CS107 Lecture 5

Bitwise Operators, Take Il

Reading: Bryant & O’Hallaron, Ch. 2.1

This document is copyright (C) Stanford Computer Science, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides created by Cynthia Lee, Chris Gregg, Nick Troccoli, Lisa Yan, Jerry Cain and others.

Bitwise Manipulation Etudes

Bit masks needn’t be applied to only chars (i.e., 8-bit values). They can be
applied shorts, ints, and longs as well.

Assuming that j and k are (32-bit) ints,mand n are unsigned longs:

--

Present a C statement that assigns k to be just the Present an C statement that sets n to be the full
lowest byte of j. L bitwise inversion of m. §

- Presenta C statement that sets k to j, wherethe | | Present an expression that evaluates to true iffn |
. first and last bytes of j have been bitwise-inverted. | ! has two neighboring bits that are both 1. g
__ ,2

Bitwise Manipulation Etudes

Bit masks needn’t be applied to only chars (i.e., 8-bit values). They can be
applied shorts, ints, and longs as well.

Assuming that j and k are (32-bit) ints,mand n are unsigned longs:

--

Present a C statement that assigns k to be just the | Present an C statement that sets n to be the full
lowest byte of j. L bitwise inversion of m.

--

. Present a C statement that sets k to j, where the | Present an expression that evaluates to trueiff n
. first and last bytes of j have been bitwise-inverted. | ! has two neighboring bits that are both 1.
k = j » OxFFOOOOFF | (n & (n > 1)) != 0

Bitwise Manipulation and is_power_of_2

Without using loops, how can we verify that an unsigned long called
value is a power of 2? What's special about its binary footprint, and how can
we take advantage of that?

bool 1is_power_of_2(unsigned long value) {
return value != 0 && (value & (value - 1)) == 03
} // why the value != 0? Because 0 1isn’t a power of 2.

A power of 2 has a distinct binary structure. We If value is, for instance, 1 000000, then
can exploit its structure knowing powers of 2 value-1is0111111,. Restated, when subtracting 1
have precisely one 1, with all other bits being 0. from a power of 2, its only 1 becomes a 0 and all

lower bits go from 0 to 1.
All other numbers have two or more 1 bits
(except for 0, which has none). The bitwise & of value and value - 1 in this case
produces all zeroes.
Subtracting 1 from a power of 2 has a very
specific impact. If value has more than one 1 bit, at least one 1 bit
survives the bitwise & of value and value - 1.

Left Shift (<<)

The << operator shifts a bit pattern a certain number of positions to the left.
Low-order bits are filled with 0’s, and bits shifted off the left are discarded.

X << k3 // evaluates to x shifted to the left by k bits
x <<= k3§ // in-place shifts x to the left by k bits

I’m showing you the bit-

Assuming 8-bit figures: pattern effect. In real C

code, you should only rely
00110111 <<2resultsin 11011100 on this behavior for
. unsigned values.
01100011 << 4resultsin 00110000
Oh, and shifting by more

10010101 << 5resultsin 10100000 ihan the bit width (e.g.,9) is

technically undefined.

Right Shift (>>)

The >> operator shifts a bit pattern a certain number of positions to the right.
High bits are typically filled with the sign bit, and bits shifted off are discarded.

x >> k3 // evaluates to x shifted to the right by k bits
x >>= k3 // in-place shifts x to the right by k bits

Assuming signed 8-bit figures:
01011101>> 1resultsin00101110
01111110 >> 4 resultsin 00000111
11111110>>4resultsin 11111111
11011011 >> 7resultsin 11111111

Had we been dealing with
unsigned figures instead,
the sign bit isn’t explicit—it’s
implied, and therefore 0.

Right shifts are called
arithmetic when the sign bit
is replicated, and logical
when zeros are shifted in.

Bitwise Manipulation and absolute_value

Implementing an absolute_value function in CS106 terms is trivial.

unsigned int absolute_value(int value) {
return value < 0 ? -value : value;

Can we implement the same function without using relational operators (e.g.,
<) or runtime multiplication, but instead just using bitwise operators?

__

unsigned int absolute_value_bitwise(int value) {
int mask = value >> (sizeof(value) * CHAR_BIT - 1);
return (value * mask) - mask;

Bitwise Manipulation and absolute_value

The implementation below assumes two’s-complement
integers—perfectly reasonable—and arithmetic right shift,
which is true on every machine you’ll use here on campus.

When value is nonnegative, mask evaluates to 0, so the return statement essentially
returns value unmodified. That’s because exclusive-or'ing value with 0 is essentially
a no-op, and subtracting zero from value is as well.

When value is negative, mask evaluates to ~0, i.e., -1. Exclusive-or’ing value with
mask generates its bitwise inversion by flipping every bit and subtracting
-1 from thatis the same as adding 1. In essence, the return statement is
synthesizing the two’s complement of a negative number to produce a positive one.

__

unsigned int absolute_value_bitwise(int value) {
int mask = value >> (sizeof(value) * CHAR_BIT - 1);
return (value * mask) - mask;

Thought question: What does absolute_value_bitwise(INT_MIN) return?

Bitwise Manipulation

What do each of the following functions ultimately compute? How? mystery brute-force counts the
size_t mystery(unsigned long ul) { number of bits in l..l'l. thataTre 1.
size_t count = 0; i+ ThelUL << i maskisusedto
for (size_t i = 05 i < sizeof(ul) * CHAR_BIT; i++) { | identify whether the ith bit is 1.
if ((ul & (1UL << 1)) != 0) count++; i » TheUL iscrucial, since 1 standalone
} is a 32-bit constant, and left-shifting

return count; by more than the bit width—e.g., by

L Y 33 here—is undefined behavior. (This
isrelevantto assignl.)
. Size_t en1gma(unf1gned tong ul) { | enigma also counts the number of 1
s1ze_t count = 03 : - . .
while (ul != 0) { . bitsinul, but more efficiently!
count++} . * Eachiteration clears the lowest-set
ul &= ul - 13 bit usingul &=ul - 1, so the loop
} runs once per 1 bit rather than once
) return count; ! per bit position. That makes it faster

for sparse values.

Introducing gdb

Is there a way to step through the
execution of a program and print out
values as it’s running?

Why yes, yes there is.

The gdb Debugger

gdb is a command-line debugger with functionality just like those that ship
with Qt Creator or PyCharm

* It lets you put breakpoints at specific places in your program to pause there
* It lets you step through execution line by line

* It lets you inspect variable values in various ways (including binary)

* It lets you track down where and why your program crashed

 And much, much more!

gdb is an essential systems programming tool, and you’ll learn
more and more of it over the course of the quarter.

11

gdb on a program

- gdb myprogram run gdb on executable
b Set breakpoint on a function (e.g., b main)
or line (b 42)
r 82 Run with provided arguments
‘n, s, continue control forward execution (next, step into, continue)
‘p print variable (p varname) or evaluate expression (p 3L << 10)
p/t, p/x binary and hex formats.
*p/d, p/u, p/c
*info args

info locals

Important: gdb does not run the current line until you execute next .

Demo: Bitmasks and GDB

gdb: highly recommended

At this point, setting breakpoints/stepping in gdb may seem like overkill for
what could otherwise be achieved by strategically placed printf statements.

However, gdb is incredibly useful for assignl (and all assignments):

* Afast "Cinterpreter":p + <expression>

« Sandbox/try out ideas with bit shift operations, signed/unsigned types, etc.
« Can printvalues outin binary!

* Once you’re happy, incorporate changes to your .c file

 Tip: Open two terminal windows and SSH into myth in both
* Keep one for emacs, the other for gdb/command-line
* Easily reference C file line numbers and variables while accessing gdb

* Tip: Every time you update your C file, make and then rerun gdb.
gdb takes practice! But the payoffis huge! 14

