
1
This document is copyright (C) Stanford Computer Science and Jerry Cain, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Lisa Yan, Nick Troccoli, Chris Gregg, and others.

CS107 Lecture 3
Bits and Bytes, Integer Representations

Reading: Bryant & O’Hallaron, Ch. 2.2-2.3 (skim)

2

Data Types: Then and Now

• Early 2000s: most computers were 32-bit. That meant longs and pointers
were 32 bits or 4 bytes.
• 32-bit pointers store memory addresses ranging from 0 to 232 - 1, for a total of

232 bytes of addressable memory. That's 4 gigabytes, meaning 32-bit
computers could address up to 4GB of memory! That was a lot back then!
• Now, most computers are 64-bit. Some data types (especially pointers, and

oftentimes longs) were given more memory.
• 64-bit pointers can distinguish between addresses 0 to 264 - 1, equaling 264

bytes. This equals 16 exabytes, meaning that 64-bit computers could
theoretically address up to 16 * 1024 * 1024 * 1024 GB of memory!

3

Unsigned Integers

An unsigned integer is either 0 or some positive whole number. There is no
support for negative numbers in an unsigned world.

We’ve already discussed the conversion between decimal and binary, and
we’ve implicitly assumed all numbers are nonnegative.

01012 = 510
 10112 = 1110
 11112 = 1510

The range of an unsigned integer is understood to be 0 → 2w - 1, where w is the
bit count—e.g., 32-bit figures can represent 0 to 232 – 1.

4

Unsigned Integers

Our little number wheel to the
right tells us a little about the

range of values an imagined, 4-
bit unsigned mini would be.

The rotary nature of
the wheel implies
that 15 precedes 0

in the same way
that 0 precedes 1.

In many ways, that’s
accurate.

Think of the wheel
as a binary

odometer that
tracks a count and

turns over from
1111 to 0000 in the
same way that real

odometers turn
over from 999 999 to

000 000.

5

Signed Integers

A signed integer can be either positive, negative, or zero.
Dilemma: How do we represent both negative and positive numbers?

Proposal: use the most significant bit to represent sign and
let all others represent magnitude.

Happy side effect: for every positive number there’s a
corresponding negative number. That suggests a 50/50

split between positive and negative.

6

Proposal: MSB represents + vs -

0110
positive 6

1110
negative 6

7

Proposal: MSB represents + vs -

0011
positive 3

1011
negative 3

8

Proposal: MSB represents + vs -

0000
positive 0

1000
negative 0

9

Proposal: MSB represents + vs -

We’re only representing 15 different values via 16 different patterns.
#sadness

1 000 = -0
1 001 = -1
1 010 = -2
1 011 = -3
1 100 = -4
1 101 = -5
1 110 = -6
1 111 = -7

0 000 = 0
0 001 = 1
0 010 = 2
0 011 = 3
0 100 = 4
0 101 = 5
0 110 = 6
0 111 = 7

10

Proposal: MSB represents + vs -

• Pro: easy to represent, and easy for humans to convert to and from decimal.
• Con: +/-0 is
• Con: we lose a bit that could be used to represent more numbers
• Legit Con: arithmetic is tricky: we need to find the sign, perhaps subtract

(borrow and carry, etc.), maybe change the sign, maybe not. This
complicates how hardware implements something as fundamental as
addition. This is the disadvantage we really care about.

Can we do better?
Of course we can, else I

wouldn’t have asked.

11

Proposal: Optimize for Addition

Ideally, binary addition should work the same whether the numbers
 are positive or negative.

0101
????
0000
+

What pattern can be paired with
0101 so that bit-by-bit addition

produces all zeros?

12

Proposal: Optimize for Addition

Ideally, binary addition should work the same whether the numbers
 are positive or negative.

yes, it's really 1 0000, but there’s no fifth bit available to store that
leftmost one, so we let it fall away. The binary odometer analogy comes back.

0101
1011
0000
+

13

Proposal: Optimize for Addition

Ideally, binary addition should work the same whether the numbers
 are positive or negative.

0011
????
0000
+

14

Proposal: Optimize for Addition

Ideally, binary addition should work the same whether the numbers
 are positive or negative.

0011
1101
0000
+

The CPU adds numbers by
column-wise adding bits and
throwing away anything that

doesn’t fit. This works for
negative numbers too, without

any special cases.

15

Proposal: Optimize for Addition

Ideally, binary addition should work the same whether the numbers
 are positive or negative.

0000
????
0000
+

16

Proposal: Optimize for Addition

Ideally, binary addition should work the same whether the numbers
 are positive or negative.

0000
0000
0000
+

17

Proposal: Optimize for Addition

0101
1011
0000
+

0011
1101
0000
+

0000
0000
0000

+

The negated number is the original number bitwise inverted, plus one more.

18

Proposal: Optimize for Addition

A binary number plus its inverse is all 1s. Add 1 to this to carry over all 1s and get 0!

0101
1010
1111
+

1111
0001
0000

+

This "proposal" is in fact the scheme used in practice, and it’s called
two’s complement.

19

Redux: Two’s Complement

• We represent a positive number as we did
before, and its negative counterpart via its
two's complement.
• The two’s complement of a number is

formed by inverting all bits and then
adding 1.
• This works to convert from positive to

negative and back from negative to
positive!

20

Redux: Two’s Complement

• Con: more difficult to represent than
unsigned, and difficult to convert to and
from decimal, between positive and
negative.
• Pro: only 1 representation for 0. 😍
• Pro: the most significant bit still indicates

the sign of a number.
• Pro: addition now works uniformly for

any combination of positive and negative
numbers.

21

Binary Representation and Overflow

If you exceed the maximum unsigned value representable with a fixed
number of bits n, the result wraps around, modulo 2ⁿ. This is called overflow.

1111112 + 0000012 = 0000002

If you go below the minimum unsigned value—i.e., 0—representable with a
fixed number of bits, the result wraps around from the top (also modulo 2ⁿ).

0000000002 - 0000000012 = 1111111112

Aside: With signed numbers, the hardware still wraps modulo 2!, but C doesn’t really define signed overflow, so you’re not
supposed to rely on that behavior—even though, for n = 4, +7 typically becomes −8 on real machines.

22

Binary Representation and Overflow

At which points can overflow occur for
signed and unsigned int? (assume binary
values shown are 32-bit and that signed overflow is legit)

A. signed and unsigned can both
overflow at points X and Y

B. signed can overflow only at X,
unsigned only at Y

C. signed can overflow only at Y, unsigned
only at X

D. signed can overflow at X and Y,
unsigned only at X

X

Y

000…000111…111

011…111100…000

000…001
000…010

000…011

111…110
111…101

111…100

100…001
100…010

011…110
011…101

……

Key Idea: Assume overflow means discontinuity.

23

Unsigned Integers and Overflow

000…000111…111

011…111100…000

000…001
000…010

000…011

111…110
111…101

111…100

100…001
100…010

011…110
011…101

……

0≈ +4billion

discontinuity means
wraparound occurs

here

increasing positive num
bers

m
or

e
in

cr
ea

si
ng

 p
os

iti
ve

 n
um

be
rs

24

000…000111…111

011…111100…000

000…001
000…010

000…011

111…110
111…101

111…100

100…001
100…010

011…110
011…101

……

0-1

discontinuity means
wraparound occurs

here

positive num
bers becom

ing m
ore positive ne

ga
tiv

e
nu

m
be

rs
 b

ec
om

in
g
le
ss

 n
eg

at
iv

e

≈ +2billion
≈ -2billion

+1

Signed Integers and "Overflow"

25

Overflow In The Wild: PSY

YouTube: "We never thought a video
would be watched in numbers
greater than a 32-bit integer (up to
2,147,483,647 views), but that was
before we met PSY. 'Gangnam Style'
has been viewed so many times we
had to upgrade to a 64-bit integer
(9,223,372,036,854,775,808)!" [link]

"We saw this coming a couple
months ago and updated our
systems to prepare for it." [link]

https://www.bbc.com/news/world-asia-30288542
https://www.theverge.com/2014/12/3/7325819/gangnam-style-broke-youtube-view-counter

26

Overflow In The Wild: Pac-Man

Pac-Man is a 1980 arcade game where players guide a yellow character through a maze, eating
dots while avoiding four ghosts with distinct movement patterns. Power pellets briefly let Pac-

Man eat the ghosts for bonus points.

Pac-Man hit market saturation in 1981 and not only became the highest-grossing arcade game
ever—it became a full-on cultural phenomenon, with hit songs, TV shows, and massive

merchandising.

Jerry was in 7th grade in 1981. He stole quarters from his mom’s purse and went to Palombo’s
to play for hours after school almost every day.

In the original game, the Map 256 Glitch [link] happened because the game’s level counter
overflowed an 8-bit byte. When you reach level 256—you know, after clearing two cherry

levels, two strawberries, two oranges, two apples, two melons, two spaceships, two bells, and
241 keys—the game draws too many pieces of fruit and corrupts the right half of the maze with
garbled letters, tiles, and symbols, making the game almost unplayable. At level 256, half the
dots aren’t displayed properly (though Pac-Man is expected to eat them), so progress beyond

level 256 becomes impossible.

Jerry never got to level 56, much less 256.

mailto:https://pacman.fandom.com/wiki/Map_256_Glitch

27

Overflow In The Wild: Donkey Kong

Donkey Kong is a 1981 Nintendo arcade game where players guide Mario
to climb ladders, scale platforms, and ultimately rescue a captive woman
from a giant gorilla. Gameplay centers on jumping obstacles and avoiding

runaway barrels and Brownian-motion fireballs.

Donkey Kong surfed the wake of Pac-Man, became absurdly popular in
1982, and launched both Mario (originally named Jumpman) and Donkey

Kong as enduring icons of arcade history.

Jerry was in 8th grade in 1982, carried on his life of change purse crime,
and went to that same Palombo’s three blocks from home to play for

hours after school almost every day.

In the original Donkey Kong, a timer is stored as an 8-bit unsigned value.
On level 22, the timer calculation overflowed, because the number of
time units Mario is granted to finish any level—including Level 22—is

computed as 10 x (level + 4) = 260. 260 is really 1 0000 0100 in binary, but
only 0000 0100 fits. That means Mario was given just 4 time units to

complete a level designed to take 260.

Guess what level Jerry never got to.

28

Overflow In The Wild: Real Problems

Back in 2015, in Boeing 787 Dreamliners [link], a counter in each of four
generator control units stored as a signed, 32-bit integer. This counter

would overflow after 231 – 1 centiseconds (or about 248.5 days) of
continuous power, triggering a shutdown of the GCU. If all four GCUs hit

this overflow together—not unlikely if all four are powered up at the
same time—the aircraft could lose all electrical power.

In December 2004, Delta Air Lines experienced an operational collapse
[link] because of an overflow bug in software used to schedule flight
crew. A counter tracking crew changes was stored as a signed, 16-bit
int—the size of ints on most systems in 2004—with a maximum value

of 32,767.

Severe weather disruptions pushed this count above that limit,
prompting it to wrap around to -32,768. This compromised the system’s

ability to properly count crew members available to work.

The result? Thousands of delays and cancellations.

mailto:https://www.reddit.com/r/ProgrammerHumor/comments/34m2o7/integer_overflow_bug_in_boeing_787_dreamliner/
mailto:https://en.wikipedia.org/wiki/Comair_%28United_States%29

