
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

CS107, Lecture 24
Optimization

Reading: B&O 5
Ed Discussion

https://edstem.org/us/courses/86308/discussion/7306143

2

Optimization
• Optimization is the task of making your program more efficient in space and

time. You’ve studied Big-O notation in prerequisite courses, so you know
something about efficiency already!
• Targeted and intentional optimizations designed to alleviate true bottlenecks

can result in huge speed and memory gains.
• But it’s important to prioritize optimizations that really make an impact.

3

Optimization
Most of what you need to do with optimization can be summarized this way:

1) If you’re doing something infrequently, and only on small inputs, do
whatever is simplest to code, understand, read, and debug.

2) If you’re doing something often or on big inputs, make the primary
algorithm’s Big-O cost reasonably low.

3) Let gcc work its magic from there.
4) Optimize explicitly as a last resort.

4

GCC Optimization
• Today, we’ll be comparing two levels of optimization in the gcc compiler:
• gcc –O0 // mostly just literal translation of C
• gcc –O2 // enable nearly all reasonable optimizations
• (we also use –Og, which is like –O0, but it’s more gdb-friendly)

• There are other custom and more aggressive levels of optimization, e.g.:
• -O3 // more aggressive than O2, trade size for speed
• -Os // optimize for code size
• -Ofast // disregard standards compliance (!!)

• Optimizations may target one or more of:
• static instruction count
• dynamic instruction count, which translates to cycle count and execution time

• Exhaustive list of optimization-drive gcc flags is right here.

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

5

Example: Matrix Multiplication
Here’s your standard matrix multiply, a triply-nested for loop:

void mmm(double a[][DIM], double b[][DIM], double c[][DIM], size_t n) {
 for (size_t i = 0; i < n; i++) {
 for (size_t j = 0; j < n; j++) {
 for (size_t k = 0; k < n; k++) {
 c[i][j] += a[i][k] * b[k][j];
 }
 }
 }
}

./mult // -O0 (no optimization)
matrix multiply 25^2: cycles 1.32M
matrix multiply 50^2: cycles 10.61M
matrix multiply 100^2: cycles 18.09M

./mult_opt // -O2 (with optimization)
matrix multiply 25^2: cycles 0.19M (opt)
matrix multiply 50^2: cycles 2.04M (opt)
matrix multiply 100^2: cycles 13.92M (opt)

6

GCC Optimizations
• Constant Folding
• Common Sub-expression Elimination
• Dead Code
• Strength Reduction
• Code Motion
• Tail Recursion
• Loop Unrolling

7

Constant Folding
Constant Folding pre-calculates constants at compile time whenever possible.

int seconds = 60 * 60 * 24 * n_days;

int fold(int param) {
 char arr[5];
 int a = 0x107;
 int b = a * sizeof(arr);
 int c = sqrt(2.0);
 return a * param + (a + 0x15 / c + strlen("Hello") * b - 0x37) / 4;
}

8

Constant Folding: Before (-O0)
00000000000011b9 <fold>:
 11b9: 55 push %rbp
 11ba: 48 89 e5 mov %rsp,%rbp
 11bd: 41 54 push %r12
 11bf: 53 push %rbx
 11c0: 48 83 ec 30 sub $0x30,%rsp
 11c4: 89 7d cc mov %edi,-0x34(%rbp)
 11c7: c7 45 ec 07 01 00 00 movl $0x107,-0x14(%rbp)
 11ce: 8b 45 ec mov -0x14(%rbp),%eax
 11d1: 48 98 cltq
 11d3: 89 c2 mov %eax,%edx
 11d5: 89 d0 mov %edx,%eax
 11d7: c1 e0 02 shl $0x2,%eax
 11da: 01 d0 add %edx,%eax
 11dc: 89 45 e8 mov %eax,-0x18(%rbp)
 11df: 48 8b 05 2a 0e 00 00 mov 0xe2a(%rip),%rax # 2010 <_IO_stdin_used+0x10>
 11e6: 66 48 0f 6e c0 movq %rax,%xmm0
 11eb: e8 b0 fe ff ff call 10a0 <sqrt@plt>
 11f0: f2 0f 2c c0 cvttsd2si %xmm0,%eax
 11f4: 89 45 e4 mov %eax,-0x1c(%rbp)
 11f7: 8b 45 ec mov -0x14(%rbp),%eax
 11fa: 0f af 45 cc imul -0x34(%rbp),%eax
 11fe: 41 89 c4 mov %eax,%r12d
 1201: b8 15 00 00 00 mov $0x15,%eax
 1206: 99 cltd
 1207: f7 7d e4 idivl -0x1c(%rbp)
 120a: 89 c2 mov %eax,%edx
 120c: 8b 45 ec mov -0x14(%rbp),%eax
 120f: 01 d0 add %edx,%eax
 1211: 48 63 d8 movslq %eax,%rbx
 1214: 48 8d 05 ed 0d 00 00 lea 0xded(%rip),%rax # 2008 <_IO_stdin_used+0x8>
 121b: 48 89 c7 mov %rax,%rdi
 121e: e8 1d fe ff ff call 1040 <strlen@plt>
 1223: 8b 55 e8 mov -0x18(%rbp),%edx
 1226: 48 63 d2 movslq %edx,%rdx
 1229: 48 0f af c2 imul %rdx,%rax
 122d: 48 01 d8 add %rbx,%rax
 1230: 48 83 e8 37 sub $0x37,%rax
 1234: 48 c1 e8 02 shr $0x2,%rax
 1238: 44 01 e0 add %r12d,%eax
 123b: 48 83 c4 30 add $0x30,%rsp
 123f: 5b pop %rbx
 1240: 41 5c pop %r12
 1242: 5d pop %rbp
 1243: c3 ret

9

Constant Folding: After (-O2)
00000000000011b0 <fold>:
 11b0: 69 c7 07 01 00 00 imul $0x107,%edi,%eax
 11b6: 05 a5 06 00 00 add $0x6a5,%eax
 11bb: c3 retq

What is the consequence of this for you as a programmer? What should you do
differently or the same knowing that compilers can do this for you?

10

Constant Folding: Less Contrived
unsigned int cf(unsigned long val) {
 unsigned long ones = ~0U / UCHAR_MAX;
 unsigned long highs = ones << (CHAR_BIT - 1);
 return (val - ones) & highs;
}

// compiled with -O0
push %rbp
mov %rsp,%rbp
mov %rdi,-0x18(%rbp)
movq $0x1010101,-0x8(%rbp)
mov -0x8(%rbp),%rax
shl $0x7,%rax
mov %rax,-0x10(%rbp)
mov -0x18(%rbp),%rax
mov %eax,%edx
mov -0x8(%rbp),%rax
sub %eax,%edx
mov -0x10(%rbp),%rax
and %edx,%eax
pop %rbp
retq

// compiled with –O2
lea -0x1010101(%rdi),%eax
and $0x80808080,%eax
retq

The compiler doesn't need to emit assembly
for work that can be managed at CT. Here, it
folds all constants into two instructions.

11

Common Sub-Expression Elimination
Common Sub-Expression Elimination prevents the recalculation of the same
thing many times by doing it once and saving the result.

int a = (param2 + 0x107);
int b = param1 * (param2 + 0x107) + a;
return a * (param2 + 0x107) + b * (param2 + 0x107);

12

Common Sub-Expression Elimination
Common Sub-Expression Elimination prevents the recalculation of the same
thing many times by doing it once and saving the result.

int a = (param2 + 0x107);
int b = param1 * (param2 + 0x107) + a;
return a * (param2 + 0x107) + b * (param2 + 0x107);
// = 2 * a * a + param1 * a * a

00000000000011b0 <subexp>: // param1 in %edi, param2 in %esi
 11b0: lea 0x107(%rsi),%eax // %eax stores a
 11b6: imul %eax,%edi // param1 * a
 11b9: lea (%rdi,%rax,2),%esi // 2 * a + param1 * a
 11bc: imul %esi,%eax // a * (2 * a + param1 * a)
 11bf: retq

13

Common Sub-Expression Elimination
Why should we bother saving repeated calculations in variables if the compiler
has common subexpression elimination?
• The compiler may not always be able to optimize in every instance. Plus, it can

minimize code replication.
• Makes code more readable.

14

Dead Code Elimination
Dead code elimination removes code that doesn’t serve a purpose:
if (param1 < param2 && param1 > param2) {
 printf("This test can never be true!\n");
}

for (int i = 0; i < 1000; i++); // Empty for loop

// If/else that does the same operation in both cases
if (param1 == param2) {
 param1++;
} else {
 param1++;
}

// If/else that more obliquely does the same thing in both cases
if (param1 == 0) {
 return 0;
} else {
 return param1;
}

15

Dead Code: Before (-O0)
00000000000011a9 <dead_code>:
 11a9: 55 push %rbp
 11aa: 48 89 e5 mov %rsp,%rbp
 11ad: 48 83 ec 20 sub $0x20,%rsp
 11b1: 89 7d ec mov %edi,-0x14(%rbp)
 11b4: 89 75 e8 mov %esi,-0x18(%rbp)
 11b7: 8b 45 ec mov -0x14(%rbp),%eax
 11ba: 3b 45 e8 cmp -0x18(%rbp),%eax
 11bd: 7d 1c jge 11db <dead_code+0x32>
 11bf: 8b 45 ec mov -0x14(%rbp),%eax
 11c2: 3b 45 e8 cmp -0x18(%rbp),%eax
 11c5: 7e 14 jle 11db <dead_code+0x32>
 11c7: 48 8d 05 36 0e 00 00 lea 0xe36(%rip),%rax
 11ce: 48 89 c7 mov %rax,%rdi
 11d1: b8 00 00 00 00 mov $0x0,%eax
 11d6: e8 65 fe ff ff call 1040 <printf@plt>
 11db: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
 11e2: eb 04 jmp 11e8 <dead_code+0x3f>
 11e4: 83 45 fc 01 addl $0x1,-0x4(%rbp)
 11e8: 81 7d fc e7 03 00 00 cmpl $0x3e7,-0x4(%rbp)
 11ef: 7e f3 jle 11e4 <dead_code+0x3b>
 11f1: 8b 45 ec mov -0x14(%rbp),%eax
 11f4: 3b 45 e8 cmp -0x18(%rbp),%eax
 11f7: 75 06 jne 11ff <dead_code+0x56>
 11f9: 83 45 ec 01 addl $0x1,-0x14(%rbp)
 11fd: eb 04 jmp 1203 <dead_code+0x5a>
 11ff: 83 45 ec 01 addl $0x1,-0x14(%rbp)
 1203: 83 7d ec 00 cmpl $0x0,-0x14(%rbp)
 1207: 75 07 jne 1210 <dead_code+0x67>
 1209: b8 00 00 00 00 mov $0x0,%eax
 120e: eb 03 jmp 1213 <dead_code+0x6a>
 1210: 8b 45 ec mov -0x14(%rbp),%eax
 1213: c9 leave
 1214: c3 ret

16

Dead Code: After (-O2)

00000000000011b0 <dead_code>:
 11b0: 8d 47 01 lea 0x1(%rdi),%eax
 11b3: c3 retq

17

Strength Reduction
Strength reduction changes divide to multiply, multiply to add/shift, and mod to
and to avoid more expensive instructions, like multiply and divide.

int a = param2 * 32;
int b = a * 7;
int c = b / 3;
int d = param2 % 2;

for (int i = 0; i <= param2; i++) {
 c += param1[i] + 0x107 * i;
}
return c + d;

18

Code Motion
Code motion moves code outside of a loop if possible.

for (int i = 0; i < n; i++) {
sum += arr[i] + foo * (bar + 3);

}

Common subexpression elimination deals with expressions that appear multiple
times in the code. Here, the expression appears once but is calculated each loop
iteration.

19

Tail Recursion
Tail recursion is an example of where GCC can identify recursive patterns that
can be more efficiently implemented iteratively.

unsigned long factorial(unsigned long n) {
if (n <= 1) {

return 1;
}
return n * factorial(n - 1);

}

20

Tail Recursion
Recall the factorial implementation from the code generation lecture:

unsigned long factorial(unsigned long n) {
if (n <= 1) {

return 1;
}
return n * factorial(n - 1);

}

What happens with factorial(-1)?
• Infinite recursion à Literal

stack overflow!
• Compiled with -0g!

21

Factorial: -Og
401146 <+0>: cmp $0x1,%edi
401149 <+3>: jbe 0x40115b <factorial+21>
40114b <+5>: push %rbx
40114c <+6>: mov %edi,%ebx
40114e <+8>: lea -0x1(%rdi),%edi
401151 <+11>: callq 0x401146 <factorial>
401156 <+16>: imul %ebx,%eax
401159 <+19>: pop %rbx
40115a <+20>: retq
40115b <+21>: mov $0x1,%eax
401160 <+26>: retq

4011e0 <+0>: mov $0x1,%eax
4011e5 <+5>: cmp $0x1,%edi
4011e8 <+8>: jbe 0x4011fd <factorial+29>
4011ea <+10>: nopw 0x0(%rax,%rax,1)
4011f0 <+16>: mov %edi,%edx
4011f2 <+18>: sub $0x1,%edi
4011f5 <+21>: imul %edx,%eax
4011f8 <+24>: cmp $0x1,%edi
4011fb <+27>: jne 0x4011f0 <factorial+16>
4011fd <+29>: retq

-02:
• What happened?
• Did the compiler fix the

infinite recursion?

vs –O2

22

Loop Unrolling
Loop Unrolling: Do n loop iterations’ worth of work per actual loop iteration, so
we save ourselves from doing the loop overhead (test and jump) every time and
instead incur overhead only every n-th time.

 for (size_t i = 0; i <= n - 4; i += 4) {

 sum += arr[i];

 sum += arr[i + 1];

 sum += arr[i + 2];

 sum += arr[i + 3];

 } // after the loop handle any leftovers

23

Limitations of GCC Optimization
GCC can’t always optimize everything! But you may know more than gcc does.

size_t char_sum(char *s) {
 size_t sum = 0;
 for (size_t i = 0; i < strlen(s); i++) {
 sum += s[i];
 }
 return sum;
}

What is the bottleneck?
What can GCC do?

strlen called for every character
code motion – pull strlen out of loop

24

Limitations of GCC Optimization
GCC can’t optimize everything! You ultimately may know more than GCC does.

void lower1(char *s) {
 for (size_t i = 0; i < strlen(s); i++) {
 if (s[i] >= 'A' && s[i] <= 'Z') {
 s[i] -= ('A' - 'a');
 }
 }
}

What is the bottleneck?
What can GCC do?

strlen called for every character
nothing! s is changing, so gcc doesn’t know if length is
constant across iterations. We, however, do!

25

Callgrind
• callgrind is another tool in the valgrind suite
• callgrind is a profiler that measures instruction counts – another way to

measure efficiency
• can measure the number of instructions executed in each program run and

where they came from
• useful for optimizing – we can see where large #s of instruction executions

come from

26

Demo: limitations.c
and callgrind

27

Why not always optimize?
Why not always just compile with –O2?
• Difficult to debug optimized executables, so only optimize when complete
• Optimizations may not truly optimize program execution. The compiler does its

best, but it may slow things down, etc. Experiment to see what works out.

