
1
This document is copyright (C) Stanford Computer Science and Jerry Cain, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Nick Troccoli, Chris Gregg, Lisa Yan and others.

CS107, Lecture 2
Unix, C, Bits and Bytes Intro

Reading: Bryant & O’Hallaron, Ch. 2.2-2.3 (skim)

2

C was created by Dennis Ritchie at Bell Labs between 1969 and 1972, with its
first stable form emerging around 1972, and was invented to solve practical

systems engineering problems, including the implementation of Unix.

Early Unix was written in:
• assembly language (difficult to maintain and impossible to port)
• the B programming language (lacked strong types, arrays, and records)

C is an extension of B and introduced:
• chars and longs, pointers, arrays, and records
• pointer arithmetic and the ability to reason about computer memory

The C Language

mailto:https://en.wikipedia.org/wiki/B_(programming_language)

3

C vs C++ and Java

All three share:
• syntax
• primitive data types
• arithmetic, relational, and logical

operators
• common control idioms, e.g., for

loops, switch statements,
if/else clauses, functions

C limitations:
• no advanced features like operator

overloading, default arguments,
true pass by reference, object
orientation
• few native libraries (no graphics,

networking, etc.)
• small language footprint, though 😇

• minimalist runtime model, near zero
runtime error checking by default

4

Programming Language Philosophies

C is procedural: you write functions, rather than define new variable types
with classes and invoke methods. C is small, fast and efficient.

Python is multi-paradigm but dynamically typed: you still write functions
and call methods on objects but traditionally omit data types when coding.

The development process is very different.

C++ is procedural, but with objects: you still write functions, and define new
variable types with classes, and call methods on objects.

Java is primarily object oriented: virtually everything is an object and
everything you write must conform to the object-oriented paradigm.

5

Why C? Nostalgia?

C lets you see what the computer is really doing. Memory, pointers, and data
layout are explicit and not hidden behind abstractions.

C is the language many systems are implemented in. Operating systems,
compilers, databases, drivers, and embedded firmware are largely written in C.

C is the foundation underlying many higher-level programming languages.
Many languages and their runtimes are implemented in C, so understanding C

explains language performance and limitations.

Learning C first makes learning other systems languages easier. Rust, Go, and
others make more sense once you understand the problems C exposes directly.

6

Programming Language Popularity

https://www.tiobe.com/tiobe-index/

The ratings percentage is the proportion of all programming language related search hits that mention a given
language, relative to all languages tracked by TIOBE.

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

7

Baby’s First C Program
/*
 * hello.c
 * This program prints a welcome message
 * to the user.
 */
#include <stdio.h> // exposes printf

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 return 0;
}

8

Baby’s First C Program
/*
 * hello.c
 * This program prints a welcome message
 * to the user.
 */
#include <stdio.h> // exposes printf

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 return 0;
}

Program comments
You can write block or inline comments.

9

Baby’s First C Program
/*
 * hello.c
 * This program prints a welcome message
 * to the user.
 */
#include <stdio.h> // exposes printf

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 return 0;
} Import statements

C libraries are written with angle brackets.
Local libraries use quotes instead, as with
#include "wordle-utils.h"

10

Baby’s First C Program
/*
 * hello.c
 * This program prints a welcome message
 * to the user.
 */
#include <stdio.h> // exposes printf

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 return 0;
}

main function: entry point for the program,
should always return a small integer (0 == success)

11

Baby’s First C Program
/*
 * hello.c
 * This program prints a welcome message
 * to the user.
 */
#include <stdio.h> // exposes printf

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 return 0;
}

main parameters – main takes two parameters,
both constructed using the command line arguments

used to launch the program.

argc is the number of arguments in argv
argv is an array of arguments (char * is C string)

12

Baby’s First C Program
/*
 * hello.c
 * This program prints a welcome message
 * to the user.
 */
#include <stdio.h> // exposes printf

int main(int argc, char *argv[]) {
 printf("Hello, world!\n");
 return 0;
}

printf prints output to the screen

13

printf(control, arg1, arg2, arg3,...);

printf makes it easy to print out the values of variables or expressions.
If you include placeholders in your printed text, printf will replace each

placeholder with the values of subsequent parameters, passed after the text.

%s (string) %d (integer)

 // Example

char *department = "CS";
int number = 107;
printf("You are in %s%d\n", department, number); // You are in CS107

Console Output: printf

14

Familiar Syntax
int x = 23
int y = 42 - 5 * x; // variables, types
double pi = 3.14159;
char c = 'Q'; /* two comment styles */

for (int i = 0; i < 100; i++) { // for loops
 if (i % 2 == 0) { // if statements
 x += i;
 }
}

while (x > 0 && c == 'Q' || b) { // while loops, logic
 x = x / 2;
 if (x == 42) return 0;
}

return binky(x, y, pi, c); // function call

15

Boolean Variables

To declare Booleans, (e.g., bool b = __;), you include stdbool.h

#include <stdio.h> // for printf
#include <stdbool.h> // for bool

int main(int argc, char *argv[]) {
 bool x = argc > 2 && argv[argc - 1][0] != 'A';
 if (x) {
 printf("Hello, world!\n");
 } else {
 printf(”Greetings, traveler!\n");
 }
 return 0;
}

16

Command Line Arguments

argv captures array of tokens used to run program, and
argc counts how many tokens

/* File: args.c */
#include <stdio.h> // for printf
int main(int argc, char *argv[]) {
 printf("This program got %d argument(s).\n", argc);
 for (size_t i = 0; i < argc; i++) {
 printf("Argument %zu: %s\n", i, argv[i]);
 }
 return 0;
}

myth$./args 1 2 "3 4" five
This program got 5 argument(s).
Argument 0: ./args
Argument 1: 1
Argument 2: 2
Argument 3: 3 4
Argument 4: five

17

Writing, Debugging and Compiling

We will use:
• the emacs text editor to write our C programs
• the make tool to compile our C programs
• the gdb debugger to debug our programs
• the valgrind tools to debug memory errors and

measure program efficiency

this week

next week

18

Customary Workflow

• ssh – remotely log in to myth computers
• emacs – text editor to write and edit C programs

• Use the mouse to position cursor, scroll, and highlight text
• Ctrl-x Ctrl-s to save, Ctrl-x Ctrl-c to quit

• make – compile program using provided Makefile
• ./myprogram – run executable program (perhaps with arguments)
• make clean – remove executables and other compiler files

19

Demo: Compiling And Running
A C Program

Get up and running with our guide:
http://cs107.stanford.edu/getting-started.html

http://cs107.stanford.edu/resources/getting-started.html
http://cs107.stanford.edu/resources/getting-started.html
http://cs107.stanford.edu/resources/getting-started.html

20

CS107 Topic 1: Bits and Bytes

How can a computer represent int values? or floats?

Why is answering this question useful?
• Helps us understand the limitations of computer arithmetic (today and Friday)
• Shows us how to more efficiently perform arithmetic (Friday and Monday)
• Shows us how we can encode data more compactly and efficiently (Monday)

21

Demo: Unexpected Behavior

cp -r /afs/ir/class/cs107/lecture-code/lect02 .

22

The Binary Digit aka Bit

23

One Bit At A Time

We can combine bits, as with base-10 numbers, to represent a larger collection
of values

8 bits = 1 byte.
• Computer memory is just a large array of bytes. It is byte addressable,

meaning you can’t address a bit in isolation, only a full byte.
• Computers still fundamentally operate on bits. It's just that we’ve gotten

more creative about how to encode information.
• images
• audio
• video
• text

24

5 9 3 4
digits 0 – 9

(or rather, 0 through base – 1)

Base 10

25

Base 10

5 9 3 4
onestens

hundreds

thousands

= 5 * 1000 + 9 * 100 + 3 * 10 + 4 * 1

26

Base 10

5 9 3 4
100101102103

27

Base 10

5 9 3 4
012310x:

28

Base 2

1 0 1 1
01232n:

digits 0 – 1

(or rather, 0 through base – 1)

29

Base 2

1 0 1 1
20212223

30

Base 2

1 0 1 1
onestwosfourseights

= 1 * 8 + 0 * 4 + 1 * 2 + 1 * 1 = 1110

most significant bit (MSB) least significant bit (LSB)

31

Base 10 to Base 2

_ _ _ _

Question: What is 6 in base 2?
• Strategy:

• What is the largest power of 2 ≤ 6?
• Now, what is the largest power of 2 ≤ 6 – 22?
• 6 – 22 – 21 = 0

20212223
10 1 0

= 0*8 + 1*4 + 1*2 + 0*1 = 6

22=4
21=2

32

Practice: Base 2 to Base 10

What is the base-2 value of 1010 in base-10?
a) 20
b) 101
c) 10
d) 5
e) Other

1010 isn’t 1010 so much as it is 8 + 2

33

Practice: Base 10 to Base 2

What is the base-10 value of 14 in base 2?
a) 1111
b) 1110
c) 1010
d) Other

14 can be written as a sum of powers
14 isn't 14 so much as it is 8 + 4 + 2

that can be encoded as 1110

34

Byte Values

What are the minimum and maximum base-10 values that
a single byte can represent?

minimum = 0 maximum = ?

11111111
2x: 7 6 5 4 3 2 1 0

• Strategy 1: 1 * 27 + 1 * 26 + 1 * 25 + 1 * 24 + 1 * 23+ 1 * 22 + 1 * 21 + 1 * 20 = 255
• Strategy 2: 28 – 1 = 255

255

35

Multiplying by Base

7453 x 10 = 74530
11002 x 102 = 11000

Key Idea: appending a 0 to the end effectively multiplies by the base.

36

Integer Dividing by Base

1458 / 10 = 145
11012 / 102 = 110

Key Idea: chomping off the last digit at the end integer divides by the base.

37

Hexadecimal

When working with 32- or 64-bit figures, binary representations get long.
Instead, we'll often encode numbers in base 16, or hexadecimal.

0110 1010 0011
0-150-150-15

38

Hexadecimal

When working with 32- or 64-bit figures, binary representations get long.
Instead, we'll often encode numbers in base 16, or hexadecimal.

0-150-150-15

Each quartet of bits can be rewritten as a single digit in base 16!

39

Hexadecimal is base 16, so we need digits for 0 through 15, inclusive.
But how?

0 1 2 3 4 5 6 7 8 9 a b c d e f
10 11 12 13 14 15

Hexadecimal

40

If it's not clear from context, we can explicitly identify numbers as hexadecimal
by prefixing them with 0x and identify numbers as binary using 0b.

0xf5 (or 0xF5) is binary number 0b11110101 is decimal number 245

0x f 5
1111 0101

Hexadecimal

41

Practice: Hexadecimal to Binary

What is 0x173A in binary?

0x173A = 0b1011100111010

Hexadecimal 1 7 3 A
Binary 0001 0111 0011 1010

42

Practice: Binary to Hexadecimal

What is 0b1111001010 in hexadecimal? (Hint: start from the right)

0b1111001010 = 0x3CA

Binary 11 1100 1010
Hexadecimal 3 C A

43

Hexadecimal: Quirky but concise
Let’s look at a single byte, encoded three ways:

0b10100101

165

0xA5

base 10: human-readable,
but cannot easily interpret on/off bits

base 2: computers love this,
but most humans lack that love.

base 16: easy to convert to base 2, more easily
digested format for humans

44

Number Representations

• Unsigned Integers: positive integers and 0 (e.g., 0, 1, 2, … 99999…)
• Signed Integers: negative, positive and 0 (e.g., …-2, -1, 0, 1, … 99999, …)
• Floating Point Numbers: real numbers (e,g. 0.1, -12.2, 1.18743 x 1012)

