CS107 Lecture 4
Bits and Bytes Wrap-up, Bitwise Operators

Reading: Bryant & O’Hallaron, Ch. 2.1

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Nick Troccoli, Lisa Yan, Jerry Cain and others.

Casting Between Signed and Unsigned

What happens at the byte level when we cast between variable types?

The bit patterns remain the same, but their interpretations are dictated by the type.

int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);

Qutput:v = =-12345, uv = 4294954951.

Why the difference?
—-12345 intwo’s complement binary is0b11111111111111111100111111000111.

When treated as an unsigned, inherently nonnegative number, -12345 is all magnitude.

Casting Between Signed and Unsigned

C-style casts can be used to on-the-fly reinterpret a value under a different
type system, as with:

int v = -12345;
printf("v = %d, uv = %u\n", v, (unsigned int) v);

You can also append a U to a numeric literal to treat it as an unsigned, as with:

-12345U

Here, the =12345 is evaluated for its 32-bit, signed int bit pattern, but
because of that U, its bits are interpreted as an uns-igned int instead.

Comparisons Between Different Types

Note: When comparing signed and unsigned integers. C will implicitly cast
the signed value to unsigned and evaluate the expression assuming both
values are unsigned and therefore nonnegative.

mparison mathematicall
compariso evaluates to? athemaricatty

expression
P type? accurate?

0 == ou

Comparisons Between Different Types

Note: When comparing signed and unsigned integers. C will implicitly cast
the signed value to unsigned and evaluate the expression assuming both
values are unsigned and therefore nonnegative.

expression comparison evaluates to? mathematically
type? accurate?

0 == ou unsigned true yes
-1 <0 signed true yes
-1 < oU unsigned false nope
2147483647 > -2147483648 signed true yes
2147483647U > -2147483648 unsigned false nada
-1 > -2 signed true yes
(unsigned long)-1 > -2 unsigned true yes

Extending Bit Representations

What happens when we initialize a variable of type int from a short?
short s = 4, t = -4;

int i = s, j = t;
Though it'suncommon, C allows it and defines clear rules for how the conversion works,
choosing a behavior that's efficient for the hardware and intuitive for the programmer.

In this case, the easiest thing to preserve the signed value is to the bit pattern
of the smaller integer to fill the extra bits of the larger one.

0000 0000 | 0000 0100 . . .
1 and j are each four-byte quantities

that evaluate to 4 and -4, respectively.
By sign extending the two-byte

0000 0000 | 0000 0000 | 00O 0000 | PO 0160 | i representations—thatis, by replicating
the sign bit to full up the extra space,

1111 1111 | 1111 1111|1111 1111|1111 1100 | j We preserve both magnitude and sign.

1111 1111|1111 1100 | t

Extending Bit Representations

What happens when we initialize an unsigned int from anunsigned short?

unsigned short us = 0b1111111111110010;
unsigned int ui = us;

This is simpler, because we can always fill the extra bits with zeroes. In an unsigned world,
leading zero bits leave the value alone.

1111 1111|1111 0010 |us

0000 0000 | PO 006 | 1111 1111 | 1111 0010 |ui

Sign and zero extension aren't unique to shorts.
longs can be initialized from ints, shorts, or chars.
ints and shorts can be initialized from chars.

Truncating Bit Representations

What about the opposite? What happens when we initialize a short from an int?
int i = 50000, j = 100000, k = -32769;
short s = i, t = j, v = k3

C can’t wedge four bytes' worth of data into two bytes of memory, so it discards—or rather,
truncates—the most significant bits and retains the least significant ones.

0000 0000 | OO 0000 | 1100 0011 | 0101 0000 | i

0000 0000 | OO 0001 | 1000 0110 | 1010 0000 | j

1111 1111 (1111 1111 | 6111 1111|1111 1111 k

1100 0011 | 0101 0000 | s sis-15536

1000 0110 | 1010 0000 |t tis-31072

6111 1111|1111 1111 v Vis32767

Now that we understand values are
really stored in binary, how can we
manipulate them at the bit level?

Bitwise Operators

You're already familiar with many operators in C.

Arithmetic operators: +, —, x, /,%
Comparison operators: ==, | =, <, > <= >=
Logical Operators: &&, | |, !

Here’s a new set of operators: the bitwise operators:

&: bitwise and

| : bitwise or

~: bitwise inversion

A: bitwise exclusive or
<<: bitwise left shift
>>: bitwise right shift

10

& is a binary operator
the & of 2 bits is 1 if both bits are 1, and 0 otherwise

output = a & b3
__a | b output

0] 0] 0]

0] 1 0]

1 0] 0]

1 1 1

& a bit with 1 to let that bit through, & a bit with 0 to zero it out

11

| is a binary operator
the | of 2 bitsis 0 if both bits are 0, and 1 otherwise

output = a | b3
__a__| b output

0 0] 0]

¢ 1 1

1 0 1

1 1 1

| a bit with 1 to make that bit 1, | a bit with 0 leave it alone

12

~isaunary operatoranditinvertsaltoaOandaOtoal

output = ~a;

T

0] 1
1)

13

The » of 2 bitsis 1 if and only if exactly one of two bits is 1.

output = a * b;
a2 b output
(%] %] 0]

%] 1 1
1 %] 1
1 1 0]

A abitwith 1 to flipit, » a bit with 0 to leave it alone

14

Operators on Multiple Bits

When these operators are applied to multiple bits, the operator is applied to
the corresponding bits in each number. For example:

AND OR XOR NOT

15

Operators on Multiple Bits

When these operators are applied to multiple bits, the operator is applied to
the corresponding bits in each number. For example:

AND OR XOR NOT

*

This is different from logical &&. && returns true if both
operands are nonzero, and false otherwise. With &&,
this would be 6 && 12, which would evaluate to true.

16

Operators on Multiple Bits

When these operators are applied to multiple bits, the operator is applied to
the corresponding bits in each number. For example:

AND OR XOR NOT

*

This is different from | |. | | is true if either are nonzero,
and fa'lse otherwise. With ||, this would be 6 | | 12, which
would evaluate to true.

17

Operators on Multiple Bits

When these operators are applied to multiple bits, the operator is applied to
the corresponding bits in each number. For example:

AND OR XOR NOT

This is different from !. ! produces a true if applied to
a zero, and false otherwise. With !, this would be
112, which would evaluate to false.

18

Bitwise Operators and Bitmasks

We will frequently want to manipulate or otherwise isolate specific bitsin a
larger collection of them. A bitmask is a constructed bit pattern that we can
use, along with standard bit operators like &, |, A, ~, <<, and >>, to do this.

Motivating Example: bit vectors

C++, for example, uses bit vectors to implement the vector<bool>

std::vector<bool> v(20);

v[0], v[1], v[2], ..., V[7]

v[8], v[9], ..., v[15]

v[16],v[17], v[18], v[19]

The idea? Allocate three
chars for its 24 bits and
ignore the last four bits of
the third char.

19

Bit Vectors and Sets

Instead of using an array of boo'ls, store Boolean information in bits instead.

Example: we can represent the set of core CS courses being taken
this quarter using a single char.

20

Bit Vectors and Sets

%) %) 1 %) %) %) 1 1
N o) o R A W & g
S S S X S & RS S
i i ? G F @ &2 ?

How do we compute the union of two course schedules?

We use bitwise or here, since the result

00100011 is 1if one or both operands are 1.
I 01100001 Assuming 1 means an element is

present—i.e., the course is part of
someone’s schedule—that’s precisely

what we want if we’re to compute the
01100011 union of two sets.

21

Bit Vectors and Sets

%) 0 1 (7 0 (7 1 1
N o) o R A W & g
F & ? S P B & <

How do we compute the intersection of two course schedules?

00100011 This time it’s bitwise and, since the
resultis 1 if and only if both operands
& 01100001 are 1. Assuming 1 means an elementis

________ present—i.e., the course is part of
someone’s schedule—this is precisely

00100001 what we want here as well.

22

How do we update the course schedule to indicate a student is taking CS107?

% % 1 % % (% 1 1
N) & N\ A w Q A
cﬁ@ §§ <§9 & dﬁb d§§ 65@ dﬁb
00100011
| 00001000

00101011

23

Bit Masking

#define CS106A 0x1 /* 0000 0001 */

#define CS106B 0x2 /* 0000 0010, or 1 << 1 %/
#define CS106AX 0x4 /* 0000 0100, or 1 << 2 %/
#define CS107 Ox8 /* 0000 1000, or 1 << 3 x/
#define CS111 Ox10 /* 0001 0000, or 1 << 4 x/
#define CS103 0x20 /* 0010 0000, or 1 << 5 *x/
#define CS109 0x40 /* 0100 0000, or 1 << 6 */
#define CS161 Ox80 /* 1000 0000, or 1 << 7 x/

char schedule = ...}
schedule = schedule | €CS1073 // include CS107!

24

Bit Masking

#define CS106A 0x1 /* 0000 0001 */

#define CS106B 0x2 /* 0000 0010, or 1 << 1 %/
#define CS106AX 0x4 /* 0000 0100, or 1 << 2 %/
#define CS107 Ox8 /* 0000 1000, or 1 << 3 x/
#define CS111 Ox10 /* 0001 0000, or 1 << 4 x/
#define CS103 0x20 /* 0010 0000, or 1 << 5 *x/
#define CS109 0x40 /* 0100 0000, or 1 << 6 */
#define CS161 Ox80 /* 1000 0000, or 1 << 7 x/

char schedule = ...}
schedule |= CS107; // include CS107!

25

How do we update our schedule to indicate we've dropped CS103?

(7 0 1 (7 0 (7 1 1

N) o N\ A T Q A
O@'\@ 0@"Q C;‘o'\g & O@'\Q c?@@ 0@@6 0%"Q
00100011
& 11011111
00000011

schedule &= ~CS103;

26

Bit Masking

How do we confirm we’re enrolled in CS106B?

%) %) 1 %) %) 0 1 1
&) & N A W Y o
& c?'\Q cﬁé\Q 2 C)é\Q Q%\Qb cﬁé\Q c?\Q
00100011
& 00000010
00000010

if (schedule & CS106B) {
// taking CS106B!

27

