
1
This document is copyright (C) Stanford Computer Science, licensed under Crea:ve Commons A=ribu:on 2.5 License. All rights reserved.

Based on slides created by Cynthia Lee, Chris Gregg, Nick Troccoli, Lisa Yan, Jerry Cain and others.

CS107 Lecture 5
Bitwise Operators, Take II

Reading: Bryant & O’Hallaron, Ch. 2.1

2

Bitwise Manipulation Etudes

Bit masks needn’t be applied to only chars (i.e., 8-bit values). They can be
applied shorts, ints, and longs as well.

Assuming that j and k are (32-bit) ints, m and n are unsigned longs:

Present a C statement that assigns k to be just the
lowest byte of j.

k = j & 0xFF

Present an C statement that sets n to be the full
bitwise inversion of m.

n = ~m
n = m ^ (~0L)

Present a C statement that sets k to j, where the
first and last bytes of j have been bitwise-inverted.

k = j ^ 0xFF0000FF

Present an expression that evaluates to true iff n
has two neighboring bits that are both 1.

(n & (n >> 1)) != 0

3

Bitwise Manipulation Etudes

Bit masks needn’t be applied to only chars (i.e., 8-bit values). They can be
applied shorts, ints, and longs as well.

Assuming that j and k are (32-bit) ints, m and n are unsigned longs:

Present a C statement that assigns k to be just the
lowest byte of j.

k = j & 0xFF

Present an C statement that sets n to be the full
bitwise inversion of m.

n = ~m
n = m ^ (~0L)

Present a C statement that sets k to j, where the
first and last bytes of j have been bitwise-inverted.

k = j ^ 0xFF0000FF

Present an expression that evaluates to true iff n
has two neighboring bits that are both 1.

(n & (n >> 1)) != 0

4

Bitwise Manipulation and is_power_of_2

Without using loops, how can we verify that an unsigned long called
value is a power of 2? What's special about its binary footprint, and how can

we take advantage of that?

bool is_power_of_2(unsigned long value) {

 }

A power of 2 has a distinct binary structure. We
can exploit its structure knowing powers of 2

have precisely one 1, with all other bits being 0.

All other numbers have two or more 1 bits
(except for 0, which has none).

Subtracting 1 from a power of 2 has a very
specific impact.

If value is, for instance, 1 0000002, then
value – 1 is 0 1111112. Restated, when subtracting 1

from a power of 2, its only 1 becomes a 0 and all
lower bits go from 0 to 1.

The bitwise & of value and value – 1 in this case
produces all zeroes.

If value has more than one 1 bit, at least one 1 bit
survives the bitwise & of value and value – 1 .

return value != 0 && (value & (value - 1)) == 0;
// why the value != 0? Because 0 isn’t a power of 2.

5

Left Shift (<<)

The << operator shifts a bit pattern a certain number of positions to the left.
Low-order bits are filled with 0’s, and bits shifted off the left are discarded.

 x << k; // evaluates to x shifted to the left by k bits
 x <<= k; // in-place shifts x to the left by k bits

Assuming 8-bit figures:
00110111 << 2 results in 11011100
01100011 << 4 results in 00110000
10010101 << 5 results in 10100000

I’m showing you the bit-
pattern effect. In real C

code, you should only rely
on this behavior for
unsigned values.

Oh, and shifting by more
than the bit width (e.g., 9) is

technically undefined.

6

Right Shift (>>)

The >> operator shifts a bit pattern a certain number of positions to the right.
High bits are typically filled with the sign bit, and bits shifted off are discarded.

 x >> k; // evaluates to x shifted to the right by k bits
 x >>= k; // in-place shifts x to the right by k bits

Assuming signed 8-bit figures:
01011101 >> 1 results in 00101110
01111110 >> 4 results in 00000111
11111110 >> 4 results in 11111111
11011011 >> 7 results in 11111111

Had we been dealing with
unsigned figures instead,

the sign bit isn’t explicit—it’s
implied, and therefore 0.

Right shifts are called
arithmetic when the sign bit

is replicated, and logical
when zeros are shifted in.

7

Bitwise Manipulation and absolute_value

Implementing an absolute_value function in CS106 terms is trivial.

Can we implement the same function without using relational operators (e.g.,
<) or runtime multiplication, but instead just using bitwise operators?

❤ yes ❤

unsigned int absolute_value(int value) {
 return value < 0 ? -value : value;
 }

unsigned int absolute_value_bitwise(int value) {
 int mask = value >> (sizeof(value) * CHAR_BIT - 1);
 return (value ^ mask) – mask;
 }

8

Bitwise Manipulation and absolute_value

unsigned int absolute_value_bitwise(int value) {
 int mask = value >> (sizeof(value) * CHAR_BIT - 1);
 return (value ^ mask) – mask;
 }

The implementation below assumes two’s-complement
integers—perfectly reasonable—and arithmetic right shift,

which is true on every machine you’ll use here on campus.

When value is nonnegative, mask evaluates to 0, so the return statement essentially
returns value unmodified. That’s because exclusive-or'ing value with 0 is essentially

a no-op, and subtracting zero from value is as well.

When value is negative, mask evaluates to ~0, i.e., -1. Exclusive-or’ing value with
mask generates its bitwise inversion by flipping every bit and subtracting

-1 from that is the same as adding 1. In essence, the return statement is
synthesizing the two’s complement of a negative number to produce a positive one.

Thought question: What does absolute_value_bitwise(INT_MIN) return?

9

Bitwise Manipulation

size_t mystery(unsigned long ul) {
 size_t count = 0;
 for (size_t i = 0; i < sizeof(ul) * CHAR_BIT; i++) {
 if ((ul & (1UL << i)) != 0) count++;
 }
 return count;
 }

What do each of the following functions ultimately compute? How?

size_t enigma(unsigned long ul) {
 size_t count = 0;
 while (ul != 0) {
 count++;
 ul &= ul – 1;
 }
 return count;
 }

mystery brute-force counts the
number of bits in ul that are 1.
• The 1UL << i mask is used to

identify whether the ith bit is 1.
• The UL is crucial, since 1 standalone

is a 32-bit constant, and left-shifting
by more than the bit width—e.g., by
33 here—is undefined behavior. (This
is relevant to assign1.)

enigma also counts the number of 1
bits in ul, but more efficiently!
• Each iteration clears the lowest-set

bit using ul &= ul - 1, so the loop
runs once per 1 bit rather than once
per bit position. That makes it faster
for sparse values.

10

Introducing gdb

Is there a way to step through the
execution of a program and print out

values as it’s running?

Why yes, yes there is.

11

The gdb Debugger

gdb is a command-line debugger with functionality just like those that ship
with Qt Creator or PyCharm

• It lets you put breakpoints at specific places in your program to pause there
• It lets you step through execution line by line
• It lets you inspect variable values in various ways (including binary)
• It lets you track down where and why your program crashed
• And much, much more!

gdb is an essential systems programming tool, and you’ll learn
more and more of it over the course of the quarter.

12

gdb on a program

• gdb myprogram run gdb on executable
• b Set breakpoint on a func@on (e.g., b main)

 or line (b 42)
• r 82 Run with provided arguments
• n, s, continue control forward execu@on (next, step into, con@nue)
• p print variable (p varname) or evaluate expression (p 3L << 10)
• p/t, p/x binary and hex formats.
• p/d, p/u, p/c

• info args
• info locals

Important: gdb does not run the current line un@l you execute next

13

Demo: Bitmasks and GDB

14

gdb: highly recommended
At this point, setting breakpoints/stepping in gdb may seem like overkill for
what could otherwise be achieved by strategically placed printf statements.
However, gdb is incredibly useful for assign1 (and all assignments):
• A fast "C interpreter": p + <expression>

• Sandbox/try out ideas with bit shift operations, signed/unsigned types, etc.
• Can print values out in binary!
• Once you’re happy, incorporate changes to your .c file

• Tip: Open two terminal windows and SSH into myth in both
• Keep one for emacs, the other for gdb/command-line
• Easily reference C file line numbers and variables while accessing gdb

• Tip: Every time you update your C file, make and then rerun gdb.
gdb takes practice! But the payoff is huge!

