubble Sort
	Slide 48: Function Pointers
	Slide 49: Function Pointers
	Slide 50: Function Pointers
	Slide 51: Generic Bubble Sort
	Slide 52: Function Pointers
	Slide 53: Comparison Functions
	Slide 54: Comparison Functions
	Slide 55: Generic Bubble Sort
	Slide 56: Comparison Functions
	Slide 57: String Comparison Function
	Slide 58: Function Pointer Pitfalls
	Slide 59: Function Pointers
	Slide 60: The meaning of “callback” functions
	Slide 61: Common Utility Callback Functions
	Slide 62: Function Pointers As Variables
	Slide 63: Generic C Standard Library Functions
	Slide 64: Generic C Standard Library Functions
	Slide 65: Recap
	Slide 66: Common code snippets
	Slide 67: What would happen here?
	Slide 68: What would happen here?
	Slide 69: Practice: Count Matches
	Slide 70: Practice: Count Matches
	Slide 71: Code Sample: Generic Printing

