CS107, Lecture 24

Optimization

Reading: B&O 5

Ed Discussion

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

https://edstem.org/us/courses/86308/discussion/7306143

Optimization

e Optimization is the task of making your program more efficient in space and
time. You’'ve studied Big-O notation in prerequisite courses, so you know
something about efficiency already!

* Targeted and intentional optimizations designed to alleviate true bottlenecks
can result in huge speed and memory gains.

* But it’s important to prioritize optimizations that really make an impact.

Optimization

Most of what you need to do with optimization can be summarized this way:

1) If you’re doing something infrequently, and only on small inputs, do
whatever is simplest to code, understand, read, and debug.

2) If you’re doing something often or on big inputs, make the primary
algorithm’s Big-O cost reasonably low.

3) Let gcc work its magic from there.
4) Optimize explicitly as a last resort.

GCC Optimization

* Today, we’ll be comparing two levels of optimization in the gec compiler:
e gcc -00 // mostly just literal translation of C
e gcc -02 // enable nearly all reasonable optimizations
* (we also use —0g, which is like =00, but it’s more gdb-friendly)

* There are other custom and more aggressive levels of optimization, e.g.:
- -03 // more aggressive than 02, trade size for speed
* -Os // optimize for code size
« -Ofast // disregard standards compliance (!!)

e Optimizations may target one or more of:
* static instruction count
* dynamic instruction count, which translates to cycle count and execution time

* Exhaustive list of optimization-drive gcc flags is right here.

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Example: Matrix Multiplication

Here’s your standard matrix multiply, a triply-nested for loop:

void mmm (double af[] [DIM], double b[][DIM], double c[][DIM], size t n) {

for (size t 1 = 0; 1 < n;
for (size t j = 0y

for (size t k = 0y

cl[1][3] ali

J < n;

i++) |

J++) Ao

k < n; k++) {

k] * blk]l[J]7

./mult // =00 (no optimization)
matrix multiply 257%2: cycles 1.32M
matrix multiply 5072: cycles 10.61M
matrix multiply 10072: cycles 18.09M

./mult opt // =02 (with optimization

)
matrix multiply 2572: cycles 0.19M (opt)
matrix multiply 5072: cycles 2.04M (opt)
matrix multiply 10072: cycles 13.92M (opt)

GCC Optimizations

* Constant Folding

* Common Sub-expression Elimination
* Dead Code

» Strength Reduction

* Code Motion

* Tail Recursion

* Loop Unrolling

Constant Folding

Constant Folding pre-calculates constants at compile time whenever possible.

int seconds = 60 * 60 * 24 * n days;

int fold(int param) ({
char arr[5];
int a = 0x107;

int ¢ = sqrt(2.0);
return a * param + (a + 0x15 / ¢ + strlen("Hello") * b - 0x37) / 4;

ing: Before (-00)

00000000000011b9 <fold>:

11b9: 55 push $rbp

llba: 48 89 e5 mov %$rsp, $rbp

11lbd: 41 54 push %$rl2

11bf: 53 push $rbx

11c0: 48 83 ec 30 sub $0x30,%rsp

11lc4: 89 7d cc mov %edi, -0x34 (%$rbp)
11c7: c7 45 ec 07 01 00 0O movl $0x107,-0x14 (%rbp)
11df: 48 8b 05 2a 0e 00 00 mov Oxe2a (%rip) ,%rax # 2010 <_IO_stdin_ used+0x10>
1lle6: 66 48 0f 6e cO movqg %$rax, $xmm0

lleb: e8 b0 fe ff ff call 10a0 <sqrt@plt>
11£€0: f2 0f 2c <O cvttsd2si %$xmmO, $eax
11£f4: 89 45 e4 mov %eax,-0xlc (%$rbp)
11£€7: 8b 45 ec mov -0x14 (%rbp) , %eax
11fa: 0f af 45 cc imul -0x34 (%rbp) , %eax
life: 41 89 c4 mov %eax,%rl2d

1201: b8 15 00 00 00 mov $0x15, %eax

1206: 99 cltd

1207: £7 7d e4d idivl -0xlc(%rbp)

120a: 89 c2 mov %eax, %edx

120c: 8b 45 ec mov -0x14 (%rbp) ,%eax
120f: 01 do add %edx, $eax

1211: 48 63 ds8 movslqg %eax, %$rbx

1214: 48 8d 05 ed 0d 00 00 lea Oxded (%rip) , %rax # 2008 <_IO_ stdin_used+0x8>
121b: 48 89 c7 mov %$rax,%rdi

121e: e8 1d fe ff ff call 1040 <strlen@plt>
1223: 8b 55 e8 mov -0x18 (%rbp) , %edx
1226: 48 63 d2 movslqg %edx,$rdx

1229: 48 0f af c2 imul %$rdx, $rax

1224: 48 01 d8 add %$rbx, %rax

1230: 48 83 e8 37 sub $0x37,%rax

1234: 48 cl e8 02 shr $0x2, %rax

1238: 44 01 e0 add %rl2d, %eax

123b: 48 83 c4 30 add $0x30,%rsp

123f: 5b pop $rbx

1240: 41 5c pop %$rl2

1242: 5d pop $rbp 8

1243: c3 ret

Constant Folding: After (-02)

00000000000011b0 <fold>:

11b0: 69 c7 07 01 00 00 imul $0x107,%edi, %eax
11bé6: 05 a5 06 00 00 add $0x6a5, %eax
11bb: c3 retq

What is the consequence of this for you as a programmer? What should you do
differently or the same knowing that compilers can do this for you?

Constant Folding: Less Contrived

unsigned 1int cf (unsigned long val) {
unsigned long ones = ~0U / UCHAR MAX;
unsigned long highs = ones << (CHAR BIT - 1);

// compiled with -00

return (val - ones) & highs;
push %Srbp }
mov %srsp, srbp
mov %$rdi,-0x18 (%rbp)
movg $0x1010101,-0x8 (%rbp)
mov -0x8 (%rbp), srax
shl $0x7,%rax The compiler doesn't need to emit assembly
mov srax, ~0x10 (Frbp) for work that can be managed at CT. Here, it
mov -0x18 (%rbp), $rax . . .
mov Seax, Sedx folds all constants into two instructions.

mov -0x8 (%rbp), $rax
sub %eax, sedx

mov -0x10 (%rbp), $Srax
and %edx, $eax

pop Srbp

retqg

// compiled with -02

lea -0x1010101(%rdi), %eax
and $0x80808080, %eax

retqg

10

Common Sub-Expression Elimination

Common Sub-Expression Elimination prevents the recalculation of the same
thing many times by doing it once and saving the result.

int a = (param2 + 0x107);
int b = paraml * (paramZ2 + 0x107) + a;
return a * (param2 + 0x107) + b * (paramZ2 + 0x107);

11

Common Sub-Expression Elimination

Common Sub-Expression Elimination prevents the recalculation of the same
thing many times by doing it once and saving the result.

int a = (param2 + 0x107);

int b = paraml * (paramZ2 + 0x107) + a;

return a * (param2 + 0x107) + b * (param2 + 0x107);
// =2 * a * a + paraml * a * a

00000000000011b0 <subexp>: // paraml in %edi, param?2 in %Sesi

11b0: lea 0x107 (%$rsi), $eax // $Seax stores a

11b6: imul Seax, $edi // paraml * a

11b9: 1lea ($rdi, $Srax,2),%esi // 2 * a + paraml * a

1lbc: imul $esi, $eax // a * (2 * a + paraml * a)

11bf: retqg 12

Common Sub-Expression Elimination

Why should we bother saving repeated calculations in variables if the compiler
has common subexpression elimination?

* The compiler may not always be able to optimize in every instance. Plus, it can
minimize code replication.

* Makes code more readable.

13

Dead Code Elimination

Dead code elimination removes code that doesn’t serve a purpose:

if (paraml < param?2 && paraml > param?2) {
printf ("This test can never be true!\n");
}
for (int 1 = 0; 1 < 1000; i++); // Empty for loop

// If/else that does the same operation in both cases

if (paraml == param?) {
paraml++;

} else {
paraml++;

}

// If/else that more obliquely does the same thing in both cases

if (paraml == 0) {
return 0;
} else {

return paraml;
} 14

Dead Code: Before (-00)

00000000000011a9 <dead code>:

11a9: 55 push srbp

llaa: 48 89 e5 mov $rsp, 3r

llad: 48 83 ec 20 sub $Ox§0,%rsp

11bl: 89 7d ec mov sedi, -0x14 (%5rbp)
11b4: 89 75 e8 mov %esi, -0x18 (%rbp)
11b7: 8b 45 ec mov —Ox14(orbp),°eax
llba: 3b 45 e8 cmp -0x18 (%rbp) , $eax
11lbd: 7d 1lc Jjge 11db <dead code+0x32>
11bf: 8b 45 ec mov -0x14 (%rbp), $eax
11lc2: 3b 45 e8 cmp -0x18 (%rbp) , $eax
11c5: Te 14 jle 11db <dead code+0x32>
11c7: 48 8d 05 36 0e 00 00 lea O0xe36 (%rip), $rax
llce: 48 89 c7 mov $rax, $rdi

11d1: p8 00 00 00 00 mov S0x0, $eax

11d6: e8 65 fe ff ff call 1040 < r1ntf@plt>
11db: c7 45 fc 00 00 00 00 mov1l $0x0,-0x4 ($rbp)

lle2: eb 04 Jjmp 11le8 <dead code+0x3f>
lled: 83 45 fc 01 addl S0x1,-0x4 (%rbp)

11e8: 81 7d fc e7 03 00 00 cmpl $0x3e7,-0x4 (%$rbp)
llef: Te £3 jle lled4 <dead code+0x3b>
11f1: 8b 45 ec mov —Ox14(orbp),oeax
11f4: 3b 45 e8 cmp -0x18 (%rbp) , $eax
11£7: 75 06 jne 11ff <dead code+0x56>
11£9: 83 45 ec 01 addl S0x1,-0x14T%rbp)
11£d: eb 04 Jjmp 1203 <dead code+0x5a>
11ff: 83 45 ec 01 addl S0x1,-0x14T%rbp)
1203: 83 7d ec 00 cmpl S0x0,-0x14 (%$rbp)
1207: 75 07 jne 1210 <dead code+0x67>
1209: p8 00 00 00 0O mov S0x0, %eax

120e: eb 03 Jjmp 1213 <dead codet+0x6a>
1210: 8b 45 ec mov -0x14 (%rbp) , $eax
1213: c9 leave

1214: c3 ret

15

Dead Code: After (-02)

00000000000011b0 <dead code>:
11b0: 8d 47 01 lea Ox1 (%rdi), seax
11b3: c3 retqg

16

Strength Reduction

Strength reduction changes divide to multiply, multiply to add/shift, and mod to
and to avoid more expensive instructions, like multiply and divide.

int a = param2 * 32;

int b = a * 7;

int ¢ = b / 3;

int d = param2 % 2;

for (int 1 = 0; 1 <= param2; 1++) {

c += paraml[i] + Ox107 * 1;
}

return ¢ + d;

17

Code Motion

Code motion moves code outside of a loop if possible.

1 < n; i++) {

for (int 1 = 0;
i] + foo * (bar + 3);

sum += arr]|

Common subexpression elimination deals with expressions that appear multiple
times in the code. Here, the expression appears once but is calculated each loop

iteration.

18

Tail Recursion

Tail recursion is an example of where GCC can identify recursive patterns that
can be more efficiently implemented iteratively.

unsigned long factorial (unsigned long n) {
if (n <= 1) {
return 1;

}

return n * factorial(n - 1);

19

Tail Recursion

Recall the factorial implementation from the code generation lecture:

unsigned long factorial (unsigned long n) {

if (n <= 1) {
return 1;

}

return n * factorial(n - 1);

What happens with factorial (-1)°7

Infinite recursion = Literal
stack overflow!
Compiled with -0g!

20

401146
401149
40114b
40114c
40114e
401151
401156
401159
40115a
40115b
401160

<+0>:
<+3>:
<+5>:
<+6>:
<+8>:

<+11>:
<+16>:
<+19>:
<+20>:
<+21>:
<+26>:

cmp
Jbe
push
mov
lea
callqg
imul
pop
retqg
mov
retqg

Factorial: -0g vs -02

S0x1, $edi

0x40115b <factorial+21>
srbox

%edi, sebx

-0x1 (%rdi), $edi
0x401146 <factorial>
sebx, seax

srbox

S0x1, %eax

-02:

 What happened?

e Did the compiler fix the
infinite recursion?

4011e0 <+0>:
4011e5 <+5>:
4011e8 <+8>:

401llea <+10>:
4011f0 <+16>:
4011£f2 <+18>:
4011£f5 <+21>:
4011£8 <+24>:
4011fb <+27>:
4011fd <+29>:

mov
cmp
Jbe
nopw
mov
sub
imul
cmp
Jne
retqg

S0x1, %eax

S0x1, $edi

0x4011fd <factorial+29>
0x0 (%rax, %srax, 1)

%edi, sedx

S0x1, $Sedi

sedx, seax

S0x1, $edi

O0x4011f0 <factorial+lo6>

21

Loop Unrolling

Loop Unrolling: Do n loop iterations’ worth of work per actual loop iteration, so

we save ourselves from doing the loop overhead (test and jump) every time and
instead incur overhead only every n-th time.

for (size t 1 = 0; 1 <=n - 4; 1 += 4) {
i];
i+ 17;

i+ 271;

sum += arr

[
sum += arr]|
sum += arr]|

[

sum += arr[i + 3];

} // after the loop handle any leftovers

22

Limitations of GCC Optimization

GCC can’t always optimize everything! But you may know more than gcc does.

size t char sum(char *s) {
size t sum = 0;

for (size t 1 = 0; 1 < strlen(s); 1++) {

sum += s[i];

}

return sum;

What is the bottleneck? strlen called for every character
What can GCC do? code motion — pull strlen out of loop
23

Limitations of GCC Optimization

GCC can’t optimize everything! You ultimately may know more than GCC does.

vold lowerl (char *s) {

for (size t i = 0; 1 < strlen(s); i++)
if (s[i] >= '"A' && s[i] <= 'Z") {
s[1] -—= ('A' - 'a');

}
}

What is the bottleneck? strlen called for every character
What can GCC do”? nothing! s is changing, so gcc doesn’t know if length is

constant across iterations. We, however, do!
24

* callgrindis another tool in the valgrind suite

* callgrindis a profiler that measures instruction counts —another way to
measure efficiency

* can measure the number of instructions executed in each program run and
where they came from

 useful for optimizing — we can see where large #s of instruction executions
come from

25

Demo: limitations.c
and calilgrind

Why not always optimize?

Why not always just compile with —02?
e Difficult to debug optimized executables, so only optimize when complete

* Optimizations may not truly optimize program execution. The compiler does its
best, but it may slow things down, etc. Experiment to see what works out.

27

