
1
This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Nick Troccoli, Lisa Yan, Jerry Cain and others.

CS107 Lecture 4
Bits and Bytes Wrap-up, Bitwise Operators

Reading: Bryant & O’Hallaron, Ch. 2.1

2

Casting Between Signed and Unsigned

What happens at the byte level when we cast between variable types?

The bit patterns remain the same, but their interpretations are dictated by the type.

int v = -12345;
unsigned int uv = v;
printf("v = %d, uv = %u\n", v, uv);

Output: v = -12345, uv = 4294954951.

Why the difference?

-12345 in two’s complement binary is 0b11111111111111111100111111000111.

When treated as an unsigned, inherently nonnegative number, -12345 is all magnitude.

3

C-style casts can be used to on-the-fly reinterpret a value under a different
type system, as with:

int v = -12345;
printf("v = %d, uv = %u\n", v, (unsigned int) v);

You can also append a U to a numeric literal to treat it as an unsigned, as with:

-12345U

Here, the -12345 is evaluated for its 32-bit, signed int bit pattern, but
because of that U, its bits are interpreted as an unsigned int instead.

Casting Between Signed and Unsigned

4

Comparisons Between Different Types

Note: When comparing signed and unsigned integers. C will implicitly cast
the signed value to unsigned and evaluate the expression assuming both

values are unsigned and therefore nonnegative.

expression
comparison

type? evaluates to?
mathematically

accurate?

0 == 0U unsigned true yes

-1 < 0 signed true yes

-1 < 0U unsigned false nope

2147483647 > -2147483648 signed true yes

2147483647U > -2147483648 unsigned false nada

-1 > -2 signed true yes

(unsigned long)-1 > -2 unsigned true yes

5

Comparisons Between Different Types

Note: When comparing signed and unsigned integers. C will implicitly cast
the signed value to unsigned and evaluate the expression assuming both

values are unsigned and therefore nonnegative.

expression
comparison

type? evaluates to?
mathematically

accurate?

0 == 0U unsigned true yes

-1 < 0 signed true yes

-1 < 0U unsigned false nope

2147483647 > -2147483648 signed true yes

2147483647U > -2147483648 unsigned false nada

-1 > -2 signed true yes

(unsigned long)-1 > -2 unsigned true yes

6

Extending Bit Representations

What happens when we initialize a variable of type int from a short?

short s = 4, t = -4;
int i = s, j = t;

Though it's uncommon, C allows it and defines clear rules for how the conversion works,
choosing a behavior that's efficient for the hardware and intuitive for the programmer.

In this case, the easiest thing to preserve the signed value is to sign extend the bit pattern
of the smaller integer to fill the extra bits of the larger one.

0000 0000 0000 0100

1111 1111 1111 1100

s

t

i and j are each four-byte quantities
that evaluate to 4 and -4, respectively.

By sign extending the two-byte
representations—that is, by replicating

the sign bit to full up the extra space,
we preserve both magnitude and sign.

0000 0000 0000 0100

1111 1111 1111 1100

i

j

0000 0000 0000 0000

1111 1111 1111 1111

7

Extending Bit Representations

What happens when we initialize an unsigned int from an unsigned short?

 unsigned short us = 0b1111111111110010;
 unsigned int ui = us;

This is simpler, because we can always fill the extra bits with zeroes. In an unsigned world,
leading zero bits leave the value alone.

Sign and zero extension aren't unique to shorts.

longs can be initialized from ints, shorts, or chars.

ints and shorts can be initialized from chars.

1111 1111 1111 0010 us

1111 1111 1111 0010 ui0000 0000 0000 0000

8

Truncating Bit Representations

What about the opposite? What happens when we initialize a short from an int?

 int i = 50000, j = 100000, k = -32769;
 short s = i, t = j, v = k;
C can’t wedge four bytes' worth of data into two bytes of memory, so it discards—or rather,

truncates—the most significant bits and retains the least significant ones.

1100 0011 0101 0000

1000 0110 1010 0000

i

j

0000 0000 0000 0000

0000 0000 0000 0001

0111 1111 1111 1111 k1111 1111 1111 1111

1100 0011 0101 0000

1000 0110 1010 0000

s

t

0111 1111 1111 1111 v

s is -15536

t is -31072

v is 32767

9

Now that we understand values are
really stored in binary, how can we
manipulate them at the bit level?

10

Bitwise Operators

You're already familiar with many operators in C.

Arithmetic operators: +, -, *, /, %
Comparison operators: ==, !=, <, >, <=, >=

Logical Operators: &&, ||, !

Here’s a new set of operators: the bitwise operators:

 &: bitwise and
 |: bitwise or
 ~: bitwise inversion
 ^: bitwise exclusive or
 <<: bitwise left shift
 >>: bitwise right shift

11

and (&)

& is a binary operator
the & of 2 bits is 1 if both bits are 1, and 0 otherwise

a b output
0 0 0
0 1 0
1 0 0
1 1 1

output = a & b;

& a bit with 1 to let that bit through, & a bit with 0 to zero it out

12

| is a binary operator
the | of 2 bits is 0 if both bits are 0, and 1 otherwise

a b output
0 0 0
0 1 1
1 0 1
1 1 1

output = a | b;

| a bit with 1 to make that bit 1, | a bit with 0 leave it alone

or (|)

13

~ is a unary operator and it inverts a 1 to a 0 and a 0 to a 1

a output

0 1

1 0

output = ~a;

not (~)

14

exclusive or (^)

The ^ of 2 bits is 1 if and only if exactly one of two bits is 1.

a b output
0 0 0
0 1 1
1 0 1
1 1 0

output = a ^ b;

^ a bit with 1 to flip it, ^ a bit with 0 to leave it alone

15

Operators on Multiple Bits

When these operators are applied to multiple bits, the operator is applied to
the corresponding bits in each number. For example:

0110
& 1100

0100

0110
| 1100

1110

0110
^ 1100

1010

~ 1100

0011

AND OR XOR NOT

16

Operators on Multiple Bits

When these operators are applied to multiple bits, the operator is applied to
the corresponding bits in each number. For example:

0110
& 1100

0100

0110
| 1100

1110

0110
^ 1100

1010

~ 1100

0011

AND OR XOR NOT

This is different from logical &&. && returns true if both
operands are nonzero, and false otherwise. With &&,
this would be 6 && 12, which would evaluate to true.

17

Operators on Multiple Bits

When these operators are applied to multiple bits, the operator is applied to
the corresponding bits in each number. For example:

0110
& 1100

0100

0110
| 1100

1110

0110
^ 1100

1010

~ 1100

0011

AND OR XOR NOT

This is different from ||. || is true if either are nonzero,
and false otherwise. With ||, this would be 6 || 12, which

would evaluate to true.

18

Operators on Multiple Bits

When these operators are applied to multiple bits, the operator is applied to
the corresponding bits in each number. For example:

0110
& 1100

0100

0110
| 1100

1110

0110
^ 1100

1010

~ 1100

0011

AND OR XOR NOT

This is different from !. ! produces a true if applied to
a zero, and false otherwise. With !, this would be

!12, which would evaluate to false.

19

Bitwise Operators and Bitmasks

We will frequently want to manipulate or otherwise isolate specific bits in a
larger collection of them. A bitmask is a constructed bit pattern that we can
use, along with standard bit operators like &, |, ^, ~, <<, and >>, to do this.

Motivating Example: bit vectors
C++, for example, uses bit vectors to implement the vector<bool>

The idea? Allocate three
chars for its 24 bits and

ignore the last four bits of
the third char.

20

Bit Vectors and Sets

Instead of using an array of bools, store Boolean information in bits instead.

Example: we can represent the set of core CS courses being taken
this quarter using a single char.

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6A
X

CS
10
7

CS
11
1

CS
10
3

CS
10
9

CS
16
1

21

Bit Vectors and Sets

How do we compute the union of two course schedules?

00100011
| 01100001

01100011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6A
X

CS
10
7

CS
11
1

CS
10
3

CS
10
9

CS
16
1

We use bitwise or here, since the result
is 1 if one or both operands are 1.
Assuming 1 means an element is
present—i.e., the course is part of

someone’s schedule—that’s precisely
what we want if we’re to compute the

union of two sets.

22

Bit Vectors and Sets

How do we compute the intersection of two course schedules?

00100011
& 01100001

00100001

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6A
X

CS
10
7

CS
11
1

CS
10
3

CS
10
9

CS
16
1

This time it’s bitwise and, since the
result is 1 if and only if both operands

are 1. Assuming 1 means an element is
present—i.e., the course is part of

someone’s schedule—this is precisely
what we want here as well.

23

Bit Masking

How do we update the course schedule to indicate a student is taking CS107?

00100011
| 00001000

00101011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6A
X

CS
10
7

CS
11
1

CS
10
3

CS
10
9

CS
16
1

24

Bit Masking

#define CS106A 0x1 /* 0000 0001 */
#define CS106B 0x2 /* 0000 0010, or 1 << 1 */
#define CS106AX 0x4 /* 0000 0100, or 1 << 2 */
#define CS107 0x8 /* 0000 1000, or 1 << 3 */
#define CS111 0x10 /* 0001 0000, or 1 << 4 */
#define CS103 0x20 /* 0010 0000, or 1 << 5 */
#define CS109 0x40 /* 0100 0000, or 1 << 6 */
#define CS161 0x80 /* 1000 0000, or 1 << 7 */

char schedule = ...;
schedule = schedule | CS107; // include CS107!

25

Bit Masking

#define CS106A 0x1 /* 0000 0001 */
#define CS106B 0x2 /* 0000 0010, or 1 << 1 */
#define CS106AX 0x4 /* 0000 0100, or 1 << 2 */
#define CS107 0x8 /* 0000 1000, or 1 << 3 */
#define CS111 0x10 /* 0001 0000, or 1 << 4 */
#define CS103 0x20 /* 0010 0000, or 1 << 5 */
#define CS109 0x40 /* 0100 0000, or 1 << 6 */
#define CS161 0x80 /* 1000 0000, or 1 << 7 */

char schedule = ...;
schedule |= CS107; // include CS107!

26

Bit Masking

How do we update our schedule to indicate we've dropped CS103?

00100011
& 11011111

00000011

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6A
X

CS
10
7

CS
11
1

CS
10
3

CS
10
9

CS
16
1

schedule &= ~CS103;

27

Bit Masking
How do we confirm we’re enrolled in CS106B?

00100011
& 00000010

00000010

0 0 1 0 0 0 1 1

CS
10
6A

CS
10
6B

CS
10
6A
X

CS
10
7

CS
11
1

CS
10
3

CS
10
9

CS
16
1

if (schedule & CS106B) {
// taking CS106B!

