CS107, Lecture 25
Optimization, Caching, Writing Cache-Friendly Code

Reading: B&O 5

Ed Discussion

Based on slides created by Cynthia Lee, Chris Gregg, Jerry Cain, Lisa Yan, Nick Troccoli, and others.

https://edstem.org/us/courses/86308/discussion/7323171
https://edstem.org/us/courses/86308/discussion/7323171

* Processor speed is not the only bottleneck in program performance — memory
access is perhaps even more of one!

 Memory exists in levels and goes from really fast (registers) to really slow

(disk).

* As data is more frequently used, it ends up in faster and faster memory.

L1
I-cache

CPU

Reg

32 KB

L1
D-cache

Throughput: 16 B/cycle

Latency:

3 cycles

256KB

L2
cache

8MB

8 B/cycle
14 cycles

I3
cache

4 Bl/cycle
40 cycles

32GB

Main
Memory

2 B/cycle
100 cycles

1 B/30 cycles
millions

1TB

Disk

All caching depends on locality.

Temporal locality

* Repeat access to the same data tends to be co-located in time

* Intuitively: things | have used recently, | am likely to use again soon

Spatial locality
* Related data tends to be co-located in space

* Intuitively: data that is near a used item is more likely to also be accessed

All caching depends on locality.

Realistic scenario:

* 97% cache hit rate

* Cache hit costs 1 cycle

e Cache miss costs 100 cycles

* How much of your memory access time is spent on the 3% of accesses that are
cache misses?

Demo: cache.c

Optimizing Your Code

* Explore various optimizations you can make to your code to reduce instruction
count and runtime.
* More efficient Big-O for your algorithms

* Explore other ways to reduce instruction count

* Look for hotspots using callgrind
* Optimize using —02
* And more...

* What is optimization? Lecture 24 and 25 takeaways:

* GCC Optimization Compilers can apply various

* Limitations of GCC Optimization optimizations to make our code
* Caching more efficient, without us having

to rewrite code. However, gcc can
only do so much! Sometimes we
must optimize ourselves, using
tools like callgrind and writing
12/1: wrap up code to optimally leverage the
cache hierarchy.

