CS107 Lecture 3

Bits and Bytes, Integer Representations

Reading: Bryant & O’Hallaron, Ch. 2.2-2.3 (skim)

This document is copyright (C) Stanford Computer Science and Jerry Cain, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Lisa Yan, Nick Troccoli, Chris Gregg, and others.

Data Types: Then and Now

32 64

\ bit J| bit |

« Early 2000s: most computers were 32-bit. That meant Longs and pointers
were 32 bits or 4 bytes.

* 32-bit pointers store memory addresses ranging from 0 to 232 - 1, for a total of
232 pytes of addressable memory. That's 4 gigabytes, meaning 32-bit
computers could address up to 4GB of memory! That was a lot back then!

* Now, most computers are 64-bit. Some data types (especially pointers, and
oftentimes Longs) were given more memory.

* 64-bit pointers can distinguish between addresses 0 to 2%*- 1, equaling 284
bytes. This equals 16 exabytes, meaning that 64-bit computers could
theoretically address up to 16 * 1024 * 1024 * 1024 GB of memory!

Unsigned Integers

An unsigned integer is either 0 or some positive whole number. There is no
support for negative numbers in an unsigned world.

We’ve already discussed the conversion between decimal and binary, and
we’ve implicitly assumed all numbers are nonnegative.

0101, = 5,,
1011, = 11,,
1111, = 15,

The range of an unsigned integer is understood to be 0 > 2% - 1, where w is the
bit count—e.g., 32-bit figures can represent 0 to 232 - 1.

Unsigned Integers

15 1

Our little number wheel to the
right tells us a little about the
range of values an imagined, 4-
bit unsigned mini would be.

0000

1111 0001

1110 0010

1101 0011

4-pit

The rotary nature of 12— 1100 unsigned integer 0100 + 4
the wheel implies representation
that 15 precedes 0
in the same wa
y 11 5

that 0 precedes 1.
In many ways, that’s
accurate.

Think of the wheel
as a binary
odometer that
tracks a count and
turns over from
1111 to 0000 in the
same way that real
odometers turn
over from 999 999 to
000 000.

Signed Integers

A signed integer can be either positive, negative, or zero.

Dilemma: How do we represent both negative and positive numbers?

Proposal: use the most significant bit to represent sign and
let all others represent magnitude.

Happy side effect: for every positive number there’s a
corresponding negative number. That suggests a 50/50
split between positive and negative.

0110
LTJ L"'Wr"'J

positive 6

1110
W

negative 6

0011
LTJ L"'Wr"'J

positive 3

1011
W

negative 3

0000
LTJ L"'jr"'J
positive 0
1000
LTJL""T"'J

negative O

1000=-0
1001=-1
1010=-2
1011=-3
1100=-4
1101=-5
1110=-6
1111=-7

Proposal: MSB represents + vs -

0000=0
0001=1
0010=2
0011=3
0100=4
0101=5
0110=6
0111=7

We’re only representing 15 different values via 16 different patterns.

#sadness

Proposal: MSB represents + vs -

* Pro: easy to represent, and easy for humans to convert to and from decimal.

« Con: +/-0is ¢
* Con: we lose a bit that could be used to represent more numbers

N
O

* Legit Con: arithmetic is tricky: we need to find the sign, perhaps subtract
(borrow and carry, etc.), maybe change the sign, maybe not. This
complicates how hardware implements something as fundamental as
addition. This is the disadvantage we really care about.

Can we do better?

Of course we can, else |

wouldn’t have asked.
10

Proposal: Optimize for Addition

Ideally, binary addition should work the same whether the numbers
are positive or negative.

What pattern can be paired with
0101 so that bit-by-bit addition
+ o | = |

produces all zeros?

11

Proposal: Optimize for Addition

Ideally, binary addition should work the same whether the numbers
are positive or negative.

0101
+1011

0000

yes, it's really 1 0000, but there’s no fifth bit available to store that
leftmost one, so we let it fall away. The binary odometer analogy comes back.
12

Proposal: Optimize for Addition

Ideally, binary addition should work the same whether the numbers
are positive or negative.

0011
+ 070707

0000

13

Proposal: Optimize for Addition

Ideally, binary addition should work the same whether the numbers
are positive or negative.

O O 1 1 The CPU adds numbers by
column-wise adding bits and
throwing away anything that

+ doesn’t fit. This works for

negative numbers too, without

O O O O any special cases.

14

Proposal: Optimize for Addition

Ideally, binary addition should work the same whether the numbers
are positive or negative.

0000
+ 20707

0000

15

Proposal: Optimize for Addition

Ideally, binary addition should work the same whether the numbers
are positive or negative.

0000
{0000

0000

16

Proposal: Optimize for Addition

0101 0011 0000
+1011 +1101 0000

0000 0000 0000

The negated number is the original number bitwise inverted, plus one more.

Proposal: Optimize for Addition

A binary number plus its inverse is all 1s. Add 1 to this to carry over all 1s and get 0!

0101 1111
+1010 +0001

1111 0000

This "proposal" is in fact the scheme used in practice, and it’s called
two’s complement. 8

Redux: Two’s Complement

* We represent a positive number as we did 0
before, and its negative counterpart via its
two's complement. 2

0000

1111 0001

1110 0010

* The two’s complement of a numberis
formed by inverting all bits and then -3
adding 1.

 This works to convert from positive to
negative and back from negative to
positive! 5

1101 0011

4-bit
two's complement
signed integer
representation

1100 0100

-8 19

Redux: Two’s Complement

e Con: more difficult to represent than 0
unsigned, and difficult to convert to and ! 1
from decimal, between positive and 2 1111 9990 (00 2
negative. 1110 0010

* Pro: only 1 representation for 0. & 3L 101 0011 % 2

4-bit
two's complement
signed integer
representation

* Pro: the most significant bit still indicates

the sign of a number. 100

0100

* Pro: addition now works uniformly for

any combination of positive and negative -° 5
numbers.
{00
~7

*ﬂ -7 8 /

20

Binary Representation and Overflow

If you exceed the maximum unsigned value representable with a fixed
number of bits n, the result wraps around, modulo 2". This is called overflow.

111111, + 000001, = 000000,

If you go below the minimum unsigned value—i.e., 0—representable with a
fixed number of bits, the result wraps around from the top (also modulo 2").

000000000, - 000000001,=111111111,

Aside: With signed numbers, the hardware still wraps modulo 2™, but C doesn’t really define signed overflow, so you’re not

supposed to rely on that behavior—even though, for n = 4, +7 typically becomes -8 on real machines. 51

Binary Representation and Overflow

At which points can overflow occur for

signed and unsigned int? (assume binary
values shown are 32-bit and that signed overflow is legit)

A. signed and unsigned can both
overflow at points X and Y

B. signed can overflow only at X,
unsigned only atY

igned can overflow only atY, unsigned
only at X

D. signed can overflow at X and Y,
unsigned only at X

Key Idea: Assume overflow means

111...111 000...000
111...110 000...001
111...101 000...010

111...100 000...011

100...010 011...101
100...001 011...110
100...000 011...111

22

Unsigned Integers and Overflow

111...111 000...000
111...110 000...001
111...101 000...010

111...100 000...011

discontinuity means
wraparound occurs
here

siaquinu aAlsod duisealdul

more increasing positive numbers

100...010 011...101
100...001 011...110
100...000 011...111

23

Signed Integers and "Overflow"
-1 0

111...111 000...000
111...110 000...001
111...101 000...010

111...100 000...011

discontinuity means
wraparound occurs
here

011...101
011...110
100...000 011...111

= +2k
~ oillion

100...010
100...001

negative numbers becoming less negative
aA1lsod a1ow Suiwod9q Siaqunu aAllsod

24

Overflow In The Wild: PSY

YouTube: "We never thought a video
would be watched in numbers
greater than a 32-bit integer (up to
\ 2,147,483,647 views), but that was
before we met PSY. 'Gangnam Style'
has been viewed so many times we
-~ had to upgrade to a 64-bit integer

| (9,223,372,036,854,775,808)!" [link]

"We saw this coming a couple
months ago and updated our
systems to prepare forit." [link]

o officialpsy ©
@{' AR, Subscribe {b 31M Q? @ Share 4 Ask

-2,147,483,648 views Jul 15,2012 #1 global top music video

25

https://www.bbc.com/news/world-asia-30288542
https://www.theverge.com/2014/12/3/7325819/gangnam-style-broke-youtube-view-counter

Overflow In The Wild: Pac-Man

Pac-Man is a 1980 arcade game where players guide a yellow character through a maze, eating
dots while avoiding four ghosts with distinct movement patterns. Power pellets briefly let Pac-
Man eat the ghosts for bonus points.

Pac-Man hit market saturation in 1981 and not only became the highest-grossing arcade game
ever—it became a full-on cultural phenomenon, with hit songs, TV shows, and massive
merchandising.

(=) 4

T QUHMIOTAT
oD

Jerry was in 7t grade in 1981. He stole quarters from his mom’s purse and went to Palombo’s
to play for hours after school almost every day.

In the original game, the Map 256 Glitch [link] happened because the game’s level counter
overflowed an 8-bit byte. When you reach level 256—you know, after clearing two cherry
levels, two strawberries, two oranges, two apples, two melons, two spaceships, two bells, and
241 keys—the game draws too many pieces of fruit and corrupts the right half of the maze with
garbled letters, tiles, and symbols, making the game almost unplayable. At level 256, half the
dots aren’t displayed properly (though Pac-Man is expected to eat them), so progress beyond
level 256 becomes impossible.

Jerry never got to level 56, much less 256.
26

mailto:https://pacman.fandom.com/wiki/Map_256_Glitch

Overflow In The Wild: Donkey Kong

O 15900

b

ﬁg_
. e
H=h

O 15900

HELPY

|5900|

Donkey Kong is a 1981 Nintendo arcade game where players guide Mario

to climb ladders, scale platforms, and ultimately rescue a captive woman

from a giant gorilla. Gameplay centers on jumping obstacles and avoiding
runaway barrels and Brownian-motion fireballs.

Donkey Kong surfed the wake of Pac-Man, became absurdly popularin
1982, and launched both Mario (originally named Jumpman) and Donkey
Kong as enduring icons of arcade history.

Jerry was in 8t grade in 1982, carried on his life of change purse crime,
and went to that same Palombo’s three blocks from home to play for
hours after school almost every day.

In the original Donkey Kong, a timer is stored as an 8-bit unsigned value.
On level 22, the timer calculation overflowed, because the number of
time units Mario is granted to finish any level—including Level 22—is
computed as 10 x (level +4) = 260. 260 is really 1 0000 0100 in binary, but
only 0000 0100 fits. That means Mario was given just 4 time units to
complete a level designed to take 260.

Guess what level Jerry never got to. 7

Overflow In The Wild: Real Problems

Back in 2015, in Boeing 787 Dreamliners [link], a counter in each of four
generator control units stored as a signed, 32-bit integer. This counter
would overflow after 23! - 1 centiseconds (or about 248.5 days) of
continuous power, triggering a shutdown of the GCU. If all four GCUs hit
this overflow together—not unlikely if all four are powered up at the -

same time—the aircraft could lose all electrical power. @

o

In December 2004, Delta Air Lines experienced an operational collapse
[link] because of an overflow bug in software used to schedule flight
crew. A counter tracking crew changes was stored as a signed, 16-bit

int—the size of ints on most systems in 2004—with a maximum value

of 32,767.

Severe weather disruptions pushed this count above that limit,
prompting it to wrap around to -32,768. This compromised the system’s
ability to properly count crew members available to work.

The result? Thousands of delays and cancellations.
28

mailto:https://www.reddit.com/r/ProgrammerHumor/comments/34m2o7/integer_overflow_bug_in_boeing_787_dreamliner/
mailto:https://en.wikipedia.org/wiki/Comair_%28United_States%29

